JP4210840B2 - Inverter device - Google Patents

Inverter device Download PDF

Info

Publication number
JP4210840B2
JP4210840B2 JP2003091635A JP2003091635A JP4210840B2 JP 4210840 B2 JP4210840 B2 JP 4210840B2 JP 2003091635 A JP2003091635 A JP 2003091635A JP 2003091635 A JP2003091635 A JP 2003091635A JP 4210840 B2 JP4210840 B2 JP 4210840B2
Authority
JP
Japan
Prior art keywords
circuit
frequency
power
signal
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003091635A
Other languages
Japanese (ja)
Other versions
JP2004304869A (en
Inventor
昇平 大坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2003091635A priority Critical patent/JP4210840B2/en
Publication of JP2004304869A publication Critical patent/JP2004304869A/en
Application granted granted Critical
Publication of JP4210840B2 publication Critical patent/JP4210840B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、インバータ装置、特に周波数とパルス幅とを重畳して制御した所望の高周波電力を共振負荷回路に供給するインバータ装置に関するものである。
【0002】
【従来の技術】
図4に示す従来のインバータ装置は、直流電源(1)と、直流電源(1)から供給される直流電力を高周波交流電力に変換するスイッチング動作を行うスイッチング回路(13)を有する交流変換回路(2)と、交流変換回路(2)の出力端子に接続された共振負荷回路(3)と、交流変換回路(2)のスイッチング回路(13)にスイッチング動作を行わせる制御パルス信号(VG)を出力して、共振負荷回路(3)に高周波電力を供給する制御回路(4)とを備えている。
【0003】
直流電源(1)は、商用電源等の交流電源(10)と、ダイオードをブリッジ接続して構成されて交流電源(10)の交流電力を直流電力に変換する整流回路(11)と、整流回路(11)の出力を平滑するコンデンサ(12)とを備えている。スイッチング回路(13)は、整流回路(11)の正側端子と負側端子とに直列に接続されたそれぞれIGBT(絶縁ゲートバイポーラトランジスタ)型の第1のスイッチング素子(13a)と第2のスイッチング素子(13b)と、第1のスイッチング素子(13a)と第2のスイッチング素子(13b)にそれぞれ逆並列に接続されたスナバダイオード(13c,13d)とを有する。第2のスイッチング素子(13b)に対し並列に接続される共振負荷回路(3)は、交流変換回路(2)から供給される高周波電力により鉄等の金属から成る被加熱物を誘導加熱する加熱コイル(3a)と、加熱コイル(3a)に直列に接続された共振用コンデンサ(3b)とを備えている。
【0004】
制御回路(4)は、共振負荷回路(3)への基準電力値を表す出力を発生する電力設定回路(21)と、交流変換回路(2)から共振負荷回路(3)に供給される有効電力値を検出する電力検出回路(22)と、電力検出回路(22)が検出した有効電力値と電力設定回路(21)の基準電力値とから偏差を演算して、調整出力を発生する電力調整回路(23)と、電力調整回路(23)の調整出力に従って偏差を減少する制御パルス信号(VG)のパルス周波数を決定する制御信号を発生するPFM回路(42)と、PFM回路(42)の制御信号を受信して、交流変換回路(2)のスイッチング回路(13)をスイッチング動作させる制御パルス信号(VG)を出力する駆動回路(25)とを備えている。
【0005】
電力検出回路(22)は、交流変換回路(2)に入力されるコンデンサ(12)の両端電圧を検出する電圧検出回路(14)と、直流電源(1)から交流変換回路(2)への経路に流れる電流を検出する電流検出回路(15)とに接続される。電力検出回路(22)は、電圧検出回路(14)の検出電圧値と電流検出回路(15)の検出電流値との乗算値を有効電力の検出値として電力調整回路(23)に出力する図示しない乗算回路を備えている。
【0006】
図4に示すインバータ装置(2)は、ハーフブリッジ方式の電圧形インバータ装置と称され、駆動回路(25)の制御パルス信号(VG)により、IGBTとダイオードとの逆並列回路で構成された第1のスイッチング素子(13a)と第2のスイッチング素子(13b)を交互にオン・オフさせる。その際に、共振負荷回路(3)の加熱コイル(3a)と共振用コンデンサ(3b)とから導出される共振周波数(fc)の周期に等しい周波数より高い周期で論理「H」レベルと論理「L」レベルとを繰り返すパルス信号をPFM回路(42)から生成する。このとき、共振周波数(fc)に近い周波数でスイッチング動作を反復させて電力を共振負荷回路(3)に供給し、更に共振周波数(fc)より高い周波数でオン・オフを反復させて制御することにより、加熱コイル(3a)内の図示しない被加熱物を誘導加熱すると共に、共振負荷回路(3)に供給される有効電力を基準電力値に調整する。
【0007】
図5は、有効電力値が基準電力値を超えるときにPWM制御に切り換えると共に、有効電力値が基準電力値に満たないときにPFM制御に切り換える切替回路(41)を備え、共振負荷回路(3)への出力電力をより広範囲に制御する下記特許文献1に開示された従来の他のインバータ装置を示す。
【0008】
図5に示すインバータ装置では、切替回路(41)とPWM回路(24)とが図4のインバータ装置に付加される。電力調整回路(23)では、電力設定回路(21)の基準電力値と電力検出回路(22)の有効電力値との偏差を零にすべく比例−積分(PI)演算を行う。演算された有効電力値がPWM回路(24)での時比率λ値を0.1以下にするとき、有効電力値が時比率λ=0.1にする値を基準電力値として、λ<0.1に対応する有効電力値をPFM回路(42)へ別途入力するように切替回路(41)によりPWM回路(24)からPFM回路(42)に切り換える。
【0009】
PFM回路(42)では入力された有効電力値に基づき周波数変調(PFM)演算を行い、演算された周波数の論理「H」レベルと論理「L」レベルとにより構成されるパルス信号を駆動回路(25)へ出力する。このとき、PFM回路(42)での時比率λはインバータ装置が安定に動作する任意の値とし、共振負荷回路(3)の加熱コイル(3a)と共振用コンデンサ(3b)とから導出される共振周波数(fc)の周期より小さい方向にパルス信号の反復周期を変更することにより、インバータ装置の安定動作領域で共振負荷回路(3)に供給する有効電力をより広い範囲で減少させることができる。
【0010】
【特許文献1】
特開2001−128462(図1、第3頁)
【0011】
【発明が解決しようとする課題】
図4に示すインバータ装置では、例えば、共振周波数(fc)より大幅に上昇する周波数に出力高周波電力を調整する必要があるが、スイッチング素子(13a, 13b)を構成するIGBTはスイッチングスピードが遅く、周波数を高くすると十分追従動作することができず、スイッチング回路(13)の動作が不安定になる恐れがある。その結果、インバータ装置の必要な高周波電力、即ち、共振負荷回路(3)に注入できる有効電力を広範囲に調整できない難点があった。
【0012】
その対策として、図5では、切替回路(41)により有効電力値が基準電力値を超えるときPWM制御に切り換え、有効電力値が基準電力値に満たないときPFM制御に切り換えて、共振負荷回路(3)への出力電力をより広範囲に制御するが、共振周波数(fc)近傍でPWM制御により時比率λを絞り込むとき、周波数制御が不能となり、時比率を過度に小さくすると共振負荷回路(3)との整合が取れず、共振はずれを発生し、最低時比率の制御に限界があり、スイッチング素子が破損する重大な難点があった。
本発明は、共振負荷回路に注入する有効電力をより広い範囲で調整できるインバータ装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明によるインバータ装置は、直流電源(1)と、直流電源(1)から供給される直流電力を高周波交流電力に変換するスイッチング動作を行うスイッチング回路(13)を有する交流変換回路(2)と、交流変換回路(2)の出力端子に接続された共振負荷回路(3)と、交流変換回路(2)に接続された制御回路(4)とを備える。制御回路(4)は、基準電力値を表す出力を発生する電力設定回路(21)と、交流変換回路(2)から共振負荷回路(3)に供給される有効電力値を検出する電力検出回路(22)と、電力検出回路(22)が検出した有効電力値と電力設定回路(21)の基準電力値とから偏差を演算して、電力調整信号を発生する電力調整回路(23)と、制御信号を発生するPWM回路(24)と、PWM回路(24)の制御信号を受信して、交流変換回路(2)のスイッチング回路(13)をスイッチング動作させる制御パルス信号(VG)を出力して、共振負荷回路(3)に高周波電力を供給する駆動回路(25)と、電力調整回路(23)の電力調整信号を受信して駆動回路(25)の制御パルス信号(VG)の周波数(f)を決定する周波数制御信号をPWM回路(24)に発生するPFM回路(42)と、予め設定された上限周波数(fMAX)を記憶し、制御パルス信号(VG)の周波数(f)が上限周波数(fMAX)に達したときに、PFM回路(42)に保持信号を出力する周波数設定回路(43)とを備える。PFM回路(42)は、周波数設定回路(43)の保持信号を受信したとき、駆動回路(25)の制御パルス信号(VG)の周波数(f)を上限周波数(fMAX)に保持する。PWM回路(24)は、PFM回路(42)が決定した周波数の周波数制御信号での駆動回路(25)の制御パルス信号(VG)の時比率(λ)を決定すると共に、PFM回路(42)から発生する周波数制御信号に電力調整回路(23)の電力調整信号に重畳して、電力調整回路(23)の電力調整信号の偏差を減少するパルス幅の制御信号を駆動回路(25)に付与する。PFM回路(42)は、電力調整回路(23)の電力調整信号により最適の周波数出力を発生し、PWM回路(24)は、PFM回路(42)から発生する周波数出力のパルス幅を電力調整回路(23)の電力調整信号に重畳して制御するので、PWM回路(24)とPFM回路(42)とを個別に制御する切替回路を必要とせず、切替損失を回避すると共に、回路構成を簡素化することができる。また、共振負荷回路(3)の共振周波数(fC)を常時最適値に設定すると共に、広範囲且つ連続的に供給電力を調整し、共振負荷回路(3)に電力を効率よく供給することができる。更に、PFM回路(42)により制御される駆動回路(25)の制御パルス信号(VG)の周波数(f)が上限周波数(fMAX)に達したときに、制御パルス信号(VG)の周波数(f)を上限周波数(fMAX)に保持して、PWM回路(24)により制御パルス信号(VG)の時比率(λ)を制御するので、共振負荷回路(3)の共振周波数(fC)よりも十分に高い上限周波数(fMAX)でも制御パルス信号(VG)の時比率(λ)を絞り込むことができる。また、制御パルス信号(VG)の周波数(f)が上限周波数(fMAX)以上に上昇せずに、制御パルス信号(VG)の時比率(λ)を広い範囲で制御することができる。
【0014】
【発明の実施の形態】
以下、本発明によるインバータ装置の実施の形態を図1〜図3について説明する。図1では、図4及び図5に示す箇所と同一の部分には同一の符号を付して説明を省略する。
図1に示すように、本発明では、予め設定された上限周波数(fMAX)を記憶し、制御パルス信号(VG)の周波数(f)が上限周波数(fMAX)に達したときにPFM回路(42)に保持信号を出力する周波数設定回路(43)と、電力調整回路(23)の調整出力を受信して制御パルス信号(VG)の周波数(f)を決定する周波数制御信号を発生するPFM回路(42)と、PFM回路(42)の周波数制御信号が付与されてPFM回路(42)が決定した周波数(f)での制御パルス信号(VG)の時比率(λ)を決定するPWM回路(24)とをインバータ装置に設ける。
【0015】
周波数設定回路(43)の保持信号を受信したとき、PFM回路(42)は、制御パルス信号(VG)の周波数(f)を上限周波数(fMAX)に保持する。PWM回路(24)は、PFM回路(42)から受信した周波数と電力調整回路(23)から受信した電力調整信号からパルス幅信号を決定する出力を形成して、駆動回路(25)に出力を付与する。PFM回路(42)は、電力調整回路(23)の調整出力により最適の周波数出力を発生し、PWM回路(24)は、PFM回路(42)から発生する周波数にパルス幅を重畳して制御するので、PWM回路(24)とPFM回路(42)とを個別に制御する切替回路を必要とせず、切替損失を回避すると共に、回路構成を簡素化することができる。また、共振負荷回路(3)の共振周波数(fC)を常時最適値に設定すると共に、広範囲且つ連続的に供給電力を調整し、共振負荷回路(3)に電力を効率よく供給することが可能となる。
【0016】
PFM回路(42)により制御される制御パルス信号(VG)の周波数(f)が上限周波数(fMAX)に達したときに、制御パルス信号(VG)の周波数(f)を上限周波数(fMAX)に保持して、PWM回路(24)により制御パルス信号(VG)の時比率(λ)を制御するので、共振負荷回路(3)の共振周波数(fC)よりも十分に高い上限周波数(fMAX)でも制御パルス信号(VG)の時比率(λ)を絞り込むことができる。また、制御パルス信号(VG)の周波数(f)が上限周波数(fMAX)以上に上昇せずに、制御パルス信号(VG)の時比率(λ)を広い範囲で制御することができる。例えば電磁調理器等として使用される鉄鍋等の被加熱物を誘導加熱する際に、加熱コイル(3a)に供給される高周波電力のレベル及び周波数並びに被加熱物への加熱量をより広範囲に調整することができる。
【0017】
電力調整回路(23)では、基準電力値と有効電力検出値との偏差を零にすべく比例−積分(PI)演算を行い、この演算結果としてのインバータ装置(4)の有効電力値がPFM回路(24)の周波数を可変するが、PFM回路(24)の周波数が周波数設定回路(43)の予め設定された任意の最高周波数に達すると、それ以上の周波数上昇を阻止し、代わりにPWM回路(24)の時比率λ(1周期中のオン期間比率)を調整し、基準電力値になるよう動作する。PWM回路(24)では入力された有効電力値に基づきパルス幅変調(PWM)演算を行い、この演算結果のパルス信号を駆動回路(25)へ出力する。このとき、パルス周波数変調(PFM)の発振周波数(上限周波数(fMAX))は共振負荷回路(3)の共振周波数(fC)より十分に高い。PWM回路(24)でパルス幅変調を行うことにより、インバータ装置(4)の動作が安定な領域で共振負荷回路(3)に注入する有効電力をより広い範囲で電力制御を行うことができる。
【0018】
図2は、図1に示すインバータ装置の動作特性を示すグラフである。図2の横軸はスイッチング回路(13)への出力電圧設定値となる電力調整回路(23)の出力を示し、縦軸は、PFM回路(42)又はPWM回路(24)の出力であるパルス信号の周波数や時比率λ値を示し、最大負荷時は共振周波数(fc)近傍の周波数を出力し、出力電力の大きいときは周波数制御を行い、軽負荷になるほど周波数が上昇する。
【0019】
周波数設定回路(43)に予め設定された任意の最高周波数以上になると、それ以降の周波数上昇は抑制され、代わりにPWM回路の時比率λ(1周期中でのオン期間比率)を調整し、基準電力値に向かって動作する。出力が減少するにしたがって、最高周波数を維持する状態で、時比率λは減少する。
【0020】
逆に、最小出力時は、図3(c)に示すように、PFM回路(42)出力は最高周波数で、PWM回路(24)の出力の時比率λは最小値となる。図3(b)に示すように、出力の増大に伴いPFM回路(42)の出力は最高周波数を維持し、PWM回路(24)の出力の時比率λは増大する。時比率λが最大値となると、図3(a)に示すように、それ以降の出力に対し時比率λを最大値に固定し、PFM回路(42)の出力する周波数を共振周波数(fc)に近づける。最大負荷時は共振周波数(fc)近傍の周波数まで出力周波数を低下する。
【0021】
前記のように調整することにより、共振負荷回路(3)に供給される有効電力をより広い範囲で調整でき、PWM回路(24)とPFM回路(42)との連続制御動作時にスイッチング回路(13)を円滑に動作させることができる。
【0022】
図1〜図3に示す実施の形態の説明では、ハーフブリッジ方式の電圧形インバータ装置について説明したが、フルブリッジ方式の電圧形インバータ装置、ハーフブリッジ方式で共振用コンデンサを2個用いた電圧形インバータ装置でも、本発明の制御方法を実施することができる。本発明によるインバータ装置では、加熱電力をより広い範囲で調整して被加熱物を誘導加熱することができるので、例えば、被加熱物が多彩で、その加熱電力も広範囲にわたる電磁調理器のインバータ装置として好適である。
【0023】
【発明の効果】
前記の通り、本発明では、PWM回路とPFM回路とを個別に制御する切替回路を必要とせず、切替損失を回避すると共に、回路構成を簡素化することができる。また、共振負荷回路の共振周波数を常時最適値に設定すると共に、広範囲且つ連続的に供給電力を調整し、最適の周波数出力で電力を効率よく共振負荷回路に供給することが可能となる。
【図面の簡単な説明】
【図1】 本発明による実施の形態を示すインバータ装置の回路図
【図2】 図1に示すインバータ装置の動作特性を示すグラフ
【図3】 図1に示すインバータ装置の各モード時のタイムチャート
【図4】 従来のインバータ装置を示す回路図
【図5】 従来の他のインバータ装置を示す回路図
【符号の説明】
(1)・・直流電源、 (2)・・交流変換回路、 (3)・・共振負荷回路、(4)・・制御回路、 (13)・・スイッチング回路、 (21)・・電力設定回路、 (22)・・電力検出回路、 (23)・・電力調整回路、 (24)・・PWM回路、 (25)・・駆動回路、 (42)・・PFM回路、 (43)・・周波数設定回路、
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an inverter device, and more particularly to an inverter device that supplies a desired high-frequency power controlled by superimposing a frequency and a pulse width to a resonant load circuit.
[0002]
[Prior art]
The conventional inverter device shown in FIG. 4 includes an AC conversion circuit (1) and a switching circuit (13) that performs a switching operation for converting DC power supplied from the DC power supply (1) into high-frequency AC power. 2), a resonant load circuit (3) connected to the output terminal of the AC converter circuit (2), and a control pulse signal (V G ) that causes the switching circuit (13) of the AC converter circuit (2) to perform a switching operation. And a control circuit (4) for supplying high frequency power to the resonant load circuit (3).
[0003]
The DC power source (1) is composed of an AC power source (10) such as a commercial power source, a rectifier circuit (11) configured by bridge-connecting diodes to convert AC power of the AC power source (10) into DC power, and a rectifier circuit. And a capacitor (12) for smoothing the output of (11). The switching circuit (13) includes a first switching element (13a) of IGBT (insulated gate bipolar transistor) type and a second switching connected in series to the positive side terminal and the negative side terminal of the rectifier circuit (11). It has an element (13b) and snubber diodes (13c, 13d) connected in antiparallel to the first switching element (13a) and the second switching element (13b), respectively. The resonant load circuit (3) connected in parallel to the second switching element (13b) is a heating unit that inductively heats an object to be heated made of metal such as iron by high-frequency power supplied from the AC conversion circuit (2). A coil (3a) and a resonance capacitor (3b) connected in series to the heating coil (3a) are provided.
[0004]
The control circuit (4) includes a power setting circuit (21) that generates an output representing a reference power value to the resonant load circuit (3), and an effective power supplied from the AC converter circuit (2) to the resonant load circuit (3). A power detection circuit (22) that detects the power value, and a power that generates an adjustment output by calculating the deviation from the active power value detected by the power detection circuit (22) and the reference power value of the power setting circuit (21) An adjustment circuit (23), a PFM circuit (42) for generating a control signal for determining a pulse frequency of a control pulse signal (V G ) that decreases a deviation according to an adjustment output of the power adjustment circuit (23), and a PFM circuit (42 ) And a drive circuit (25) for outputting a control pulse signal (V G ) for switching the switching circuit (13) of the AC conversion circuit (2).
[0005]
The power detection circuit (22) includes a voltage detection circuit (14) for detecting the voltage across the capacitor (12) input to the AC conversion circuit (2), and a DC power supply (1) to the AC conversion circuit (2). It is connected to a current detection circuit (15) that detects a current flowing through the path. The power detection circuit (22) outputs a multiplication value of the detection voltage value of the voltage detection circuit (14) and the detection current value of the current detection circuit (15) to the power adjustment circuit (23) as a detection value of active power. Does not have a multiplication circuit.
[0006]
The inverter device (2) shown in FIG. 4 is called a half-bridge voltage source inverter device, and is composed of an anti-parallel circuit of an IGBT and a diode by a control pulse signal (V G ) of the drive circuit (25). The first switching element (13a) and the second switching element (13b) are alternately turned on and off. At that time, the logic "H" level and logic at a period higher than the frequency equal to the period of the resonance frequency (f c ) derived from the heating coil (3a) and the resonance capacitor (3b) of the resonance load circuit (3). A pulse signal that repeats “L” level is generated from the PFM circuit (42). At this time, the switching operation is repeated at a frequency close to the resonance frequency (f c ) to supply power to the resonance load circuit (3), and the control is performed by repeatedly turning on and off at a frequency higher than the resonance frequency (f c ). As a result, an object to be heated (not shown) in the heating coil (3a) is inductively heated, and the active power supplied to the resonant load circuit (3) is adjusted to the reference power value.
[0007]
FIG. 5 includes a switching circuit (41) that switches to PWM control when the active power value exceeds the reference power value, and switches to PFM control when the active power value is less than the reference power value. Another conventional inverter device disclosed in Patent Document 1 below, which controls the output power to) in a wider range, is shown.
[0008]
In the inverter device shown in FIG. 5, a switching circuit (41) and a PWM circuit (24) are added to the inverter device of FIG. The power adjustment circuit (23) performs a proportional-integral (PI) calculation so that the deviation between the reference power value of the power setting circuit (21) and the active power value of the power detection circuit (22) is zero. When the calculated active power value makes the time ratio λ value in the PWM circuit (24) 0.1 or less, the value that makes the active power value the time ratio λ = 0.1 is the reference power value, and λ <0. The switching circuit (41) switches the PWM circuit (24) to the PFM circuit (42) so that the active power value corresponding to .1 is separately input to the PFM circuit (42).
[0009]
The PFM circuit (42) performs frequency modulation (PFM) calculation based on the input active power value, and generates a pulse signal composed of the logic "H" level and logic "L" level of the calculated frequency. Output to 25). At this time, the duty ratio λ in the PFM circuit (42) is an arbitrary value at which the inverter device operates stably, and is derived from the heating coil (3a) and the resonance capacitor (3b) of the resonant load circuit (3). By changing the repetition period of the pulse signal in a direction smaller than the period of the resonance frequency (fc), the effective power supplied to the resonance load circuit (3) can be reduced in a wider range in the stable operation region of the inverter device. .
[0010]
[Patent Document 1]
JP 2001-128462 (FIG. 1, page 3)
[0011]
[Problems to be solved by the invention]
In the inverter device shown in FIG. 4, for example, it is necessary to adjust the output high-frequency power to a frequency that is significantly higher than the resonance frequency (fc). However, the IGBT constituting the switching elements (13a, 13b) has a slow switching speed, If the frequency is increased, the tracking operation cannot be sufficiently performed, and the operation of the switching circuit (13) may become unstable. As a result, there is a difficulty that the high frequency power necessary for the inverter device, that is, the effective power that can be injected into the resonant load circuit (3) cannot be adjusted over a wide range.
[0012]
As a countermeasure, in FIG. 5, the switching circuit (41) switches to PWM control when the active power value exceeds the reference power value, and switches to PFM control when the active power value is less than the reference power value. The output power to 3) is controlled over a wider range, but when the time ratio λ is narrowed down by the PWM control near the resonance frequency (fc), the frequency control becomes impossible, and if the time ratio is excessively reduced, the resonant load circuit (3) There is a serious difficulty that the switching element is broken because there is a limit in the control of the minimum duty ratio, and the resonance is shifted.
An object of this invention is to provide the inverter apparatus which can adjust the active electric power inject | poured into a resonant load circuit in a wider range.
[0013]
[Means for Solving the Problems]
An inverter device according to the present invention includes a DC power supply (1), an AC conversion circuit (2) having a switching circuit (13) that performs a switching operation for converting DC power supplied from the DC power supply (1) into high-frequency AC power, and A resonance load circuit (3) connected to the output terminal of the AC conversion circuit (2), and a control circuit (4) connected to the AC conversion circuit (2). The control circuit (4) includes a power setting circuit (21) that generates an output representing a reference power value, and a power detection circuit that detects an active power value supplied from the AC conversion circuit (2) to the resonant load circuit (3). (22), a power adjustment circuit (23) that generates a power adjustment signal by calculating a deviation from the active power value detected by the power detection circuit (22) and the reference power value of the power setting circuit (21), A PWM circuit (24) that generates a control signal and a control pulse signal (V G ) that receives the control signal of the PWM circuit (24) and switches the switching circuit (13) of the AC conversion circuit (2). The drive circuit (25) for supplying high frequency power to the resonant load circuit (3) and the power adjustment signal of the power adjustment circuit (23) are received and the control pulse signal (V G ) of the drive circuit (25) is received. storing a frequency PFM circuit (42) for generating a frequency control signal to the PWM circuit (24) for determining a (f), a preset upper limit frequency (f MAX), control When the pulse signal (V G) frequency (f) of the reaches upper limit frequency (f MAX), and a frequency setting circuit (43) for outputting a hold signal to the PFM circuit (42). When receiving the hold signal of the frequency setting circuit (43), the PFM circuit (42) holds the frequency (f) of the control pulse signal (V G ) of the drive circuit (25) at the upper limit frequency (f MAX ). The PWM circuit (24) determines the time ratio (λ) of the control pulse signal (V G ) of the drive circuit (25) with the frequency control signal of the frequency determined by the PFM circuit (42), and the PFM circuit (42 ) Is superimposed on the power adjustment signal of the power adjustment circuit (23) on the frequency control signal generated from the power adjustment circuit (23), and the pulse width control signal that reduces the deviation of the power adjustment signal of the power adjustment circuit (23) Give. The PFM circuit (42) generates an optimum frequency output by the power adjustment signal of the power adjustment circuit (23), and the PWM circuit (24) determines the pulse width of the frequency output generated from the PFM circuit (42) as a power adjustment circuit. Since it is controlled by superimposing it on the power adjustment signal of (23), there is no need for a switching circuit for individually controlling the PWM circuit (24) and the PFM circuit (42), avoiding switching loss and simplifying the circuit configuration. Can be In addition, the resonant frequency (f C ) of the resonant load circuit (3) is always set to the optimum value, and the power supply is adjusted over a wide range and continuously to efficiently supply power to the resonant load circuit (3). it can. Further, when the frequency (f) of the control pulse signal (V G ) of the drive circuit (25) controlled by the PFM circuit (42) reaches the upper limit frequency (f MAX ), the control pulse signal (V G ) Since the frequency (f) is held at the upper limit frequency (f MAX ) and the time ratio (λ) of the control pulse signal (V G ) is controlled by the PWM circuit (24), the resonant frequency (3) of the resonant load circuit (3) The time ratio (λ) of the control pulse signal (V G ) can be narrowed even at the upper limit frequency (f MAX ) sufficiently higher than f C ). Further, it is possible to control the pulse signal frequency (V G) (f) is without rise above the upper limit frequency (f MAX), controlled in a wide range the ratio (lambda) when the control pulse signal (V G) .
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of an inverter device according to the present invention will be described below with reference to FIGS. In FIG. 1, the same parts as those shown in FIG. 4 and FIG.
As shown in FIG. 1, in the present invention, a preset upper limit frequency (f MAX ) is stored, and when the frequency (f) of the control pulse signal (V G ) reaches the upper limit frequency (f MAX ), the PFM is stored. A frequency setting circuit (43) that outputs a holding signal to the circuit (42) and a frequency control signal that receives the adjustment output of the power adjustment circuit (23) and determines the frequency (f) of the control pulse signal (V G ). The ratio (λ) of the generated PFM circuit (42) and the control pulse signal (V G ) at the frequency (f) determined by the PFM circuit (42) given the frequency control signal of the PFM circuit (42). A PWM circuit (24) for determination is provided in the inverter device.
[0015]
When the holding signal of the frequency setting circuit (43) is received, the PFM circuit (42) holds the frequency (f) of the control pulse signal (V G ) at the upper limit frequency (f MAX ). The PWM circuit (24) forms an output for determining a pulse width signal from the frequency received from the PFM circuit (42) and the power adjustment signal received from the power adjustment circuit (23), and outputs the output to the drive circuit (25). Give. The PFM circuit (42) generates an optimum frequency output based on the adjustment output of the power adjustment circuit (23), and the PWM circuit (24) performs control by superimposing the pulse width on the frequency generated from the PFM circuit (42). Therefore, a switching circuit for individually controlling the PWM circuit (24) and the PFM circuit (42) is not required, and switching loss can be avoided and the circuit configuration can be simplified. In addition, the resonant frequency (f C ) of the resonant load circuit (3) is always set to the optimum value, and the power supply is adjusted over a wide range and continuously to efficiently supply power to the resonant load circuit (3). It becomes possible.
[0016]
When the frequency (f) of the control pulse signal (V G ) controlled by the PFM circuit (42) reaches the upper limit frequency (f MAX ), the frequency (f) of the control pulse signal (V G ) is changed to the upper limit frequency ( f MAX ), and the PWM circuit (24) controls the time ratio (λ) of the control pulse signal (V G ), so it is sufficiently higher than the resonant frequency (f C ) of the resonant load circuit (3) Even at the upper limit frequency (f MAX ), the time ratio (λ) of the control pulse signal (V G ) can be narrowed down. Further, it is possible to control the pulse signal frequency (V G) (f) is without rise above the upper limit frequency (f MAX), controlled in a wide range the ratio (lambda) when the control pulse signal (V G) . For example, when induction heating an object to be heated such as an iron pan used as an electromagnetic cooker, the level and frequency of the high frequency power supplied to the heating coil (3a) and the amount of heating to the object to be heated are more extensive. Can be adjusted.
[0017]
In the power adjustment circuit (23), proportional-integral (PI) calculation is performed so that the deviation between the reference power value and the detected active power value becomes zero, and the active power value of the inverter device (4) as the calculation result is PFM. The frequency of the circuit (24) is varied, but when the frequency of the PFM circuit (24) reaches an arbitrary preset maximum frequency of the frequency setting circuit (43), further frequency increase is prevented and PWM is used instead. The circuit 24 operates to adjust the time ratio λ (on-period ratio in one cycle) to the reference power value. The PWM circuit (24) performs a pulse width modulation (PWM) calculation based on the input active power value, and outputs a pulse signal as a result of the calculation to the drive circuit (25). At this time, the oscillation frequency (upper limit frequency (f MAX )) of the pulse frequency modulation (PFM) is sufficiently higher than the resonance frequency (f C ) of the resonant load circuit (3). By performing pulse width modulation by the PWM circuit (24), it is possible to perform power control over a wider range of effective power injected into the resonant load circuit (3) in a region where the operation of the inverter device (4) is stable.
[0018]
FIG. 2 is a graph showing the operating characteristics of the inverter device shown in FIG. The horizontal axis of FIG. 2 shows the output of the power adjustment circuit (23) as the output voltage setting value to the switching circuit (13), and the vertical axis shows the pulse which is the output of the PFM circuit (42) or the PWM circuit (24). The frequency of the signal and the time ratio λ value are shown. The frequency near the resonance frequency (f c ) is output at the maximum load, the frequency is controlled when the output power is large, and the frequency increases as the load becomes lighter.
[0019]
If the frequency setting circuit (43) exceeds an arbitrary maximum frequency preset in advance, the subsequent frequency increase is suppressed, and instead the PWM circuit time ratio λ (on period ratio in one cycle) is adjusted, Operates toward the reference power value. As the output decreases, the duty ratio λ decreases while maintaining the highest frequency.
[0020]
On the contrary, at the time of the minimum output, as shown in FIG. 3C, the output of the PFM circuit (42) has the highest frequency, and the time ratio λ of the output of the PWM circuit (24) becomes the minimum value. As shown in FIG. 3B, as the output increases, the output of the PFM circuit (42) maintains the highest frequency, and the duty ratio λ of the output of the PWM circuit (24) increases. When the time ratio λ reaches the maximum value, as shown in FIG. 3A, the time ratio λ is fixed to the maximum value for the subsequent outputs, and the frequency output from the PFM circuit 42 is set to the resonance frequency (f c ) At maximum load, the output frequency is reduced to a frequency close to the resonance frequency (f c ).
[0021]
By adjusting as described above, the active power supplied to the resonant load circuit (3) can be adjusted in a wider range, and the switching circuit (13) can be used during the continuous control operation of the PWM circuit (24) and the PFM circuit (42). ) Can be operated smoothly.
[0022]
In the description of the embodiment shown in FIGS. 1 to 3, the half-bridge voltage source inverter device has been described. However, the full-bridge voltage source inverter device, the voltage source using two resonance capacitors in the half-bridge method. The control method of the present invention can also be implemented in the inverter device. In the inverter apparatus according to the present invention, the heating power can be adjusted in a wider range and the object to be heated can be induction-heated. For example, the heating apparatus has a wide variety of heating power and the heating power covers a wide range. It is suitable as.
[0023]
【The invention's effect】
As described above, the present invention does not require a switching circuit for individually controlling the PWM circuit and the PFM circuit, avoids switching loss and simplifies the circuit configuration. In addition, the resonance frequency of the resonance load circuit is always set to the optimum value, and the supplied power is adjusted continuously over a wide range, so that the power can be efficiently supplied to the resonance load circuit with the optimum frequency output.
[Brief description of the drawings]
1 is a circuit diagram of an inverter device according to an embodiment of the present invention. FIG. 2 is a graph showing operating characteristics of the inverter device shown in FIG. 1. FIG. 3 is a time chart in each mode of the inverter device shown in FIG. FIG. 4 is a circuit diagram showing a conventional inverter device. FIG. 5 is a circuit diagram showing another conventional inverter device.
(1) ・ ・ DC power supply, (2) ・ ・ AC converter circuit, (3) ・ Resonant load circuit, (4) ・ ・ Control circuit, (13) ・ ・ Switching circuit, (21) ・ ・ Power setting circuit , (22) ... Power detection circuit, (23) ... Power adjustment circuit, (24) ... PWM circuit, (25) ... Drive circuit, (42) ... PFM circuit, (43) ... Frequency setting circuit,

Claims (1)

直流電源と、該直流電源から供給される直流電力を高周波交流電力に変換するスイッチング動作を行うスイッチング回路を有する交流変換回路と、該交流変換回路の出力端子に接続された共振負荷回路と、前記交流変換回路に接続された制御回路とを備え、
該制御回路は、基準電力値を表す出力を発生する電力設定回路と、前記交流変換回路から前記共振負荷回路に供給される有効電力値を検出する電力検出回路と、前記電力検出回路が検出した有効電力値と前記電力設定回路の基準電力値とから偏差を演算して、電力調整信号を発生する電力調整回路と、制御信号を発生するPWM回路と、該PWM回路の制御信号を受信して、前記交流変換回路のスイッチング回路をスイッチング動作させる制御パルス信号を出力して、前記共振負荷回路に高周波電力を供給する駆動回路と、前記電力調整回路の電力調整信号を受信して前記駆動回路の制御パルス信号の周波数を決定する周波数制御信号を前記PWM回路に発生するPFM回路と、予め設定された上限周波数を記憶し、前記駆動回路の制御パルス信号の周波数が上限周波数に達したときに、前記PFM回路に保持信号を出力する周波数設定回路とを備え、
前記PFM回路は、前記周波数設定回路の保持信号を受信したとき、前記制御回路の制御パルス信号の周波数を前記上限周波数に保持し、
前記PWM回路は、前記PFM回路が決定した周波数の周波数制御信号での前記駆動回路の制御パルス信号の時比率を決定すると共に、前記PFM回路から発生する周波数制御信号に前記電力調整回路の電力調整信号に重畳して、前記電力調整回路の電力調整信号の前記偏差を減少するパルス幅の制御信号を前記駆動回路に付与することを特徴とするインバータ装置。
A DC power supply, an AC conversion circuit having a switching circuit for performing a switching operation for converting DC power supplied from the DC power supply into high-frequency AC power, a resonant load circuit connected to an output terminal of the AC conversion circuit, A control circuit connected to the AC conversion circuit,
The control circuit includes a power setting circuit that generates an output representing a reference power value, a power detection circuit that detects an effective power value supplied from the AC conversion circuit to the resonant load circuit, and the power detection circuit detects A deviation is calculated from the effective power value and the reference power value of the power setting circuit, and a power adjustment circuit for generating a power adjustment signal, a PWM circuit for generating a control signal, and a control signal for the PWM circuit are received. A drive circuit that outputs a control pulse signal for switching the switching circuit of the AC converter circuit to supply high-frequency power to the resonant load circuit; and a power adjustment signal of the power adjustment circuit that receives the power adjustment signal of the drive circuit. A PFM circuit that generates a frequency control signal for determining the frequency of the control pulse signal in the PWM circuit, a preset upper limit frequency are stored, and a control pulse of the drive circuit is stored. When the frequency of the signal reaches the upper limit frequency, and a frequency setting circuit for outputting a hold signal to said PFM circuit,
When the PFM circuit receives the holding signal of the frequency setting circuit, the PFM circuit holds the frequency of the control pulse signal of the control circuit at the upper limit frequency,
The PWM circuit determines the time ratio of the control pulse signal of the drive circuit with the frequency control signal of the frequency determined by the PFM circuit, and adjusts the power adjustment circuit power to the frequency control signal generated from the PFM circuit. An inverter device, wherein a control signal having a pulse width that superimposes on a signal to reduce the deviation of the power adjustment signal of the power adjustment circuit is applied to the drive circuit.
JP2003091635A 2003-03-28 2003-03-28 Inverter device Expired - Fee Related JP4210840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003091635A JP4210840B2 (en) 2003-03-28 2003-03-28 Inverter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003091635A JP4210840B2 (en) 2003-03-28 2003-03-28 Inverter device

Publications (2)

Publication Number Publication Date
JP2004304869A JP2004304869A (en) 2004-10-28
JP4210840B2 true JP4210840B2 (en) 2009-01-21

Family

ID=33404959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003091635A Expired - Fee Related JP4210840B2 (en) 2003-03-28 2003-03-28 Inverter device

Country Status (1)

Country Link
JP (1) JP4210840B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5133837B2 (en) * 2008-10-03 2013-01-30 ギガフォトン株式会社 Power supply for pulse laser
US8472278B2 (en) 2010-04-09 2013-06-25 Qualcomm Incorporated Circuits, systems and methods for adjusting clock signals based on measured performance characteristics
CN101969303B (en) * 2010-06-30 2013-04-17 艾默生网络能源系统北美公司 Resonance circuit output characteristic control method
CN102548077B (en) * 2012-01-13 2014-11-12 深圳麦格米特电气股份有限公司 Power supply power adjusting method of microwave oven
CN106505893B (en) * 2016-12-21 2018-10-19 明纬(广州)电子有限公司 Resonance control apparatus and its resonance control method
JP6772922B2 (en) * 2017-03-24 2020-10-21 株式会社デンソー Resonant inverter

Also Published As

Publication number Publication date
JP2004304869A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
EP1895814B1 (en) Induction heating apparatus
JP3884664B2 (en) Induction heating device
US8879285B2 (en) Power converter for outputting power to a system
JPWO2006129795A1 (en) Induction heating device
JP3828386B2 (en) Microwave oven and control method thereof
JP2006351371A (en) Induction heating cooker
JP2004047538A (en) Switching power supply, laser power supply, laser device, and method of controlling laser power supply
JP4210840B2 (en) Inverter device
JP3649322B2 (en) Inverter control method
JP2020124050A (en) Resonance inverter device
US7078868B2 (en) DC—DC converter and device for operation of a high pressure discharge lamp using said converter
US20200281048A1 (en) Induction cooking system
JP2004014218A (en) Induction heating device
JP2013069610A (en) Magnetron driving power supply
JP3460997B2 (en) Induction heating device
JP2005222728A (en) Control unit
JP4887681B2 (en) Induction heating device
JP4893120B2 (en) Induction heating device
JP4797542B2 (en) Induction heating device
JP5223315B2 (en) Induction heating device
JP3833159B2 (en) Induction heating device
KR100397822B1 (en) Active-Clamped Class-E Inverter System for controlling High Power
JP7215962B2 (en) Electromagnetic induction heating device
JP4807022B2 (en) Induction heating device
JP3708469B2 (en) Magnetron drive power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081001

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees