JP2000331798A - Control method for high frequency power supply - Google Patents

Control method for high frequency power supply

Info

Publication number
JP2000331798A
JP2000331798A JP11143013A JP14301399A JP2000331798A JP 2000331798 A JP2000331798 A JP 2000331798A JP 11143013 A JP11143013 A JP 11143013A JP 14301399 A JP14301399 A JP 14301399A JP 2000331798 A JP2000331798 A JP 2000331798A
Authority
JP
Japan
Prior art keywords
current
power supply
frequency
frequency power
work coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11143013A
Other languages
Japanese (ja)
Other versions
JP3829233B2 (en
Inventor
Masaaki Hisamoto
正昭 久本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP14301399A priority Critical patent/JP3829233B2/en
Publication of JP2000331798A publication Critical patent/JP2000331798A/en
Application granted granted Critical
Publication of JP3829233B2 publication Critical patent/JP3829233B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a control method for a high frequency power supply suitable for an inductively coupled heating plasma(ICP) torch. SOLUTION: In a voltage inverter for a high frequency power supply, the output of an inverter main circuit 14 is controlled by adjusting the phase angle of the inverter main circuit 14. First, the input power of the inverter main circuit 14 is monitored by a power monitoring circuit 53, while supplying a high frequency current based on the set value I1 of a current setter 51 to a work coil 2 from the inverter main circuit 14, and if the input current exceeds a designated value, a high frequency current based on the set value I2 (I2<I1) of a current setter 52 is supplied to a work coil 2 from the inverter main circuit 14. Thereby, damages caused by thermal expansion or the like of an ICP torch is prevented, and control response at the time of pulse modulation of the high frequency current can be speeded up.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、高周波誘導結合
形熱プラズマ(ICP:InductivelyCou
pled Plasma)トーチ(以下、ICPトーチ
と称する)を構成するワークコイルに高周波電力を供給
する高周波電源の制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-frequency inductively coupled thermal plasma (ICP).
The present invention relates to a method for controlling a high-frequency power supply for supplying high-frequency power to a work coil included in a pleated plasma torch (hereinafter, referred to as an ICP torch).

【0002】[0002]

【従来の技術】図4は、この種のICPトーチの模式的
構成図であり、1は放電管本体、2はワークコイル、3
は高周波電源を示す。図4において、ワークコイル2に
高周波電源3より供給された高周波電流は、時間tで交
番する磁界を発生し、磁束密度Bの変化に従った下記式
(1)で表される誘導電界Eを生ずる。 rotE=−(∂B/∂t) …(1) この電界により電子を加速すると、プラズマ(図4参
照)が加熱・維持される。
2. Description of the Related Art FIG. 4 is a schematic structural view of this type of ICP torch, wherein 1 is a discharge tube main body, 2 is a work coil,
Indicates a high frequency power supply. In FIG. 4, a high-frequency current supplied from the high-frequency power supply 3 to the work coil 2 generates an alternating magnetic field at time t, and generates an induced electric field E represented by the following equation (1) according to a change in the magnetic flux density B. Occurs. rotE = − (∂B / ∂t) (1) When electrons are accelerated by this electric field, the plasma (see FIG. 4) is heated and maintained.

【0003】ICPは基本的には無電極でプラズマ生成
が可能であり、直流プラズマと比較して電極材の損耗に
よる汚染・寿命の課題が解消され、また、各種の反応性
ガス(図4参照)を使用した酸化雰囲気や還元雰囲気の
選択が自由であることから、近年の廃棄物の減容処理、
有害物の無害・安定化処理などの環境保全分野における
好適な熱エネルギーとして、このICPが注目されてい
る。
[0003] Basically, ICP is capable of generating plasma without electrodes, eliminating problems of contamination and life due to wear of electrode materials as compared with DC plasma, and various reactive gases (see FIG. 4). ) Can be used to select an oxidizing atmosphere or a reducing atmosphere.
This ICP has attracted attention as a suitable heat energy in the field of environmental protection such as harmless and stabilizing harmful substances.

【0004】図5は、図4に示した高周波電源3の従来
例を示す回路構成図であり、2は図4に示したワークコ
イル、10は配電系統などの三相交流電源、11は三相
のサイリスタ整流器、12は平滑リアクトル、13は平
滑コンデンサ、14は単相のインバータ主回路、15,
16は整合コンデンサ、17はPT、18は高周波のC
T、19はプラズマ発光検出器、20は制御装置を示
す。
FIG. 5 is a circuit diagram showing a conventional example of the high-frequency power supply 3 shown in FIG. 4, wherein 2 is a work coil shown in FIG. 4, 10 is a three-phase AC power supply such as a power distribution system, and 11 is a three-phase power supply. Phase thyristor rectifier, 12 is a smoothing reactor, 13 is a smoothing capacitor, 14 is a single-phase inverter main circuit,
16 is a matching capacitor, 17 is a PT, 18 is a high-frequency C
T and 19 are plasma emission detectors, and 20 is a control device.

【0005】この制御装置20には電流設定器21と、
偏差演算器22と、電流調節器23と、同期回路24
と、位相制御回路25と、ドライバ26と、位相検出器
27と、電圧制御発振器(VCO)28と、ドライバ2
9と、ダイオード30とを備え、これらの構成要素は周
知の技術により形成されている。
[0005] The control device 20 includes a current setter 21,
Deviation calculator 22, current controller 23, synchronization circuit 24
, A phase control circuit 25, a driver 26, a phase detector 27, a voltage controlled oscillator (VCO) 28, and a driver 2.
9 and a diode 30. These components are formed by a known technique.

【0006】図5に示した高周波電源では、先ず、サイ
リスタ整流器11の点弧位相を制御して平滑用コンデン
サ13の両端電圧を調整することにより、VCO28の
発振周波数に基づき、且つ電流設定器21の設定値に対
応した高周波電流をインバータ主回路14によりワーク
コイル2に供給し、前記式(1)に基づいて図示のプラ
ズマを発生させる。このプラズマが発生すると、プラズ
マ発光検出器19が動作し、ダイオード30を介して、
偏差演算器22における等価的な電流設定値を電流設定
器21の設定値より低下させた値にして、プラズマ発光
を継続させる。
In the high-frequency power supply shown in FIG. 5, first, the firing phase of the thyristor rectifier 11 is controlled to adjust the voltage between both ends of the smoothing capacitor 13, so that the current setter 21 is controlled based on the oscillation frequency of the VCO 28. Is supplied to the work coil 2 by the inverter main circuit 14 to generate the illustrated plasma based on the equation (1). When this plasma is generated, the plasma emission detector 19 operates, and via the diode 30,
Plasma emission is continued by setting the equivalent current set value in the deviation calculator 22 to a value lower than the set value of the current setter 21.

【0007】[0007]

【発明が解決しようとする課題】図5に示した高周波電
源は既に確立した電力変換技術によるものであるが、プ
ラズマの状態を変化させるために、ワークコイル2に流
す高周波電流の振幅の包絡線をパルス波形状に変化させ
るときには、サイリスタ整流器11の動作などに起因し
て、該パルス波形の立上がり,立下がり時間がそれぞれ
5mS以上となり、該パルス波形の繰り返し周波数も1
00Hz以上にはできないことから、ICPトーチの高
性能化を阻害する要因となっていた。
The high-frequency power supply shown in FIG. 5 is based on an established power conversion technique. However, in order to change the state of the plasma, the envelope of the amplitude of the high-frequency current flowing through the work coil 2 is shown. Is changed to a pulse waveform, the rise and fall times of the pulse waveform are each 5 ms or more due to the operation of the thyristor rectifier 11 and the repetition frequency of the pulse waveform is also 1 unit.
Since the frequency cannot be set to 00 Hz or higher, it has been a factor that hinders the performance enhancement of the ICP torch.

【0008】また、高価,堅牢なプラズマ発光検出器1
9を必要とし、装置全体の小型,低価格化を阻害する要
因となっていた。この発明の目的は、上記問題点を解決
するICPトーチに供される高周波電源の制御方法を提
供することにある。
Further, an expensive and robust plasma emission detector 1
9, which is a factor that hinders reduction in size and cost of the entire apparatus. An object of the present invention is to provide a method for controlling a high-frequency power supply provided for an ICP torch that solves the above-mentioned problems.

【0009】[0009]

【課題を解決するための手段】この第1の発明は、高周
波誘導結合形熱プラズマトーチを構成するワークコイル
に高周波電力を供給する高周波電源の制御方法におい
て、高周波電源から予め定めた第1の電流設定値
(I1 )に基づく高周波電流をワークコイルに供給しつ
つ、該高周波電源の入力電力または出力電力を監視し、
該入力電力または出力電力が所定の値を超えたときに
は、前記高周波電源から予め定めた第2の電流設定値
(I2 ,I2 <I1 )に基づく高周波電流をワークコイ
ルに供給することを特徴とする。
According to a first aspect of the present invention, there is provided a method for controlling a high-frequency power supply for supplying high-frequency power to a work coil constituting a high-frequency inductively coupled thermal plasma torch. Monitoring the input power or output power of the high-frequency power supply while supplying a high-frequency current based on the current set value (I 1 ) to the work coil;
When the input power or the output power exceeds a predetermined value, the high-frequency power supply supplies a high-frequency current based on a second predetermined current set value (I 2 , I 2 <I 1 ) to the work coil. Features.

【0010】また第2の発明は、前記高周波電源の制御
方法において、高周波電源から予め定めた電力設定値に
基づく高周波電力をワークコイルに供給しつつ、該高周
波電源の出力電流を監視し、該出力電流が所定の値以下
になったときには、前記高周波電源から予め定めた電流
設定値に基づく高周波電流をワークコイルに供給するこ
とを特徴とする。
According to a second aspect of the present invention, in the method for controlling a high-frequency power supply, an output current of the high-frequency power supply is monitored while supplying high-frequency power based on a predetermined power set value from the high-frequency power supply to the work coil. When the output current falls below a predetermined value, a high-frequency current based on a predetermined current set value is supplied from the high-frequency power supply to the work coil.

【0011】この発明によれば高周波電源としての電圧
形インバータにおいて、その出力制御を、後述の如く、
インバータ側での位相制御で行うことにより高速動作を
可能とし、また、このときの入力電力または出力電力若
しくは出力電流を監視することで、プラズマが発生した
ことを検知するようにしている。
According to the present invention, in the voltage source inverter as the high frequency power supply, the output control is performed as described below.
High-speed operation is enabled by performing phase control on the inverter side, and the occurrence of plasma is detected by monitoring the input power or output power or output current at this time.

【0012】[0012]

【発明の実施の形態】図1は、図4に示した高周波電源
3として、この発明の第1の実施例を示す回路構成図で
あり、図5に示した従来例回路と同一機能を有するもの
には同一符号を付している。
FIG. 1 is a circuit diagram showing a first embodiment of the present invention as a high-frequency power supply 3 shown in FIG. 4, and has the same function as the conventional circuit shown in FIG. Those are given the same reference numerals.

【0013】すなわち図1において、2は図4に示した
ワークコイル、10は配電系統などの三相交流電源、4
1は三相のダイオード整流器、13は平滑コンデンサ、
14は単相のインバータ主回路、15,16は整合コン
デンサ、18は高周波のCT、42は直流電圧検出器、
43は直流電流検出器、50は制御装置を示す。
That is, in FIG. 1, 2 is a work coil shown in FIG. 4, 10 is a three-phase AC power source such as a power distribution system,
1 is a three-phase diode rectifier, 13 is a smoothing capacitor,
14 is a single-phase inverter main circuit, 15 and 16 are matching capacitors, 18 is a high-frequency CT, 42 is a DC voltage detector,
43 is a direct current detector, 50 is a control device.

【0014】この制御装置50には設定値I1 を設定す
る電流設定器51と、設定値I2 (I2 <I1 )を設定
する電流設定器52と、電力監視回路53と、切替スイ
ッチ54と、偏差演算器55と、電流調節器56と、位
相制御器57と、ドライバ29とを備えている。
The control device 50 includes a current setter 51 for setting a set value I 1 , a current setter 52 for setting a set value I 2 (I 2 <I 1 ), a power monitoring circuit 53, and a changeover switch. 54, a deviation calculator 55, a current controller 56, a phase controller 57, and a driver 29.

【0015】図1に示した高周波電源では、先ず、図示
しない起動回路によりインバータ主回路14を始動させ
ると、整合コンデンサ15,16とワークコイル2の経
路に正弦波状の高周波電流が流れ始め、位相制御器5
7,ドライバ29により該高周波電流波形に対するいわ
ゆるγMIN 以上の所望の位相角γを保ちつつ、インバー
タ主回路14が動作し続ける。このとき、切替スイッチ
54の図示の如く閉路した接点を介した電流設定器51
の設定値I1 と、CT18の検出値を整流した値との偏
差を偏差演算器55で求め、得られた偏差に基づく調節
演算を電流調節器56で行わせる。この調節演算値とC
T18の検出値とに基づき位相制御器57では所望の位
相角γ(>γMIN )でインバータ主回路14が電力変換
動作を行い、その結果、前記設定値I1 に基づく高周波
電流がワークコイル2に流れる。
In the high-frequency power supply shown in FIG. 1, when the inverter main circuit 14 is started by a starting circuit (not shown), a sinusoidal high-frequency current starts to flow through the paths of the matching capacitors 15 and 16 and the work coil 2, Controller 5
7. The inverter main circuit 14 continues to operate while the driver 29 maintains a desired phase angle γ of so-called γ MIN or more with respect to the high-frequency current waveform. At this time, the current setter 51 is connected via a contact that is closed as shown in FIG.
And setting I 1, a deviation of a value obtained by rectifying the detected value of CT18 at deviation calculating unit 55 to perform the adjusting operation based on the deviation obtained by the current regulator 56. This adjustment operation value and C
Inverter main circuit 14 with the detection value and the desired phase angle in the phase controller 57 on the basis of the T18 γ (> γ MIN) performs a power conversion operation, as a result, the high frequency current based on the set value I 1 and a work coil 2 Flows to

【0016】すなわちICPトーチでは、先ず、プラズ
マを発生させるには気体を電離させる前記式(1)を満
足する高電界Eが必要であるため、ワークコイル2に前
記設定値I1 に基づく大きな高周波電流を流して磁界を
発生させる。
[0016] In other words ICP torch is first order in generating the plasma requires a high electric field E satisfying the equation (1) for ionizing the gas, a large high-frequency based on the set value I 1 to the work coil 2 An electric current is applied to generate a magnetic field.

【0017】しかし、プラズマが一旦発生し加熱維持さ
れると、この加熱維持に必要な印加磁界強度はプラズマ
発生前の磁界強度より小さくてよく、従って、ワークコ
イル2に流す高周波電流も少なくてよい。若し、インバ
ータ主回路14から前記設定値I1 に基づく高周波電流
がワークコイル2に流し続けると、プラズマが発生して
定常状態になろうとするとき、過大なエネルギーが注入
され、プラズマの温度上昇と膨張とにより最悪の場合に
は放電管本体1を破損させる恐れがある。
However, once the plasma is generated and heated and maintained, the applied magnetic field strength required for maintaining the heating may be smaller than the magnetic field strength before the plasma is generated, and therefore the high-frequency current flowing through the work coil 2 may be small. . If a high-frequency current based on the set value I 1 continues to flow from the inverter main circuit 14 to the work coil 2, when plasma is generated and a steady state is attempted, excessive energy is injected and the temperature of the plasma rises. In the worst case, the discharge tube body 1 may be damaged due to the expansion and the expansion.

【0018】そこで、電力監視回路53では直流電圧検
出器42の検出値と、直流電流検出器43の検出値との
乗算演算で得られるインバータ主回路14の出力電力を
監視し、この出力電力が前記過大なエネルギーに相当す
る値に近づいたことを検知して、切替スイッチ54の接
点を図示の下側に閉路させ、電流設定器52の設定値I
2 (I2 <I1 )に基づく高周波電流をワークコイル2
に流すように、インバータ主回路14が電力変換動作を
行う。
Therefore, the power monitoring circuit 53 monitors the output power of the inverter main circuit 14 obtained by multiplying the detection value of the DC voltage detector 42 by the detection value of the DC current detector 43, and this output power is Upon detecting that the value approaches the value corresponding to the excessive energy, the contact of the changeover switch 54 is closed to the lower side in the figure, and the set value I of the current setter 52 is set.
2 (I 2 <I 1 )
, The inverter main circuit 14 performs a power conversion operation.

【0019】図2は、図4に示した高周波電源3とし
て、この発明の第2の実施例を示す回路構成図であり、
図1に示した実施例回路と同一機能を有するものには同
一符号を付している。すなわち図2に示した回路構成で
は、図1に示した制御装置50に代えて、制御装置60
を備えている。
FIG. 2 is a circuit diagram showing a second embodiment of the present invention as the high frequency power supply 3 shown in FIG.
Components having the same functions as those of the embodiment circuit shown in FIG. 1 are denoted by the same reference numerals. That is, in the circuit configuration shown in FIG. 2, the control device 60 shown in FIG.
It has.

【0020】この制御装置60には図1に示した切替ス
イッチ54,偏差演算器55,電流調節器56,位相制
御器57,ドライバ29の他に、電力設定器61と、電
力演算器62と、偏差演算器63と、電力調節器64
と、監視回路65と、電流設定器66とを備えている。
The control device 60 includes a changeover switch 54, a deviation calculator 55, a current controller 56, a phase controller 57, and a driver 29 shown in FIG. , Deviation calculator 63 and power controller 64
, A monitoring circuit 65, and a current setting unit 66.

【0021】図2に示した高周波電源では、先ず、図示
しない起動回路によりインバータ主回路14を始動させ
ると、整合コンデンサ15,16とワークコイル2の経
路に正弦波状の高周波電流が流れ始め、位相制御器5
7,ドライバ29により該高周波電流波形に対するいわ
ゆるγMIN 以上の所望の位相角γを保ちつつ、インバー
タ主回路14が動作し続ける。このとき、電力設定器6
1の設定値と、電力演算器62における直流電圧検出器
42の検出値と直流電流検出器43の検出値との乗算演
算で得られるインバータ主回路14の出力電力との偏差
を偏差換算器63で求め、この偏差に基づく調節演算を
電力調節器64で行わせ、電流指令値として出力する。
切替スイッチ54の図示の如く閉路した接点を介した前
記電流指令値と、CT18の検出値を整流した値との偏
差を偏差演算器55で求め、得られた偏差に基づく調節
演算を電流調節器56で行わせる。この調節演算値とC
T18の検出値とに基づき位相制御器57では所望の位
相角γ(>γMIN )でインバータ主回路14が電力変換
動作を行い、その結果、電力設定器61の設定値に対応
する高周波電流がワークコイル2に流れる。
In the high-frequency power supply shown in FIG. 2, when the inverter main circuit 14 is first started by a starting circuit (not shown), a sinusoidal high-frequency current starts flowing through the paths of the matching capacitors 15 and 16 and the work coil 2, Controller 5
7. The inverter main circuit 14 continues to operate while the driver 29 maintains a desired phase angle γ of so-called γ MIN or more with respect to the high-frequency current waveform. At this time, the power setting device 6
1 and the output power of the inverter main circuit 14 obtained by multiplying the detection value of the DC voltage detector 42 and the detection value of the DC current detector 43 in the power calculator 62 by a deviation converter 63. , And the adjustment operation based on the deviation is performed by the power controller 64 and output as a current command value.
A deviation calculator 55 calculates a deviation between the current command value via a contact that is closed as shown in the switch 54 and a rectified value of the detected value of the CT 18, and performs an adjustment operation based on the obtained deviation by a current controller. 56 is performed. This adjustment operation value and C
Based on the detected value of T18, in the phase controller 57, the inverter main circuit 14 performs a power conversion operation at a desired phase angle γ (> γ MIN ). As a result, a high-frequency current corresponding to the set value of the power setter 61 is generated. It flows to the work coil 2.

【0022】このとき、電力設定器61の設定値は、プ
ラズマが発生して定常状態となるのに十分な値とする。
その結果、プラズマが発生し加熱維持されると、インバ
ータ主回路14の負荷インピーダンスが等価的に高くな
り、ワークコイル2に流れる電力設定器61の設定値に
対応する高周波電流がプラズマ発生前より減少するので
(図3参照)、この減少をCT18の検出値を監視する
監視回路65で検知して、切替スイッチ54の接点を図
示の下側に閉路させ、電流設定器66の設定値に基づく
高周波電流をワークコイル2に流すように、インバータ
主回路14が電力変換動作を行う。
At this time, the set value of the power setting unit 61 is set to a value sufficient to generate a plasma and to be in a steady state.
As a result, when the plasma is generated and the heating is maintained, the load impedance of the inverter main circuit 14 is equivalently increased, and the high-frequency current corresponding to the set value of the power setting device 61 flowing through the work coil 2 is reduced from that before the generation of the plasma. (See FIG. 3), this decrease is detected by the monitoring circuit 65 which monitors the detected value of the CT 18, the contact of the changeover switch 54 is closed to the lower side in the figure, and the high frequency based on the set value of the current setter 66 is set. The inverter main circuit 14 performs a power conversion operation so that a current flows through the work coil 2.

【0023】図3は、上述の図2に示した高周波電源に
よるICPトーチの動作例を示す波形図である。図3に
おいて、インバータ主回路14の出力電流を縦軸とし、
時間経過を横軸とし、先ず、図2に示した高周波電源
は、電力設定器61の設定値に基づきインバータ主回路
14の出力電力一定制御を開始し、時刻T0 でプラズマ
が発生し、図示の如く、前記出力電流が徐々に減少し、
従って、CT18の検出値も徐々に減少し、プラズマが
定常状態となる。
FIG. 3 is a waveform diagram showing an operation example of the ICP torch by the high frequency power supply shown in FIG. In FIG. 3, the vertical axis represents the output current of the inverter main circuit 14,
First, the high frequency power supply shown in FIG. 2 starts constant control of the output power of the inverter main circuit 14 based on the set value of the power setting unit 61, and the plasma is generated at time T 0. The output current gradually decreases,
Therefore, the detected value of CT18 also gradually decreases, and the plasma enters a steady state.

【0024】時刻T1 で監視回路65が動作して、電流
設定器66の設定値に基づきインバータ主回路14の出
力電流制御を開始する。このとき、電流設定器66から
は、図2に示した如く、ワークコイル2に流す高周波電
流の振幅の包絡線をパルス変調させる設定値を出力する
と、パルス変調可能な前記出力電流の範囲で、前述の如
く位相制御器57がインバータ主回路14の位相角γを
制御することにより、図3に示す如く該パルス波形の立
上がり,立下がり時間がそれぞれ0.5mS程度にで
き、該パルス波形の繰り返し周波数もDC〜1kHzの
範囲で設定することができる。
At time T 1 , the monitoring circuit 65 operates to start controlling the output current of the inverter main circuit 14 based on the set value of the current setting device 66. At this time, as shown in FIG. 2, when the set value for pulse-modulating the envelope of the amplitude of the high-frequency current flowing through the work coil 2 is output from the current setter 66, the range of the output current that can be pulse-modulated is as follows. Since the phase controller 57 controls the phase angle γ of the inverter main circuit 14 as described above, the rise and fall times of the pulse waveform can be set to about 0.5 ms as shown in FIG. The frequency can also be set in the range of DC to 1 kHz.

【0025】[0025]

【発明の効果】この発明によれば、高周波電源としての
電圧形インバータにおいて、その出力制御を、上述の如
く、インバータ側での位相制御で行うことにより高速動
作を可能とし、ICPトーチの高性能化を図ることがで
きる。また、このときの入力電力(電流)または出力電
力若しくは出力電流を監視することで、プラズマが発生
したことを検知できるので、プラズマ発光検出器が不要
となり、装置全体の小型,低価格化を計ることができ
る。
According to the present invention, in a voltage source inverter as a high-frequency power supply, high-speed operation is enabled by controlling the output of the inverter by the phase control on the inverter side as described above. Can be achieved. Further, by monitoring the input power (current) or the output power or the output current at this time, it is possible to detect the generation of plasma, so that a plasma emission detector is not required, and the entire apparatus is reduced in size and cost. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施例を示す高周波電源の回
路構成図
FIG. 1 is a circuit diagram showing a high-frequency power supply according to a first embodiment of the present invention;

【図2】この発明の第2の実施例を示す高周波電源の回
路構成図
FIG. 2 is a circuit diagram showing a high-frequency power supply according to a second embodiment of the present invention;

【図3】図2の動作を説明する波形図FIG. 3 is a waveform chart for explaining the operation of FIG. 2;

【図4】ICPの模式的構成図FIG. 4 is a schematic configuration diagram of an ICP.

【図5】従来例を示す高周波電源の回路構成図FIG. 5 is a circuit configuration diagram of a high-frequency power supply showing a conventional example.

【符号の説明】[Explanation of symbols]

1…放電管本体、2…ワークコイル、3…高周波電源、
10…三相交流電源、11…サイリスタ整流器、12…
平滑リアクトル、13…平滑コンデンサ、14…インバ
ータ主回路、15,16…整合コンデンサ、17…P
T、18…CT、19…プラズマ発光検出器、20…制
御装置、21…電流設定器、22…偏差演算器、23…
電流調節器、24…同期回路、25…位相制御回路、2
6…ドライバ、27…位相検出器、28…電圧制御発振
器、29…ドライバ、30…ダイオード、41…ダイオ
ード整流器、42…直流電圧検出器、43…直流電流検
出器、50…制御装置、51,52…電流設定器、53
…電力監視回路、54…切替スイッチ、55…偏差演算
器、56…電流調節器、57…位相制御器、60…制御
装置、61…電力設定器、62…電力演算器、63…偏
差演算器、64…電力調節器、65…監視回路、66…
電流設定器。
DESCRIPTION OF SYMBOLS 1 ... Discharge tube main body, 2 ... Work coil, 3 ... High frequency power supply,
10 ... three-phase AC power supply, 11 ... thyristor rectifier, 12 ...
Smoothing reactor, 13: smoothing capacitor, 14: inverter main circuit, 15, 16: matching capacitor, 17: P
T, 18: CT, 19: Plasma emission detector, 20: Control device, 21: Current setter, 22: Deviation calculator, 23:
Current regulator, 24: synchronization circuit, 25: phase control circuit, 2
6 ... Driver, 27 ... Phase detector, 28 ... Voltage controlled oscillator, 29 ... Driver, 30 ... Diode, 41 ... Diode rectifier, 42 ... DC voltage detector, 43 ... DC current detector, 50 ... Control device, 51, 52 ... current setting device, 53
... power monitoring circuit, 54 ... changeover switch, 55 ... deviation calculator, 56 ... current regulator, 57 ... phase controller, 60 ... controller, 61 ... power setter, 62 ... power calculator, 63 ... deviation calculator , 64: power controller, 65: monitoring circuit, 66:
Current setting device.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】高周波誘導結合形熱プラズマトーチを構成
するワークコイルに高周波電力を供給する高周波電源の
制御方法において、 高周波電源から予め定めた第1の電流設定値(I1 )に
基づく高周波電流をワークコイルに供給しつつ、該高周
波電源の入力電力または出力電力を監視し、 該入力電力または出力電力が所定の値を超えたときに
は、前記高周波電源から予め定めた第2の電流設定値
(I2 ,I2 <I1 )に基づく高周波電流をワークコイ
ルに供給することを特徴とする高周波電源の制御方法。
1. A method for controlling a high-frequency power supply for supplying high-frequency power to a work coil constituting a high-frequency inductively coupled thermal plasma torch, comprising: a high-frequency current based on a first current set value (I 1 ) predetermined from the high-frequency power supply; To the work coil while monitoring the input power or output power of the high-frequency power supply, and when the input power or output power exceeds a predetermined value, a second current set value ( A method for controlling a high frequency power supply, comprising supplying a high frequency current based on I 2 , I 2 <I 1 ) to a work coil.
【請求項2】高周波誘導結合形熱プラズマトーチを構成
するワークコイルに高周波電力を供給する高周波電源の
制御方法において、 高周波電源から予め定めた電力設定値に基づく高周波電
力をワークコイルに供給しつつ、該高周波電源の出力電
流を監視し、 該出力電流が所定の値以下になったときには、前記高周
波電源から予め定めた電流設定値に基づく高周波電流を
ワークコイルに供給することを特徴とする高周波電源の
制御方法。
2. A method for controlling a high-frequency power supply for supplying high-frequency power to a work coil constituting a high-frequency inductively coupled thermal plasma torch, wherein high-frequency power is supplied from the high-frequency power supply to the work coil based on a predetermined power set value. Monitoring an output current of the high-frequency power supply, and when the output current becomes equal to or less than a predetermined value, supplying a high-frequency current to the work coil based on a predetermined current set value from the high-frequency power supply. Power control method.
JP14301399A 1999-05-24 1999-05-24 Control method of high frequency power supply Expired - Fee Related JP3829233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14301399A JP3829233B2 (en) 1999-05-24 1999-05-24 Control method of high frequency power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14301399A JP3829233B2 (en) 1999-05-24 1999-05-24 Control method of high frequency power supply

Publications (2)

Publication Number Publication Date
JP2000331798A true JP2000331798A (en) 2000-11-30
JP3829233B2 JP3829233B2 (en) 2006-10-04

Family

ID=15328924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14301399A Expired - Fee Related JP3829233B2 (en) 1999-05-24 1999-05-24 Control method of high frequency power supply

Country Status (1)

Country Link
JP (1) JP3829233B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035486A (en) * 2005-07-28 2007-02-08 Sumitomo Electric Ind Ltd Driving current control method for plasma generation device, and plasma generation device
JP2007044628A (en) * 2005-08-10 2007-02-22 Osaka Prefecture Univ Method and apparatus for treating exhaust gas for semiconductor process
JP2009284732A (en) * 2008-05-26 2009-12-03 Ulvac Japan Ltd Bipolar pulsed power supply and power supply consisting of multiple bipolar pulse power supplies
KR101035248B1 (en) 2007-09-10 2011-05-18 도쿄엘렉트론가부시키가이샤 Plasma processing apparatus, plasma processing method and storage medium
JP2011217482A (en) * 2010-03-31 2011-10-27 Daihen Corp High-frequency power supply device
WO2018236087A1 (en) * 2017-06-23 2018-12-27 인투코어테크놀로지 주식회사 Power supply device and method for supplying power to load
KR20200118788A (en) * 2020-06-22 2020-10-16 인투코어테크놀로지 주식회사 Power supply supporting device and method of supporting power supply to load
KR20220073721A (en) * 2020-06-22 2022-06-03 인투코어테크놀로지 주식회사 Power supply supporting device and controlling method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104597785B (en) * 2014-12-09 2017-03-15 中国地质大学(武汉) A kind of ICP ion guns method for controlling automatic ignition

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035486A (en) * 2005-07-28 2007-02-08 Sumitomo Electric Ind Ltd Driving current control method for plasma generation device, and plasma generation device
JP2007044628A (en) * 2005-08-10 2007-02-22 Osaka Prefecture Univ Method and apparatus for treating exhaust gas for semiconductor process
KR101035248B1 (en) 2007-09-10 2011-05-18 도쿄엘렉트론가부시키가이샤 Plasma processing apparatus, plasma processing method and storage medium
JP2009284732A (en) * 2008-05-26 2009-12-03 Ulvac Japan Ltd Bipolar pulsed power supply and power supply consisting of multiple bipolar pulse power supplies
JP2011217482A (en) * 2010-03-31 2011-10-27 Daihen Corp High-frequency power supply device
US11632061B2 (en) 2017-06-23 2023-04-18 En2Core Technology, Inc. Power supply and method of supplying power to load
WO2018236087A1 (en) * 2017-06-23 2018-12-27 인투코어테크놀로지 주식회사 Power supply device and method for supplying power to load
KR20190000624A (en) * 2017-06-23 2019-01-03 인투코어테크놀로지 주식회사 Power supply supporting device and method of supporting power supply to load
KR101957575B1 (en) 2017-06-23 2019-03-13 인투코어테크놀로지 주식회사 Power supply supporting device and method of supporting power supply to load
CN110574276B (en) * 2017-06-23 2021-07-09 源多可科技股份有限公司 Power supply device and method for supplying power to load
US11290028B2 (en) 2017-06-23 2022-03-29 En2Core Technology, Inc. Power supply and method of supplying power to load
US11909331B2 (en) 2017-06-23 2024-02-20 En2Core Technology, Inc. Power supply and method of supplying power to load
KR20200118788A (en) * 2020-06-22 2020-10-16 인투코어테크놀로지 주식회사 Power supply supporting device and method of supporting power supply to load
KR102489915B1 (en) 2020-06-22 2023-01-18 인투코어테크놀로지 주식회사 Power supply supporting device and method of supporting power supply to load
KR102622535B1 (en) 2020-06-22 2024-01-09 인투코어테크놀로지 주식회사 Power supply supporting device and controlling method thereof
KR20220073721A (en) * 2020-06-22 2022-06-03 인투코어테크놀로지 주식회사 Power supply supporting device and controlling method thereof

Also Published As

Publication number Publication date
JP3829233B2 (en) 2006-10-04

Similar Documents

Publication Publication Date Title
JPH0452174B2 (en)
JPS63101083A (en) Resistance welding machine
JP3829233B2 (en) Control method of high frequency power supply
US6797922B2 (en) Power supply apparatus for welder
KR100191942B1 (en) Power supply apparatus
WO2003107496A1 (en) Laser beam machine and control method of the machine
JP2004071444A (en) Electromagnetic induction heating cooker
JP4364195B2 (en) AC power supply apparatus and arc prevention method in the apparatus
JPH08300156A (en) Ac plasma arc welding machine
JP3981208B2 (en) Arc machining power supply
JP2572433B2 (en) Power supply for arc welding and cutting
JP3186109B2 (en) Power supply for AC arc welding
US20230311230A1 (en) Cancellation of the effects of primary voltage variations
JP4440358B2 (en) Power supply for welding
JP2004166374A (en) Power supply
JP2537859B2 (en) High frequency heating equipment
JP2001259837A (en) Method and device for high-frequency pulse welding
KR0124956Y1 (en) Power supply for plasma arc
JPH0810966A (en) Controller of resistance welding machine
JPS61168280A (en) Output stabilizing circuit
KR950001779B1 (en) Source of electric power of plasma welding torch
JP2850083B2 (en) Power supply for plasma cutting
JPH0760735B2 (en) High frequency induction heating device
JPH0451024Y2 (en)
JPH0665233B2 (en) Output stabilization circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees