JPH033670A - Method of controlling induction heating inverter - Google Patents

Method of controlling induction heating inverter

Info

Publication number
JPH033670A
JPH033670A JP1134401A JP13440189A JPH033670A JP H033670 A JPH033670 A JP H033670A JP 1134401 A JP1134401 A JP 1134401A JP 13440189 A JP13440189 A JP 13440189A JP H033670 A JPH033670 A JP H033670A
Authority
JP
Japan
Prior art keywords
output
value
current
electrolytic capacitor
inverter device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1134401A
Other languages
Japanese (ja)
Inventor
Koji Awatani
粟谷 宏治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1134401A priority Critical patent/JPH033670A/en
Publication of JPH033670A publication Critical patent/JPH033670A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)
  • Protection Of Static Devices (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To perform stable operation of an induction heating inverter by controlling a value responsive to the rising value from a predetermined value of temperature of an electrolytic capacitor to reduce an output current as a new limiting current set value in a current control system, thereby suppressing the temperature rise of the capacitor. CONSTITUTION:A temperature detecting sensor 10 of an electrolytic capacitor 2 and a converter 6f for calculating a variable or constant limiting current set value upon reception of the output of the sensor 10 to apply its output to a current regulator 6c are provided. If the detected temperature of the capacitor 2 exceeds its predetermined value, a limiting current set value automatically corrected at its value in suitable relationship in response to the difference between the detected temperature and its predetermined value is output to suppress the temperature rise of the capacitor 2. Thus, an inverter can be stably operated without special countermeasure against heat for the capacitor 2 itself.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、電解コンデンサ等より成る直流中間回路を有
する直列共振形誘導加熱用電圧形インバータ装置におけ
る前記電解コンデンサの温度上昇抑制を図る前記インバ
ータ装置の制御方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a series resonant induction heating voltage source inverter device having a direct current intermediate circuit composed of an electrolytic capacitor, etc., in which the temperature rise of the electrolytic capacitor is suppressed. This invention relates to a method of controlling a device.

〔従来の、技術〕[Conventional technology]

従来のこの種の直列共振形誘導加熱用電圧形インバータ
装置としては第2図の回路図に例示するものが知られて
いる。
As a conventional voltage source inverter device for series resonant induction heating of this type, one illustrated in the circuit diagram of FIG. 2 is known.

第2図において、1はダイオードブリッジより成る三相
全波整流器、2は電解コンデンサ、3はスイッチングト
ランジスタ3bと該トランジスタ3bに逆並列接続され
たダイオード3cと前記トランジスタ3bのベース駆動
回路であるBDU3aとから成るインバータ、4は共振
コンデンサ、5は誘導加熱用ワークコイルである。ここ
で前記の整流器1と電解コンデンサ2とは前記インバー
タ3と交流電源との間の直流中間回路を形成する。
In FIG. 2, 1 is a three-phase full-wave rectifier consisting of a diode bridge, 2 is an electrolytic capacitor, 3 is a switching transistor 3b, a diode 3c connected in antiparallel to the transistor 3b, and a BDU 3a which is a base drive circuit of the transistor 3b. 4 is a resonant capacitor, and 5 is an induction heating work coil. Here, the rectifier 1 and electrolytic capacitor 2 form a DC intermediate circuit between the inverter 3 and the AC power source.

次に6は前記インバータ3の各BDU3aに対する制御
信号を出力する制御回路であり、前記直流中間回路の入
力端変流器CT、とC70との合成出力と同中間回路の
出力直流電圧とを入力とする電力演算器6aと、該演算
器6aによる電力検出値と設定器7による電力設定値と
の偏差を入力とする電力調節器6bと、該調節器6bの
出力と前記インバータ3の出力側変流器CT、の出力と
の偏差を入力とする電流調節器6cと、前記変流器CT
、の出力を受けるF/V変換器6fと、該変換器6fの
出力と前記電流調節器6cの出力とを受は前記変流器C
T 4により検出された前記インバータ3の出力電流の
零クロス点でリセットされて該出力電流に同期した鋸歯
状波を発生すると共に該鋸歯状波と前記電流調節器6c
の出力とを比較して前記出力電流の半波毎に所要の制御
用位相角を決定する位相調節用の位相器6dと、該位相
器6dの出力を受は前記インバータ3の各相BDU3a
に対する制御信号を分配出力するパルス分配器6eとを
制御要素として構成されるものであり、メジャーループ
としての電力制御系内にマイナーループとして電流制御
系を有する構成をなす。
Next, 6 is a control circuit that outputs a control signal for each BDU 3a of the inverter 3, and inputs the combined output of the input end current transformer CT of the DC intermediate circuit and C70 and the output DC voltage of the intermediate circuit. a power calculator 6a, which receives as input the deviation between the power detection value by the calculator 6a and the power setting value by the setting device 7; a current regulator 6c whose input is the deviation from the output of the current transformer CT; and the current transformer CT.
, and the current transformer C receives the output of the converter 6f and the output of the current regulator 6c.
A sawtooth wave is generated which is reset at the zero cross point of the output current of the inverter 3 detected by T4 and is synchronized with the output current, and the sawtooth wave and the current regulator 6c are generated.
A phase shifter 6d for phase adjustment determines a required control phase angle for each half wave of the output current by comparing the output of
The control element includes a pulse distributor 6e that distributes and outputs control signals for the power supply, and has a current control system as a minor loop within a power control system as a major loop.

なお前記制御回路6には、前記電解コンデンサ2におけ
る通電電流検出用変流器CT、の出力と同コンデンサの
端子電圧と前記変流器CT、の出力とを入力とする保護
回路6にと、制御用直流電源供給用のDC電源6hとが
含まれる。
The control circuit 6 includes a protection circuit 6 which receives as input the output of the current transformer CT for detecting the current flowing in the electrolytic capacitor 2, the terminal voltage of the capacitor, and the output of the current transformer CT. A DC power supply 6h for supplying control DC power is included.

また前記ワークコイル5の加熱対象物を含めた等価回路
はリアクタンスしのりアクドル分と抵抗値Rの抵抗分と
の直列回路となり、従って前記インバータ3の負荷回路
は該ワークコイルとそのキャパシタンスがCである前記
共振コンデンサ4との直列共振回路となる。
In addition, the equivalent circuit including the object to be heated by the work coil 5 is a series circuit of the reactance of the reactance and the resistance of the resistance value R. Therefore, the load circuit of the inverter 3 consists of the work coil and its capacitance of C. This becomes a series resonant circuit with a certain resonant capacitor 4.

第3図は前記インバータ3の負荷回路の特性を示すもの
であり、図(イ)はその等価回路図、図(ロ)と図(ハ
)とは図(イ)に対応するインピーダンスベクトル図で
ある。なお該両図に示すインピーダンス角φ1又はφ2
は同時に該インピーダンスを負荷とする回路の電圧・電
流間位相角を示すものであり、従って前記インバータ3
においてその出力電流の零クロス点に対応してその電源
電圧印加の時期を調整することにより制御可能となるも
のであり、前記制御回路6における位相器6dによる位
相調整対象となるものである。第3図において図(ロ)
と図(ハ)とは前記インバータ負荷回路の総合等価イン
ピーダンスZの抵抗値Rの一定条件下で前記位相角φを
φ1くφ2の如く調整し、前記インバータ3の出力周波
数fの角速度ω(ω=2πf)をω1くω2となして前
記インピーダンスZをIZll<IZllとなした場合
を例示するものである。
Figure 3 shows the characteristics of the load circuit of the inverter 3. Figure (A) is its equivalent circuit diagram, and Figures (B) and (C) are impedance vector diagrams corresponding to Figure (A). be. Note that the impedance angle φ1 or φ2 shown in both figures
also indicates the phase angle between the voltage and current of the circuit whose load is the impedance, and therefore the inverter 3
It can be controlled by adjusting the timing of applying the power supply voltage in accordance with the zero-cross point of the output current, and is subject to phase adjustment by the phase shifter 6d in the control circuit 6. Figure 3 (b)
and Figure (c) means that under a constant condition of the resistance value R of the total equivalent impedance Z of the inverter load circuit, the phase angle φ is adjusted as φ1 and φ2, and the angular velocity ω(ω 2πf) is set to ω1 minus ω2, and the impedance Z is set to satisfy IZll<IZll.

第4図は前記インピーダンスZをパラメータとして前記
インバータ3の出力電圧■。と出力電流■。との関係を
示す出力特性図であり、■。、は所要運転電圧、■。、
は前記インバータ3運転上適当に決定された制限電流を
示す。第4図においてはする■。−v0特性において前
記電圧■。、に対応する出力電流■。は前記電流■。工
を超過することになる。
FIG. 4 shows the output voltage of the inverter 3 using the impedance Z as a parameter. and output current■. It is an output characteristic diagram showing the relationship between ■. , is the required operating voltage, ■. ,
indicates a limit current appropriately determined for the operation of the inverter 3. In Figure 4, do ■. -The voltage ■ in the v0 characteristic. , the output current corresponding to ■. is the aforementioned current ■. This would result in exceeding the construction limit.

上記の如き負荷インピーダンス低下時、前記インバータ
3はその正常運転継続のためにその制御回路6における
位相器6dにより前記負荷インピーダンスの位相角従っ
て前記インバータ3の出力電圧・電流間位相角の自動増
大制御を行い、前記の負荷インピーダンスの増大による
出力電流の低減を図っている。上記位相角制御時の動作
波形図を第5図に示す。
When the load impedance decreases as described above, the inverter 3 automatically increases the phase angle of the load impedance and therefore the phase angle between the output voltage and current of the inverter 3 by the phase shifter 6d in the control circuit 6 in order to continue its normal operation. This is intended to reduce the output current due to the increase in load impedance. FIG. 5 shows an operating waveform diagram during the phase angle control described above.

第5図の図(イ)と図(ロ)とに示す如く、直流中間回
路の出力電圧■。は前記インバータ3における2組の対
をなす上下アームスイツチング素子の一方の組の導通に
より矩形波状に切り出され負荷の直列共振回路に印加さ
れ、該電圧印加により電流■。が前記負荷に通電される
As shown in Figures (A) and (B) of Fig. 5, the output voltage of the DC intermediate circuit (■). is cut out into a rectangular wave by the conduction of one of the two pairs of upper and lower arm switching elements in the inverter 3 and is applied to the series resonant circuit of the load, and the voltage application causes a current . is applied to the load.

更に前記電流I0が零になる前の適当な位相角φ1又は
φ2において、前記導通済の対をなすスイッチング素子
がしゃ断されると共に他の一組の対をなす上下アームス
イツチング素子が導通されて前記負荷への電圧印加方向
が逆転される。斯様なスイッチング動作を前記電流■。
Further, at an appropriate phase angle φ1 or φ2 before the current I0 becomes zero, the conducting pair of switching elements is cut off, and another pair of upper and lower arm switching elements is made conductive. The direction of voltage application to the load is reversed. Such a switching operation is carried out by the current ■.

の各半波毎に繰返すことにより前記インバータ3におい
て図示の如き位相関係を有する出力電圧■。と出力電流
I0とを得ることができる。なお図示の如く前記位相角
φをφ、くφ2となすことにより、前記各スイッチング
素子の転流時におけるしゃ断電流■、は1.+< 1.
2の如く増大する。
By repeating this every half wave, the output voltage (2) has the phase relationship shown in the figure in the inverter 3. and output current I0 can be obtained. As shown in the figure, by setting the phase angle φ to φ2, the cut-off current (■) at the time of commutation of each switching element becomes 1. +< 1.
It increases like 2.

因に以上の如き位相角φの制御の結果得られる前記イン
バータ3の各部諸量は下記の式(1)の如くなる。
Incidentally, the quantities of each part of the inverter 3 obtained as a result of controlling the phase angle φ as described above are as shown in the following equation (1).

但しPoは前記インバータ3の高周波出力電力、ω。は
前記負荷共振回路の共振角周波数であり、また前記電力
P0の関係式における係数0.9は前記電圧■。が矩形
波状に印加されることによる波形補正用の波形率である
However, Po is the high frequency output power of the inverter 3, and ω. is the resonant angular frequency of the load resonant circuit, and the coefficient 0.9 in the relational expression of the power P0 is the voltage (2). This is the waveform rate for waveform correction by applying in the form of a rectangular wave.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら前記の如き従来方式による直列共振形誘導
加熱用電圧形インバータ装置の運転において、その出力
電流制限を行うための前記の如き位相角φの増大制御は
同時にインバータスイッチング素子転流時のしゃ断電流
を増大させることになり、この結果前記インバータ装置
の直流中間回路における電解コンデンサから流出するリ
ップル電流が増大し該コンデンサの発熱を増大させ前記
インバータ装置の安定な運転を阻害する危険が有り、従
って前記発熱に耐え得る電解コンデンサを用いるか或い
はインバータ負荷インピーダンスの低減を予め制限する
等の対策が必要であった。
However, in the operation of the voltage source inverter device for series resonant induction heating using the conventional method as described above, the control to increase the phase angle φ as described above for limiting the output current simultaneously increases the cutoff current at the time of commutation of the inverter switching elements. As a result, the ripple current flowing out from the electrolytic capacitor in the DC intermediate circuit of the inverter device increases, increasing the heat generation of the capacitor, and there is a risk of impeding stable operation of the inverter device. It was necessary to take measures such as using an electrolytic capacitor that can withstand the above or limiting the reduction in inverter load impedance in advance.

上記に鑑み本発明は前記電解コンデンサ自体に対する特
別の耐熱対策を行うことなく前記インバータ装置の安定
運転を可能とする制御方法の提供を目的とするものであ
る。
In view of the above, an object of the present invention is to provide a control method that enables stable operation of the inverter device without taking special heat resistance measures for the electrolytic capacitor itself.

〔課題を解決するための手段] 上記目的を達成するために、本発明の誘導加熱用インバ
ータ装置の制御方法においては、その出力電圧と出力電
流間の位相制御によりその出力電力制御を行う直列共振
形誘導加熱用インバータ装置において、該インバータ装
置の直流中間回路における電解コンデンサの温度検出用
センサと、該センサの検出温度がその所定値を超えた場
合に前記インバータ装置の出力電力制御系におけるマイ
ナーループを構成する出力電流制御系に対する一定の制
限電流設定価を出力する変換器とを設け、前記電解コン
デンサにおける所定値以上の温度上昇発生時に前記イン
バータ装置の出力電流制限制御とそれに伴う出力電力の
低減とを行い前記電解コンデンサの温度上昇抑制を行う
か、或いはまた前記出力電流制御系に対する一定の制限
電流設定値を出力する変換器に代えて、前記電解コンデ
ンサの検出温度がその所定値を超えた場合に該検出温度
とその所定値との差に応じ適当な関係において自動的に
その値が修正された制限電流設定値を出力する変換器を
設け前記電解コンデンサ温度上昇抑制を行うものとする
[Means for Solving the Problems] In order to achieve the above object, in the control method of the inverter device for induction heating of the present invention, series resonance is used to control the output power by controlling the phase between the output voltage and the output current. In an inverter device for induction heating, a sensor for detecting the temperature of an electrolytic capacitor in a DC intermediate circuit of the inverter device, and a minor loop in the output power control system of the inverter device when the detected temperature of the sensor exceeds a predetermined value. and a converter that outputs a fixed limit current setting value for an output current control system constituting the inverter, and when a temperature rise of a predetermined value or more occurs in the electrolytic capacitor, the output current of the inverter device is controlled to limit and the output power is accordingly reduced. or suppress the temperature rise of the electrolytic capacitor, or alternatively, instead of using a converter that outputs a certain limit current setting value for the output current control system, the detected temperature of the electrolytic capacitor exceeds a predetermined value. In this case, a converter is provided to output a limiting current set value whose value is automatically corrected in an appropriate relationship according to the difference between the detected temperature and its predetermined value, thereby suppressing the temperature rise of the electrolytic capacitor.

[作用] 前記インバータ装置は、前記の如く、その制御回路の電
力制御系内にマイナーループとしての出力電流制御系を
有している。
[Function] As described above, the inverter device has an output current control system as a minor loop within the power control system of its control circuit.

本発明は、前記インバータ装置の直流中間回路における
電解コンデンサの温度の所定値からの温度上昇値に応じ
て前記出力電流制御系によるインバータ出力電流の低減
制御を行うものであり、このため前記出力電流制御系に
おける電流調節器に対し新たな制限電流設定値を与え且
つ該設定値を前記温度上昇値と適当な関係において自動
的に変化するものとするか或いはまた前記温度上昇の発
生と共にその上昇値と無関係に一定とするか何れかの値
となすものであり、以上に対応して前記電解コンデンサ
の温度検出用センサと該センサの出力を受は前記の如き
可変成いは一定の制限電流設定値を演算しその出力を前
記電流調節器に与える変換器とを設けるものである。
The present invention performs reduction control of the inverter output current by the output current control system in accordance with a temperature rise value from a predetermined value of the temperature of an electrolytic capacitor in the DC intermediate circuit of the inverter device. A new limiting current set value is given to the current regulator in the control system, and the set value is automatically changed in an appropriate relationship with the temperature rise value, or alternatively, the rise value is changed upon the occurrence of the temperature rise. Correspondingly, the sensor for temperature detection of the electrolytic capacitor and the output of the sensor are set to a variable or constant limiting current as described above. A converter that calculates a value and provides the output to the current regulator is provided.

〔実施例] 以下この発明の実施例を図面により説明する。〔Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明の実施例を示す回路図であり、第2図
に示す従来技術の実施例の場合と同一機能の構成要素に
対しては同一の表示符号を附している。
FIG. 1 is a circuit diagram showing an embodiment of the present invention, and components having the same functions as those in the prior art embodiment shown in FIG. 2 are given the same reference numerals.

第1図は第2図に示す回路図において、電解コンデンサ
2の温度検出用の温度センサ10と、該センサの出力を
受はインバータ3の出力電流低減値を指定する制限電流
設定値を演算し電流調節器6cに与える変換器6mとを
設けたものである。
FIG. 1 shows the circuit diagram shown in FIG. 2, which includes a temperature sensor 10 for detecting the temperature of the electrolytic capacitor 2, and a device that receives the output of the sensor and calculates a limit current setting value that specifies the output current reduction value of the inverter 3. A converter 6m is provided to supply the current to the current regulator 6c.

本発明は、前記変換器6II+における前記制限電流設
定値の決定を、前記温度センサ10による温度検出値と
その所定値との偏差すなわち温度上昇相当値の2乗演算
等の適当な関係式演算により行う場合と、前記温度上昇
発生時に温度上昇値自体とは無関係に一定値となす場合
との両者を対象とするものである。
The present invention determines the limiting current setting value in the converter 6II+ by calculating an appropriate relational expression such as calculating the square of the deviation between the temperature detection value by the temperature sensor 10 and its predetermined value, that is, the temperature rise equivalent value. The present invention is intended for both the case where the temperature rise is performed and the case where the temperature rise value is kept constant regardless of the temperature rise value itself when the temperature rise occurs.

以上何れの場合においても、前記の如き電解コンデンサ
における温度上昇の発生と共に前記インバータ3の出力
電流は所定の関係に従って低減され、前記電解コンデン
サの温度はその所定値以内に保たれることになる。
In any of the above cases, as the temperature rises in the electrolytic capacitor as described above, the output current of the inverter 3 is reduced according to a predetermined relationship, and the temperature of the electrolytic capacitor is maintained within the predetermined value.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電解コンデンサ等より成る直流中間回
路を有する直列共振形誘導加熱用電圧形インバータ装置
において、前記電解コンデンサの温度の所定値からの上
昇値に応じた値を前記インバータ装置の電流制御系にお
ける新たな制限電流設定値となして前記インバータの出
力電流低減制御を行うことにより、高調波電流に基因す
る前記電解コンデンサの温度上昇を抑制し前記インバー
タ装置の安定した運転が可能となる。
According to the present invention, in a series resonant induction heating voltage source inverter device having a direct current intermediate circuit including an electrolytic capacitor or the like, the current of the inverter device is set to a value corresponding to an increase in temperature of the electrolytic capacitor from a predetermined value. By performing output current reduction control of the inverter using a new limiting current setting value in the control system, a temperature rise in the electrolytic capacitor caused by harmonic current is suppressed, and stable operation of the inverter device is possible. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す回路図、第2図は従来
技術の実施例を示す回路図、第3図はインバータ負荷回
路の等価回路図とインピーダンスベクトル図、第4図は
インバータ出力電圧・電流の出力特性図、第5図はイン
バータ位相角制御時の動作波形図である。 1・・・整流器、2・・・電解コンデンサ、3・・・イ
ンバータ、3a・・・BDU (ベース駆動回路)、3
b・・・トランジスタ、3c・・・ダイオード、4・・
・共振コンデンサ、5・・・ワークコイル、6・・・制
御回路、6a・・・電力演算器、6b・・・電力調節器
、6C・・・電流調節器、6d・・・位相器、6e・・
・パルス分配器、6f・・・V/F変換器、6g・・・
起動演算回路、6h・・・DC電源、6k・・・保護回
路、6m・・・変換器、7・・・(電力)設定器、10
・・・温度センサ、CT、〜CT4メ匣−町 夕べw呵 (イ) (ロ) (ハ) 第3図 V○ 第4 図
Fig. 1 is a circuit diagram showing an embodiment of the present invention, Fig. 2 is a circuit diagram showing an embodiment of the prior art, Fig. 3 is an equivalent circuit diagram and impedance vector diagram of an inverter load circuit, and Fig. 4 is an inverter output The voltage/current output characteristic diagram, FIG. 5, is an operating waveform diagram during inverter phase angle control. 1... Rectifier, 2... Electrolytic capacitor, 3... Inverter, 3a... BDU (base drive circuit), 3
b...Transistor, 3c...Diode, 4...
- Resonance capacitor, 5... Work coil, 6... Control circuit, 6a... Power calculator, 6b... Power regulator, 6C... Current regulator, 6d... Phase shifter, 6e・・・
・Pulse distributor, 6f...V/F converter, 6g...
Startup calculation circuit, 6h...DC power supply, 6k...protection circuit, 6m...converter, 7...(power) setting device, 10
・・・Temperature sensor, CT, ~CT4me box - town evening w 2 (a) (b) (c) Fig. 3 V○ Fig. 4

Claims (1)

【特許請求の範囲】 1)その出力電圧と出力電流間の位相制御によりその出
力電力制御を行う直列共振形誘導加熱用インバータ装置
において、該インバータ装置の直流中間回路における電
解コンデンサの温度検出用センサと、該センサの検出温
度がその所定値を超えた場合に前記インバータ装置の出
力電力制御系におけるマイナーループを構成する出力電
流制御系に対する一定の制限電流設定値を出力する変換
器とを設け、前記電解コンデンサにおける所定値以上の
温度上昇発生時に前記インバータ装置の出力電流制限制
御とそれに伴う出力電力の低減とを行い前記電解コンデ
ンサの温度上昇抑制を行うことを特徴とする誘導加熱用
インバータ装置の制御方法。 2)請求項1記載の誘導加熱用インバータ装置の制御方
法において、前記出力電流制御系に対する一定の制限電
流設定値を出力する変換器に代えて、前記電解コンデン
サの検出温度がその所定値を超えた場合に該検出温度と
その所定値との差に応じ適当な関係において自動的にそ
の値が修正された制限電流設定値を出力する変換器を設
け前記電解コンデンサ温度上昇抑制を行うことを特徴と
する誘導加熱用インバータ装置の制御方法。
[Scope of Claims] 1) A sensor for detecting the temperature of an electrolytic capacitor in a DC intermediate circuit of the inverter device in a series resonant induction heating inverter device that controls its output power by controlling the phase between its output voltage and output current. and a converter that outputs a certain limit current setting value for an output current control system that constitutes a minor loop in the output power control system of the inverter device when the detected temperature of the sensor exceeds the predetermined value, An inverter device for induction heating, characterized in that when a temperature rise of a predetermined value or more occurs in the electrolytic capacitor, the output current limit control of the inverter device and the accompanying reduction in output power are performed to suppress the temperature rise of the electrolytic capacitor. Control method. 2) In the method for controlling an inverter device for induction heating according to claim 1, in place of the converter that outputs a fixed limit current setting value for the output current control system, the detected temperature of the electrolytic capacitor exceeds a predetermined value. A converter is provided to output a limiting current set value whose value is automatically corrected in an appropriate relationship according to the difference between the detected temperature and its predetermined value when the detected temperature and the predetermined value are different, thereby suppressing the temperature rise of the electrolytic capacitor. A method of controlling an inverter device for induction heating.
JP1134401A 1989-05-26 1989-05-26 Method of controlling induction heating inverter Pending JPH033670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1134401A JPH033670A (en) 1989-05-26 1989-05-26 Method of controlling induction heating inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1134401A JPH033670A (en) 1989-05-26 1989-05-26 Method of controlling induction heating inverter

Publications (1)

Publication Number Publication Date
JPH033670A true JPH033670A (en) 1991-01-09

Family

ID=15127530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1134401A Pending JPH033670A (en) 1989-05-26 1989-05-26 Method of controlling induction heating inverter

Country Status (1)

Country Link
JP (1) JPH033670A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006302882A (en) * 2005-04-18 2006-11-02 Marvell World Trade Ltd Improved control system for fluorescent luminaire
JP2007124787A (en) * 2005-10-27 2007-05-17 Konica Minolta Business Technologies Inc Power supply device and image forming apparatus
WO2012124073A1 (en) * 2011-03-16 2012-09-20 トヨタ自動車株式会社 Inverter overheat-protection control device and inverter overheat-protection control method
JP2013017390A (en) * 2011-06-06 2013-01-24 Daikin Ind Ltd Stability determination method and power conversion device
WO2016028224A1 (en) * 2014-08-18 2016-02-25 National University Of Singapore Single-stage multi-string led driver with dimming

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006302882A (en) * 2005-04-18 2006-11-02 Marvell World Trade Ltd Improved control system for fluorescent luminaire
JP2007124787A (en) * 2005-10-27 2007-05-17 Konica Minolta Business Technologies Inc Power supply device and image forming apparatus
WO2012124073A1 (en) * 2011-03-16 2012-09-20 トヨタ自動車株式会社 Inverter overheat-protection control device and inverter overheat-protection control method
DE112011105027T5 (en) 2011-03-16 2013-12-24 Toyota Jidosha Kabushiki Kaisha Inverter Overheat Protection Control Device and Inverter Overheat Protection Control Method
JP5633631B2 (en) * 2011-03-16 2014-12-03 トヨタ自動車株式会社 Inverter overheat protection control device and inverter overheat protection control method
JP2013017390A (en) * 2011-06-06 2013-01-24 Daikin Ind Ltd Stability determination method and power conversion device
WO2016028224A1 (en) * 2014-08-18 2016-02-25 National University Of Singapore Single-stage multi-string led driver with dimming

Similar Documents

Publication Publication Date Title
US6163019A (en) Resonant frequency induction furnace system using capacitive voltage division
JPS6051474A (en) Thyristor voltage limiting circuit for current source inverter
JPS6013390B2 (en) Control device for power converter
JPH033670A (en) Method of controlling induction heating inverter
JP2001128462A (en) Inverter device control method
JPH0350509B2 (en)
JP3086574B2 (en) Grid-connected inverter
JP6154216B2 (en) Control circuit for inverter circuit, inverter device provided with this control circuit, induction heating device provided with this inverter device, and control method
JP2909202B2 (en) Control device for load commutation type inverter
JP2841691B2 (en) Induction heating cooker
JP2940064B2 (en) Inverter power supply for induction heating
JP2537516B2 (en) Control method and apparatus for arc welding power source
JP3570173B2 (en) Control circuit provided in a device that generates direct current from alternating current
JPH0375893B2 (en)
JP2685547B2 (en) Control device for arc welding power supply
JP3915977B2 (en) Control circuit for series-parallel power supply
JPS61121773A (en) Control system of ac/dc power converter
JP3750799B2 (en) Control circuit for series-parallel power supply
JP2003230280A (en) Power converter
JPH07114143B2 (en) Inadequate heating object detection device for induction heating device
JPH04251597A (en) Controller for current type inverter
JPS5893476A (en) Control system for power converter
JPS6277063A (en) Controlling device for high frequency inverter
JPH08251933A (en) Controller and control method for inverter
JPS60234488A (en) Controller of ac motor