JPH04315932A - Temperature sensor - Google Patents

Temperature sensor

Info

Publication number
JPH04315932A
JPH04315932A JP8407891A JP8407891A JPH04315932A JP H04315932 A JPH04315932 A JP H04315932A JP 8407891 A JP8407891 A JP 8407891A JP 8407891 A JP8407891 A JP 8407891A JP H04315932 A JPH04315932 A JP H04315932A
Authority
JP
Japan
Prior art keywords
terminal
resistor
amplifier
power supply
bipolar transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8407891A
Other languages
Japanese (ja)
Other versions
JP2913428B2 (en
Inventor
Yoshiaki Kitamura
義昭 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Engineering Ltd
Original Assignee
NEC Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Engineering Ltd filed Critical NEC Engineering Ltd
Priority to JP8407891A priority Critical patent/JP2913428B2/en
Publication of JPH04315932A publication Critical patent/JPH04315932A/en
Application granted granted Critical
Publication of JP2913428B2 publication Critical patent/JP2913428B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a temperature sensor circuit in a semiconductor integrated circuit capable of setting the output voltage and temperature coefficient freely without being subjected to influence of fluctuation in a negative power source. CONSTITUTION:Fluctuation in temperature is detected by the use of temperature characteristic of bipolar transistors 1, 2, 3 and it is converted into fluctuation in current by a constant current circuit composed of an amplifier 12, MOS transistors 9, 10 and resistance element 14. This current fluctuates according to fluctuation in temperature without being affected by the influence of fluctuation in a negative power source is copied to a MOS transistor 11 by a current mirror circuit, and converted into voltage and output to an output terminal 19 by an inverter amplifier composed of an amplifier 13 and resistance elements 15, 16. As a result, temperature coefficient can be set freely by arbitrarily setting the ratio between the low resistance elements 14, 16 and similarly voltage can be set freely by arbitrarily setting first and second reference voltages, and output of temperature sensor which is not affected by fluctuation in a negative power source 8 can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、温度せンサ回路に関し
、特に、半導体集積回路における温度せンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature sensor circuit, and more particularly to a temperature sensor in a semiconductor integrated circuit.

【0002】0002

【従来の技術】温度を検出し、その変化を電圧の変化と
して出力する温度せンサ回路の従来例に、図2に示す回
路が知られている。図2において、従来の回路は、コレ
クタとベースが負電源に接続されたバイポーラトランジ
スタ1のエミッタは、定電流源4及びコレクタが負電源
に接続されたバイポーラトランジスタ2のベースに接続
され、バイポーラトランジスタ2のエミッタは定電流源
5及びバイポーラトランジスタ3のベースに接続され、
コレクタを負電源に接続されたバイポーラトランジスタ
3のエミッタは、定電流源6及び出力端子19に接続さ
れる回路構成となっていた。
2. Description of the Related Art A circuit shown in FIG. 2 is known as a conventional example of a temperature sensor circuit that detects temperature and outputs the temperature change as a voltage change. In FIG. 2, in the conventional circuit, the emitter of a bipolar transistor 1 whose collector and base are connected to a negative power supply is connected to a constant current source 4 and the base of a bipolar transistor 2 whose collector is connected to a negative power supply. The emitter of 2 is connected to the constant current source 5 and the base of the bipolar transistor 3,
The emitter of the bipolar transistor 3 whose collector was connected to a negative power supply was connected to a constant current source 6 and an output terminal 19 in a circuit configuration.

【0003】従来の回路例である図2の出力端子19の
電圧は数1式、又、温度に対する出力端子19の電圧の
変化は数2式で表される。
The voltage at the output terminal 19 in FIG. 2, which is an example of a conventional circuit, is expressed by the equation (1), and the change in the voltage at the output terminal 19 with respect to temperature is expressed by the equation (2).

【0004】0004

【数1】Vout=Vss+3×Vbe[Equation 1] Vout=Vss+3×Vbe

【数2】   ここで、Voutは出力端子の電圧、dVout/
dTは温度に対する出力端子の電圧の変化、Vssは負
電源電圧、Vbeはバイポーラトランジスタのベースエ
ミッタ間電圧、dVbe/dTはベースエミッタ間電圧
Vbeの温度係数を表す。従来の温度せンサ回路では数
1式、数2式からわかるように出力端子19の電圧は、
負電源電圧Vssに対しベースエミッタ間電圧Vbe3
段分の電圧となり、温度係数はベースエミッタ間電圧V
beの温度係数の3倍となる回路構成となっていた。
[Equation 2] Here, Vout is the voltage at the output terminal, dVout/
dT represents the change in voltage at the output terminal with respect to temperature, Vss represents the negative power supply voltage, Vbe represents the base-emitter voltage of the bipolar transistor, and dVbe/dT represents the temperature coefficient of the base-emitter voltage Vbe. In the conventional temperature sensor circuit, as can be seen from equations 1 and 2, the voltage at the output terminal 19 is
Base-emitter voltage Vbe3 with respect to negative power supply voltage Vss
The voltage is for each stage, and the temperature coefficient is the base-emitter voltage V.
The circuit configuration was such that the temperature coefficient of be was three times that of be.

【0005】[0005]

【発明が解決しようとする課題】上述した従来の回路で
は、出力端子の電圧はバイポーラトランジスタのベース
エミッタ間電圧Vbeの3倍、温度係数についてもベー
スエミッタ間電圧Vbeの温度係数の3倍という制約が
あり、なおかつ負電源電圧Vssの変動の影響を大きく
受けるという欠点があった。
[Problems to be Solved by the Invention] In the conventional circuit described above, the voltage at the output terminal is three times the base-emitter voltage Vbe of the bipolar transistor, and the temperature coefficient is also limited to three times the temperature coefficient of the base-emitter voltage Vbe. Moreover, it has the disadvantage that it is greatly affected by fluctuations in the negative power supply voltage Vss.

【0006】本発明は従来の上記実情に鑑みてなされた
ものであり、従って本発明の目的は、従来の技術に内在
する上記欠点を解消することを可能とした新規な温度せ
ンサ回路を提供することにある。
The present invention has been made in view of the above-mentioned conventional circumstances, and therefore, an object of the present invention is to provide a novel temperature sensor circuit that makes it possible to eliminate the above-mentioned drawbacks inherent in the conventional technology. It's about doing.

【0007】[0007]

【課題を解決するための手段】上記目的を達成する為に
、本発明に係る温度せンサ回路は、ベースとコレクタを
負電源に接続した第1のバイポーラトランジスタのエミ
ッタは、コレクタを負電源に接続した第2のバイポーラ
トランジスタのベースと、正電源に接続した第1の定電
流源に接続し、該第2のバイポーラトランジスタのエミ
ッタは、コレクタを負電源に接続した第3のバイポーラ
トランジスタのベースと、正電源に接続した第2の定電
流源に接続し、該第3のバイポーラトランジスタのエミ
ッタは、正電源に接続した第3の定電流源と第1の増幅
器の正入力に接続し、該第1の増幅器の負入力は第1の
MOSトランジスタのソースと第1の抵抗器の第1の端
子に接続し、該第1の抵抗器の第2の端子は負電源に接
続し、前記第1のMOSトランジスタのゲートは前記第
1の増幅器の出力に接続し、ドレインは第2のMOSト
ランジスタのドレインとゲート及び第3のMOSトラン
ジスタのゲートに接続し、該第2及び第3のMOSトラ
ンジスタのソースはそれぞれ正電源に接続し、該第3の
MOSトランジスタのドレインは第2の抵抗器の第1の
端子と、第3の抵抗器の第1の端子及び第2の増幅器の
負入力にそれぞれ接続し、該第2の抵抗器の第2の端子
は基準電圧1の入力端子に接続し、前記第2の増幅器の
正入力は第2の基準電圧2の入力端子に接続し、出力は
前記第3の抵抗器の第2の端子及び出力端子に接続した
回路構成を有する。
[Means for Solving the Problems] In order to achieve the above object, the temperature sensor circuit according to the present invention has the emitter of the first bipolar transistor whose base and collector are connected to the negative power supply, and the collector connected to the negative power supply. The base of a second bipolar transistor connected to the first constant current source connected to a positive power supply, and the emitter of the second bipolar transistor connected to the base of a third bipolar transistor whose collector was connected to a negative power supply. and a second constant current source connected to a positive power source, and the emitter of the third bipolar transistor is connected to the third constant current source connected to the positive power source and a positive input of the first amplifier, A negative input of the first amplifier is connected to a source of a first MOS transistor and a first terminal of a first resistor, a second terminal of the first resistor is connected to a negative power supply, and a second terminal of the first resistor is connected to a negative power supply. The gate of the first MOS transistor is connected to the output of the first amplifier, the drain is connected to the drain and gate of the second MOS transistor and the gate of the third MOS transistor, and the gate of the first MOS transistor is connected to the output of the first amplifier. The sources of the transistors are each connected to the positive power supply, and the drain of the third MOS transistor is connected to the first terminal of the second resistor, the first terminal of the third resistor and the negative input of the second amplifier. , a second terminal of the second resistor is connected to an input terminal of a reference voltage 1, a positive input of the second amplifier is connected to an input terminal of a second reference voltage 2, and an output has a circuit configuration connected to the second terminal and output terminal of the third resistor.

【0008】[0008]

【実施例】次に、本発明をその好ましい一実施例につい
て図面を参照して具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a preferred embodiment of the present invention will be specifically explained with reference to the drawings.

【0009】図1は本発明に係る温度せンサ回路の一実
施例を示す回路構成図である。
FIG. 1 is a circuit diagram showing an embodiment of a temperature sensor circuit according to the present invention.

【0010】図1においてその回路構成を説明するに、
ベースとコレクタが負電源に接続されたバイポーラトラ
ンジスタ1のエミッタは、コレクタが負電源に接続され
たバイポーラトランジスタ2のベースと、正電源に接続
された定電流源4に接続されている。バイポーラトラン
ジスタ2のエミッタは、コレクタが負電源に接続された
バイポーラトランジスタ3のベースと、正電源に接続さ
れた定電流源5に接続されている。バイポーラトランジ
スタ3のエミッタは、正電流源に接続された定電流源6
と増幅器12の正入力に接続され、該増幅器12の負入
力はMOSトランジスタ9のソースと抵抗器14の第1
の端子に接続されている。抵抗器14の第2の端子は負
電源に接続され、MOSトランジスタ9のゲートは増幅
器12の出力に接続され、MOSトランジスタ9のドレ
インはMOSトランジスタ10のドレインとゲート及び
MOSトランジスタ11のゲートに接続されている。M
OSトランジスタ10及び11のソースはそれぞれ正電
源に接続され、該MOSトランジスタ11のドレインは
抵抗器15の第1の端子と、抵抗器16の第1の端子及
び増幅器13の負入力にそれぞれ接続されている。抵抗
器15の第2の端子は第1の基準電圧の入力端子17に
接続され、前記増幅器13の正入力は第2の基準電圧の
入力端子18に接続され、出力は抵抗器16の第2の端
子及び出力端子19に接続されている。
To explain the circuit configuration in FIG. 1,
The emitter of a bipolar transistor 1 whose base and collector are connected to a negative power supply is connected to the base of a bipolar transistor 2 whose collector is connected to a negative power supply and to a constant current source 4 which is connected to a positive power supply. The emitter of the bipolar transistor 2 is connected to the base of a bipolar transistor 3 whose collector is connected to a negative power supply, and to a constant current source 5 connected to a positive power supply. The emitter of the bipolar transistor 3 is connected to a constant current source 6 connected to a positive current source.
is connected to the positive input of the amplifier 12, and the negative input of the amplifier 12 is connected to the source of the MOS transistor 9 and the first resistor 14.
is connected to the terminal. The second terminal of the resistor 14 is connected to a negative power supply, the gate of the MOS transistor 9 is connected to the output of the amplifier 12, and the drain of the MOS transistor 9 is connected to the drain and gate of the MOS transistor 10 and the gate of the MOS transistor 11. has been done. M
The sources of the OS transistors 10 and 11 are each connected to a positive power supply, and the drain of the MOS transistor 11 is connected to a first terminal of a resistor 15, a first terminal of a resistor 16, and a negative input of an amplifier 13, respectively. ing. The second terminal of the resistor 15 is connected to the input terminal 17 of the first reference voltage, the positive input of the amplifier 13 is connected to the input terminal 18 of the second reference voltage, and the output is connected to the second input terminal 17 of the resistor 16. and the output terminal 19.

【0011】回路動作説明の為に、回路に流れる各電流
を求め式を用いて説明する。増幅器12とMOSトラン
ジスタ9及び抵抗器14は定電流回路を構成しており、
増幅器12の正入力には負電源8に対してバイポーラト
ランジスタのベースエミッタ電圧Vbe3段分の差電圧
が入力されている。又、増幅器12の負入力は仮想接地
の関係にある正入力と同電位になっており、負電源8と
負入力との間に接続された抵抗器14には常にベースエ
ミッタ電圧Vbe3段分の電圧がかかっている。
In order to explain the circuit operation, each current flowing through the circuit will be calculated using equations. The amplifier 12, MOS transistor 9, and resistor 14 constitute a constant current circuit,
The positive input of the amplifier 12 receives a differential voltage corresponding to three stages of the base-emitter voltage Vbe of the bipolar transistor with respect to the negative power supply 8 . Further, the negative input of the amplifier 12 is at the same potential as the positive input which is in a virtual ground relationship, and the resistor 14 connected between the negative power supply 8 and the negative input always has a base emitter voltage Vbe of three stages. Voltage is applied.

【0012】抵抗器14に流れる電流I0、抵抗器14
の抵抗値をR14とすると、電源I0は数3式で表され
る。数3式は抵抗器14に流れる電流が負電源8の変動
に影響されないことを表している。
Current I0 flowing through resistor 14, resistor 14
Assuming that the resistance value of is R14, the power supply I0 is expressed by Equation 3. Equation 3 indicates that the current flowing through the resistor 14 is not affected by fluctuations in the negative power supply 8.

【0013】 又、PチャネルMOSトランジスタ10とPチャネルM
OSトランジスタ11はカレントミラー接続されており
、PチャネルMOSトランジスタ10のトランジスタサ
イズをW10/L10、PチャネルMOSトランジスタ
11のトランジスタサイズをW11/L11とし、Pチ
ャネルMOSトランジスタ11に流れる電流をI1とす
ると、電流I1は数4式で表される。
Furthermore, P channel MOS transistor 10 and P channel M
The OS transistor 11 is connected in a current mirror, and the transistor size of the P-channel MOS transistor 10 is W10/L10, the transistor size of the P-channel MOS transistor 11 is W11/L11, and the current flowing through the P-channel MOS transistor 11 is I1. , the current I1 is expressed by Equation 4.

【0014】[0014]

【数5】I1=I0 抵抗器15は第1の基準電圧の入力端子17と増幅器1
3の負入力に接続されている。反転増幅器を構成した増
幅器13の正入力と負入力は仮想接地の関係にあるため
に、負入力は正入力に入力した第2の基準電圧と同電圧
になっている。抵抗器15に流れる電流をI2、抵抗値
をR15、第1の基準電圧をVref1、第2の基準電
圧をVref2とすると、電流I2は数6式で表される
[Equation 5] I1=I0 The resistor 15 connects the first reference voltage input terminal 17 and the amplifier 1
Connected to the negative input of 3. Since the positive and negative inputs of the amplifier 13, which constitutes an inverting amplifier, are in a virtual ground relationship, the negative input has the same voltage as the second reference voltage input to the positive input. When the current flowing through the resistor 15 is I2, the resistance value is R15, the first reference voltage is Vref1, and the second reference voltage is Vref2, the current I2 is expressed by Equation 6.

【0015】[0015]

【数6】   抵抗器16は出力端子19と増幅器13の負入力の
間に接続されており、抵抗器16に流れる電流をI3、
抵抗値をR16とすると、電流I3は数7式で表される
[Equation 6] The resistor 16 is connected between the output terminal 19 and the negative input of the amplifier 13, and the current flowing through the resistor 16 is I3,
Assuming that the resistance value is R16, the current I3 is expressed by Equation 7.

【0016】[0016]

【数7】   増幅器13の負入力の接点においてキルヒホッフの
法則を適用し、数3〜数7式を用いて出力端子19の電
圧Voutを求めると、Voutは数8式で与えられる
[Equation 7] Applying Kirchhoff's law to the negative input contact of the amplifier 13 and calculating the voltage Vout at the output terminal 19 using Equations 3 to 7, Vout is given by Equation 8.

【0017】 又、温度の変化に対するVoutの変化は数9式で与え
られる。
[0017]Furthermore, the change in Vout with respect to the change in temperature is given by Equation 9.

【0018】[0018]

【数9】   以上数8式からわかるように、出力端子19の電圧
は抵抗器15の抵抗値、あるいは第1の基準電圧、又は
第2の基準電圧の電圧を任意の値に設定することにより
自由に設定できる。同様に出力端子19の温度係数につ
いても数9式からわかるように、抵抗器16、又は抵抗
器14の抵抗値を任意の値に設定することにより自由に
設定することができる。又、基準電圧は負電源8の変動
の影響を受けず数8、数9式に負電源電圧Vssの項が
ないことからも明らかであるように、出力端子19の電
圧は負電源8の変動の影響を受けない。
[Equation 9] As can be seen from Equation 8 above, the voltage at the output terminal 19 can be determined by setting the resistance value of the resistor 15, the first reference voltage, or the second reference voltage to an arbitrary value. Can be set freely. Similarly, the temperature coefficient of the output terminal 19 can be freely set by setting the resistance value of the resistor 16 or the resistor 14 to an arbitrary value, as can be seen from Equation 9. Furthermore, the reference voltage is not affected by the fluctuations in the negative power supply 8, and as is clear from the fact that there is no term for the negative power supply voltage Vss in Equations 8 and 9, the voltage at the output terminal 19 is not affected by the fluctuations in the negative power supply 8. Not affected by

【0019】本発明の一実施例ではバイポーラトランジ
スタと定電流源の直列回路が3段縦続接続された場合に
ついてのものであるが、代わりに、バイポーラトランジ
スタと定電流源の直列回路が1段の場合、2段の場合、
あるいは3段以上でも同様に本発明を適用できることは
勿論である。
In one embodiment of the present invention, a series circuit of a bipolar transistor and a constant current source is connected in series in three stages, but instead, a series circuit of a bipolar transistor and a constant current source is connected in one stage. In the case of two stages,
Of course, the present invention can also be applied to three or more stages.

【0020】[0020]

【発明の効果】以上説明したように、本発明の温度せン
サ回路によれば、出力端子の電圧及び温度係数がバイポ
ーラトランジスタのベースエミッタ電圧Vbe及び、V
beの温度係数によって制限を受けず自由に設定でき、
かつ負電源電圧Vssの変動による影響を受けないとい
う効果が得られる。
As explained above, according to the temperature sensor circuit of the present invention, the voltage and temperature coefficient of the output terminal are determined by the base emitter voltage Vbe and V of the bipolar transistor.
It can be set freely without being restricted by the temperature coefficient of be.
Moreover, the effect of not being affected by fluctuations in the negative power supply voltage Vss can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明に係る温度せンサ回路の一実施例を示す
回路ブロック構成図である。
FIG. 1 is a circuit block configuration diagram showing an embodiment of a temperature sensor circuit according to the present invention.

【図2】従来における温度せンサ回路の例を示す回路図
である。
FIG. 2 is a circuit diagram showing an example of a conventional temperature sensor circuit.

【符号の説明】[Explanation of symbols]

1〜3…バイポーラトランジスタ 4〜6…定電流源 7…正電源 8…負電源 9〜11…MOSトランジスタ 12、13…増幅器 14〜16…抵抗器 17…第1の基準電圧の入力端子 18…第2の基準電圧の入力端子 19…出力端子 1 to 3...Bipolar transistor 4 to 6...constant current source 7...Positive power supply 8...Negative power supply 9-11...MOS transistor 12, 13...Amplifier 14-16...Resistor 17...First reference voltage input terminal 18...Second reference voltage input terminal 19...Output terminal

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  ベースとコレクタが負電源に接続され
エミッタが、正電源に接続された第1の定電流源に接続
された第1のバイポーラトランジスタと、正入力と負入
力を備えた第1の増幅器とを有し、該第1の増幅器の負
入力は第1のNチャネルMOSトランジスタのソースと
第1の抵抗器の第1の端子に接続され、該第1の抵抗器
の第2の端子は負電源に接続され、前記第1のNチャネ
ルMOSトランジスタのゲートは前記第1の増幅器の出
力に接続され、ドレインは第2のPチャネルMOSトラ
ンジスタのドレインとゲート及び、第3のPチャネルM
OSトランジスタのゲートに接続され、該第2及び第3
のPチャネルMOSトランジスタのソースはそれぞれ正
電源に接続され、前記第3のPチャネルMOSトランジ
スタのドレインは、第2の抵抗器の第1の端子と第3の
抵抗器の第1の端子及び第2の増幅器の負入力にそれぞ
れ接続され、前記第2の抵抗器の第2の端子は第1の基
準電圧の入力端子に接続され、前記第2の増幅器の正入
力は第2の基準電圧の入力端子に接続され、出力は前記
第3の抵抗器の第2の端子及び出力端子に接続され、コ
レクタが負電源に接続されたバイポーラトランジスタの
エミッタと正電源との間に定電流源が接続されベースが
前段のバイポーラトランジスタのエミッタに接続された
回路が前記第1のバイポーラトランジスタのエミッタと
前記第1の増幅器の正入力との間に少なくとも1回路接
続されたことを特徴とする温度せンサ回路。
1. A first bipolar transistor having a base and a collector connected to a negative power supply and an emitter connected to a first constant current source connected to a positive power supply, and a first bipolar transistor having a positive input and a negative input. an amplifier, the negative input of the first amplifier is connected to the source of the first N-channel MOS transistor and the first terminal of the first resistor, and the negative input of the first amplifier is connected to the second terminal of the first resistor. The terminal is connected to a negative power supply, the gate of the first N-channel MOS transistor is connected to the output of the first amplifier, and the drain is connected to the drain and gate of the second P-channel MOS transistor, and the third P-channel MOS transistor. M
connected to the gate of the OS transistor, and the second and third
The sources of the P-channel MOS transistors are respectively connected to a positive power supply, and the drains of the third P-channel MOS transistor are connected to the first terminal of the second resistor, the first terminal of the third resistor, and the third resistor. The second terminal of the second resistor is connected to the input terminal of the first reference voltage, and the positive input of the second amplifier is connected to the input terminal of the second reference voltage. A constant current source is connected between the emitter of the bipolar transistor, which is connected to the input terminal, whose output is connected to the second terminal and the output terminal of the third resistor, and whose collector is connected to the negative power source and the positive power source. At least one circuit whose base is connected to the emitter of a preceding bipolar transistor is connected between the emitter of the first bipolar transistor and the positive input of the first amplifier. circuit.
【請求項2】  ベースとコレクタが負電源に接続され
た第1のバイポーラトランジスタのエミッタは、コレク
タが負電源に接続された第2のバイポーラトランジスタ
のベースと、正電源に接続された第1の定電流源に接続
され、前記第2のバイポーラトランジスタのエミッタは
、コレクタが負電源に接続された第3のバイポーラトラ
ンジスタのベースと、正電源に接続された第2の定電流
源に接続され、前記第3のバイポーラトランジスタのエ
ミッタは、正電源に接続された第3の定電流源と第1の
増幅器の正入力に接続され、該第1の増幅器の負入力は
第1のNチャネルMOSトランジスタのソースと第1の
抵抗器の第1の端子に接続され、該第1の抵抗器の第2
の端子は負電源に接続され、前記第1のNチャネルMO
Sトランジスタのゲートは前記第1の増幅器の出力に接
続され、ドレインは第2のPチャネルMOSトランジス
タのドレインとゲート及び、第3のPチャネルMOSト
ランジスタのゲートに接続され、該第2及び第3のPチ
ャネルMOSトランジスタのソースはそれぞれ正電源に
接続され、前記第3のPチャネルMOSトランジスタの
ドレインは、第2の抵抗器の第1の端子と第3の抵抗器
の第1の端子及び第2の増幅器の負入力にそれぞれ接続
され、前記第2の抵抗器の第2の端子は第1の基準電圧
の入力端子に接続され、前記第2の増幅器の正入力は第
2の基準電圧の入力端子に接続され、出力は前記第3の
抵抗器の第2の端子及び出力端子に接続された回路構成
を特徴とする温度せンサ回路。
2. The emitter of a first bipolar transistor whose base and collector are connected to a negative power supply is connected to the base of a second bipolar transistor whose collector is connected to a negative power supply and the emitter of a first bipolar transistor whose base and collector are connected to a positive power supply. The emitter of the second bipolar transistor connected to a constant current source is connected to the base of a third bipolar transistor whose collector is connected to a negative power source, and the second constant current source connected to a positive power source, The emitter of the third bipolar transistor is connected to a third constant current source connected to a positive power supply and the positive input of the first amplifier, and the negative input of the first amplifier is connected to the first N-channel MOS transistor. is connected to the source of the first resistor and the first terminal of the first resistor;
is connected to a negative power supply, and the terminal of the first N-channel MO
The gate of the S transistor is connected to the output of the first amplifier, the drain is connected to the drain and gate of the second P channel MOS transistor, and the gate of the third P channel MOS transistor, The sources of the P-channel MOS transistors are respectively connected to a positive power supply, and the drains of the third P-channel MOS transistor are connected to the first terminal of the second resistor, the first terminal of the third resistor, and the third resistor. The second terminal of the second resistor is connected to the input terminal of the first reference voltage, and the positive input of the second amplifier is connected to the input terminal of the second reference voltage. A temperature sensor circuit characterized in that the circuit is connected to an input terminal, and an output is connected to a second terminal and an output terminal of the third resistor.
【請求項3】  前記第2のバイポーラトランジスタと
前記第2の定電流源の直列回路と、前記第3のバイポー
ラトランジスタと前記第3の定電流源の直列回路を除去
し、前記第1のバイポーラトランジスタのエミッタを前
記第1の増幅器の前記正入力に接続したことを更に特徴
とする請求項2に記載の温度せンサ回路。
3. The series circuit of the second bipolar transistor and the second constant current source and the series circuit of the third bipolar transistor and the third constant current source are removed, and the first bipolar transistor and the third constant current source are removed. 3. The temperature sensor circuit according to claim 2, further comprising an emitter of a transistor connected to the positive input of the first amplifier.
JP8407891A 1991-04-16 1991-04-16 Temperature sensor Expired - Lifetime JP2913428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8407891A JP2913428B2 (en) 1991-04-16 1991-04-16 Temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8407891A JP2913428B2 (en) 1991-04-16 1991-04-16 Temperature sensor

Publications (2)

Publication Number Publication Date
JPH04315932A true JPH04315932A (en) 1992-11-06
JP2913428B2 JP2913428B2 (en) 1999-06-28

Family

ID=13820456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8407891A Expired - Lifetime JP2913428B2 (en) 1991-04-16 1991-04-16 Temperature sensor

Country Status (1)

Country Link
JP (1) JP2913428B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4642364B2 (en) * 2004-03-17 2011-03-02 オリンパス株式会社 Temperature detection circuit, temperature detection device, and photoelectric conversion device

Also Published As

Publication number Publication date
JP2913428B2 (en) 1999-06-28

Similar Documents

Publication Publication Date Title
US20200073429A1 (en) Bandgap reference circuit and high-order temperature compensation method
US4495425A (en) VBE Voltage reference circuit
CA1241389A (en) Cmos bandgap reference voltage circuits
US6799889B2 (en) Temperature sensing apparatus and methods
US4636742A (en) Constant-current source circuit and differential amplifier using the same
JPH0778481A (en) Direct-current sum band-gap voltage comparator
JPS6159903A (en) Mos current mirror circuit
JP2002055724A (en) Method for generating substantially temperature- independent current and device for permitting its execution
JP2004146576A (en) Semiconductor temperature measuring circuit
JP2001510609A (en) Reference voltage source with temperature compensated output reference voltage
US20100264980A1 (en) Temperature-compensated voltage comparator
US20160252923A1 (en) Bandgap reference circuit
JP4023991B2 (en) Reference voltage generation circuit and power supply device
US20060132224A1 (en) Circuit for generating reference current
JPH0290306A (en) Current reference circuit unrelated to temperature
JP2913428B2 (en) Temperature sensor
JP3118929B2 (en) Constant voltage circuit
JPH11134051A (en) Reference voltage circuit
JPH02191012A (en) Voltage generating circuit
JP2729001B2 (en) Reference voltage generation circuit
JPH0456935B2 (en)
JPH03139873A (en) Temperature detecting circuit
JPH086653A (en) Reference voltage generating circuit
JP2772069B2 (en) Constant current circuit
JPS61138318A (en) Reference voltage generating circuit