JPH04314881A - Electrolytic device - Google Patents

Electrolytic device

Info

Publication number
JPH04314881A
JPH04314881A JP3065993A JP6599391A JPH04314881A JP H04314881 A JPH04314881 A JP H04314881A JP 3065993 A JP3065993 A JP 3065993A JP 6599391 A JP6599391 A JP 6599391A JP H04314881 A JPH04314881 A JP H04314881A
Authority
JP
Japan
Prior art keywords
electrode
negative electrode
proton
positive electrode
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3065993A
Other languages
Japanese (ja)
Inventor
Norihiko Inuzuka
犬塚 敬彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3065993A priority Critical patent/JPH04314881A/en
Publication of JPH04314881A publication Critical patent/JPH04314881A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To efficiently produce methane and the like by CO2 electrolytic reduction reaction without changing electrodes. CONSTITUTION:Hydrogen ions produced by electrolysis on the interface of a platinum plating film 4 as the positive electrode move through a proton- conductive solid electrolyte 3 to a copper plating film 5 as the negative electrode. In the film 5, hydrogen ions change into hydrogen to generate from the interface and act as the proton source.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は炭酸ガスを電解還元反
応によって例えばメタンやメタノール等に変化させるた
めの電解装置に関するものである。 【0002】 【従来の技術】近年、大気中の炭酸ガスの増加による地
球の温暖化が地球環境問題の1つとして取り上げられ、
その防止のため炭酸ガスを種々の方法によって固定する
試みが行われている。例えば、金属電極上で炭酸ガスの
電解還元を行うと、炭酸ガスが一酸化炭素やメタンやメ
タノールに変化することが知られている。次に示す従来
例は、1990年電気化学学会秋季大会(予稿集P.1
64)で発表されたもので、白金族元素で水素吸蔵金属
として知られるPd(パラジウム)電極を用いた炭酸ガ
スCO2 の還元に関する報告である。即ち、予めNa
2SO4 水溶液中でカソード電解させることによって
、水素を吸蔵させたPd電極を、0.1MNaClO4
 および0.1Mリン酸バッハァーを含むCO2 飽和
の水溶液中において還元電解を行い、40.1%の電流
効率でメタノールが生成された。また、水素を吸蔵させ
たTi(チタン)電極を用いた場合にも同様に高い効率
でメタノールが生成された。そして、同報告はこれら水
素吸蔵電極がプロトンソースとなってメタノールの生成
効率向上に寄与していると指摘している。 【0003】 【発明が解決しようとする課題】従来の炭酸ガス電解還
元反応では、以上のように、その反応効率を増大するた
めプロトンソース供給電極として水素吸蔵金属が使用さ
れている。ところで、この水素吸蔵金属は、活性化して
原子状となった水素分子を金属挌子のすき間にとらえて
蓄えるもので、その水素吸蔵量には自づと限界がある。 このため、炭酸ガスの電解還元反応を長時間にわたって
持続させるためには、電極に使用する水素吸蔵金属を順
次取り替えていかねばならないという問題点があった。 この発明は以上のような問題点を解消するためになされ
たもので、取り替えることなくプロトンソースとしての
機能を維持することができる電極を備えた電解装置を得
ることを目的とする。 【0004】 【課題を解決するための手段】この発明に係る電解装置
は、CO2 溶液中に正電極と負電極とを設けてCO2
 電解還元反応を行わせるもので、特にその負電極が、
プロトン導電性固体電解質の片面に多孔性白金族電極か
らなる正極を他面にCO2 電解還元反応の多孔性触媒
金属電極からなる負極をそれぞれ形成してなるものであ
る。 【0005】 【作用】プロトン導電性固体電解質の正極面において水
が分解され、その際生成する水素イオン(プロトン)は
、プロトン導電性固体電解質の中を正極から負極に移動
し、この負極面がプロトンソース供給電極として作用し
メタノール等の生成効率を増大させる。 【0006】 【実施例】図1はこの発明の一実施例による電解装置の
構成を示す断面図である。図において、1は電解槽、2
は負電極で、中央のプロトン導電性固体電解質3(例え
ば米国デュポン社製ナフィオン117 が該当)と、そ
の片面に無電解めっきによって形成した多孔性の白金め
っき膜4と、プロトン導電性固体電解質3の他方の面に
無電解めっきによって形成した多孔性の銅めっき膜5と
から構成されている。そして、1.0 〜 1.5ボル
トの直流電源6を接続して白金めっき膜4を正極、銅め
っき膜5を負極とする。7は負電極2の対極の正電極で
あるカーボン電極、8は負電極2と正電極7との間に接
続された直流電源、9は 0.1モルの炭酸水素カリウ
ムを緩衝溶液としてCO2 を飽和させた電解液、10
は負電極2と正電極7とを隔てる隔膜である。 【0007】次に動作について説明する。先ず、負電極
2の正極である白金めっき膜4の界面では次の反応が進
行し、水が電気分解されて酸素と水素イオンとが発生す
る。 H2 O→2H+ +1/2 O2 +2e− この分
解で発生した水素イオンはプロトン導電性固体電解質3
中を移動して負極である銅めっき膜5に達し、次の反応
でその表面から水素となって放出される。 2H+ +2e− →H2  【0008】この時、直流電源8を用いて銅めっき膜5
と正電極7との間に0.1 〜10mA/cm2の定電
流を通電すると、電解液9中に溶解したCO2 は銅め
っき膜5上で還元されてメタン、メタノール、エタン等
が生成される。即ち、銅めっき膜5はプロトンソース供
給電極として作用し、しかも、上式の反応は直流電圧を
印加する限り、継続して進行するので、従来の水素吸蔵
電極を用いた場合のような電極の取り替え等の煩雑さが
解消される。 【0009】なお、上記実施例では、CO2 電解還元
反応の多孔性触媒電極5の金属材料として銅を使用した
が、例えばCO2 からアルデヒド類を生成させる場合
には、インジウム、錫、鉛等の金属を使用することがで
きる。また、正極4に使用する金属材料も、白金に限ら
ずパラジウム等他の白金族元素を使用するようにしても
よい。 【0010】 【発明の効果】この発明は、以上のように、プロトン導
電性固体電解質の両面に所定の正極と負極とを形成して
負電極としたので、正極での分解により生じた水素イオ
ンがプロトン導電性固体電解質を経て負極から水素とな
って発生し、これが、CO2 電解還元反応のプロトン
ソースとしての機能を継続する。従って、従来のような
煩雑な電極変換を必要とすることなく効率的なCO2還
元反応を達成することができる。
Description: FIELD OF INDUSTRIAL APPLICATION This invention relates to an electrolytic device for converting carbon dioxide gas into methane, methanol, etc. by an electrolytic reduction reaction. [0002] In recent years, global warming due to an increase in carbon dioxide gas in the atmosphere has been taken up as one of the global environmental problems.
To prevent this, attempts have been made to fix carbon dioxide gas by various methods. For example, it is known that when carbon dioxide gas is electrolytically reduced on a metal electrode, the carbon dioxide gas changes to carbon monoxide, methane, and methanol. The following conventional example is the 1990 Electrochemical Society of Japan Autumn Meeting (Proceedings P.1).
64), which is a report on the reduction of carbon dioxide gas CO2 using a Pd (palladium) electrode, which is a platinum group element and is known as a hydrogen storage metal. That is, Na
By cathodic electrolyzing in a 2SO4 aqueous solution, a Pd electrode that occluded hydrogen was heated to 0.1M NaClO4.
Reductive electrolysis was performed in a CO2-saturated aqueous solution containing 0.1M phosphate bacher, and methanol was produced with a current efficiency of 40.1%. Furthermore, methanol was similarly generated with high efficiency when a Ti (titanium) electrode that occluded hydrogen was used. The same report points out that these hydrogen storage electrodes serve as proton sources and contribute to improving methanol production efficiency. [0003] In the conventional carbon dioxide gas electrolytic reduction reaction, as described above, a hydrogen storage metal is used as a proton source supply electrode in order to increase the reaction efficiency. By the way, this hydrogen-absorbing metal captures and stores activated atomic hydrogen molecules in the gaps between the metal spoons, and there is a limit to the amount of hydrogen it can absorb. Therefore, in order to sustain the electrolytic reduction reaction of carbon dioxide gas over a long period of time, there was a problem in that the hydrogen storage metal used in the electrode had to be replaced one after another. The present invention was made to solve the above-mentioned problems, and an object of the present invention is to obtain an electrolytic device equipped with an electrode that can maintain its function as a proton source without being replaced. [Means for Solving the Problems] An electrolytic device according to the present invention includes a positive electrode and a negative electrode in a CO2 solution.
It performs an electrolytic reduction reaction, especially its negative electrode,
A positive electrode made of a porous platinum group electrode is formed on one side of a proton-conductive solid electrolyte, and a negative electrode made of a porous catalytic metal electrode for CO2 electrolytic reduction reaction is formed on the other side. [Operation] Water is decomposed on the positive electrode surface of the proton conductive solid electrolyte, and the hydrogen ions (protons) generated at this time move from the positive electrode to the negative electrode in the proton conductive solid electrolyte, and this negative electrode surface It acts as a proton source supply electrode and increases the production efficiency of methanol, etc. DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a sectional view showing the structure of an electrolysis device according to an embodiment of the present invention. In the figure, 1 is an electrolytic tank, 2
is a negative electrode, which includes a proton conductive solid electrolyte 3 in the center (for example, Nafion 117 manufactured by DuPont in the United States), a porous platinum plated film 4 formed by electroless plating on one side, and a proton conductive solid electrolyte 3. and a porous copper plating film 5 formed on the other surface by electroless plating. Then, a DC power source 6 of 1.0 to 1.5 volts is connected to use the platinum plating film 4 as a positive electrode and the copper plating film 5 as a negative electrode. 7 is a carbon electrode which is the positive electrode opposite to the negative electrode 2, 8 is a DC power supply connected between the negative electrode 2 and the positive electrode 7, and 9 is a carbon electrode that is a buffer solution containing 0.1 mol of potassium hydrogen carbonate. saturated electrolyte, 10
is a diaphragm that separates the negative electrode 2 and the positive electrode 7. Next, the operation will be explained. First, the following reaction proceeds at the interface of the platinum plating film 4, which is the positive electrode of the negative electrode 2, and water is electrolyzed to generate oxygen and hydrogen ions. H2 O→2H+ +1/2 O2 +2e- The hydrogen ions generated by this decomposition are transferred to the proton conductive solid electrolyte 3.
It moves through the interior and reaches the copper plating film 5, which is the negative electrode, and is released as hydrogen from its surface in the next reaction. 2H+ +2e- →H2 At this time, the copper plating film 5 is
When a constant current of 0.1 to 10 mA/cm2 is passed between the electrode 7 and the positive electrode 7, the CO2 dissolved in the electrolytic solution 9 is reduced on the copper plating film 5 to generate methane, methanol, ethane, etc. . That is, the copper plating film 5 acts as a proton source supply electrode, and the reaction in the above equation continues to proceed as long as a DC voltage is applied. The complexity of replacement etc. is eliminated. [0009] In the above embodiment, copper was used as the metal material of the porous catalyst electrode 5 for the CO2 electrolytic reduction reaction, but when producing aldehydes from CO2, for example, metals such as indium, tin, lead, etc. can be used. Furthermore, the metal material used for the positive electrode 4 is not limited to platinum, and other platinum group elements such as palladium may be used. Effects of the Invention As described above, in the present invention, a predetermined positive electrode and a negative electrode are formed on both sides of a proton-conductive solid electrolyte to form a negative electrode, so that hydrogen ions generated by decomposition at the positive electrode are is generated from the negative electrode through the proton-conductive solid electrolyte, and this continues to function as a proton source for the CO2 electrolytic reduction reaction. Therefore, an efficient CO2 reduction reaction can be achieved without requiring complicated electrode conversion as in the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の一実施例による電解装置の構成を示
す断面図である。
FIG. 1 is a sectional view showing the configuration of an electrolysis device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1  電解槽 2  負電極 3  プロトン導電性固体電解質 4  正極としての白金めっき膜 5  負極としての銅めっき膜 6  直流電源 7  正電極 8  直流電源 9  電解液 1 Electrolytic cell 2 Negative electrode 3. Proton conductive solid electrolyte 4 Platinum plating film as positive electrode 5 Copper plating film as negative electrode 6 DC power supply 7 Positive electrode 8 DC power supply 9 Electrolyte

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  プロトン導電性固体電解質の片面に多
孔性白金族電極からなる正極を他面に二酸化炭素(以下
CO2 )電解還元反応の多孔性触媒金属電極からなる
負極をそれぞれ形成した負電極と、この負電極の対極と
なる正電極とを備え、CO2 溶液中でCO2 電解還
元反応を行わしめる電解装置。
Claim 1: A negative electrode comprising a positive electrode made of a porous platinum group electrode on one side of a proton-conductive solid electrolyte, and a negative electrode made of a porous catalytic metal electrode for carbon dioxide (hereinafter CO2) electrolytic reduction reaction on the other side. and a positive electrode serving as a counter electrode to the negative electrode, and an electrolytic device for carrying out a CO2 electrolytic reduction reaction in a CO2 solution.
JP3065993A 1991-03-29 1991-03-29 Electrolytic device Pending JPH04314881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3065993A JPH04314881A (en) 1991-03-29 1991-03-29 Electrolytic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3065993A JPH04314881A (en) 1991-03-29 1991-03-29 Electrolytic device

Publications (1)

Publication Number Publication Date
JPH04314881A true JPH04314881A (en) 1992-11-06

Family

ID=13303046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3065993A Pending JPH04314881A (en) 1991-03-29 1991-03-29 Electrolytic device

Country Status (1)

Country Link
JP (1) JPH04314881A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010540437A (en) * 2007-09-20 2010-12-24 カテレクトリック・コーポレイション Method and apparatus for synthesizing useful substances
JP2012055868A (en) * 2010-09-13 2012-03-22 Furukawa Electric Co Ltd:The Electrode for cathode, and method of manufacturing the same
WO2012077199A1 (en) * 2010-12-08 2012-06-14 トヨタ自動車株式会社 Mixed gas production device and mixed gas production system
JP2012112001A (en) * 2010-11-25 2012-06-14 Furukawa Electric Co Ltd:The Electrolytic cell, electrolytic apparatus, and method for producing hydrocarbon
US8511064B2 (en) 2003-04-25 2013-08-20 Catelectric Corp. Methods and apparatus for controlling catalytic processes, including catalyst regeneration and soot elimination
JP2018519418A (en) * 2015-05-22 2018-07-19 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Electrolytic system with proton donor unit for electrochemical effective utilization of carbon dioxide and reduction method
US10494726B2 (en) 2015-09-11 2019-12-03 Kabushiki Kaisha Toshiba Electrolytic device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8511064B2 (en) 2003-04-25 2013-08-20 Catelectric Corp. Methods and apparatus for controlling catalytic processes, including catalyst regeneration and soot elimination
JP2010540437A (en) * 2007-09-20 2010-12-24 カテレクトリック・コーポレイション Method and apparatus for synthesizing useful substances
JP2012055868A (en) * 2010-09-13 2012-03-22 Furukawa Electric Co Ltd:The Electrode for cathode, and method of manufacturing the same
JP2012112001A (en) * 2010-11-25 2012-06-14 Furukawa Electric Co Ltd:The Electrolytic cell, electrolytic apparatus, and method for producing hydrocarbon
WO2012077199A1 (en) * 2010-12-08 2012-06-14 トヨタ自動車株式会社 Mixed gas production device and mixed gas production system
JP2018519418A (en) * 2015-05-22 2018-07-19 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Electrolytic system with proton donor unit for electrochemical effective utilization of carbon dioxide and reduction method
US10494726B2 (en) 2015-09-11 2019-12-03 Kabushiki Kaisha Toshiba Electrolytic device

Similar Documents

Publication Publication Date Title
US9062382B2 (en) Electrolytic cells and methods for the production of ammonia and hydrogen
US4311569A (en) Device for evolution of oxygen with ternary electrocatalysts containing valve metals
US4528083A (en) Device for evolution of oxygen with ternary electrocatalysts containing valve metals
JP2525553B2 (en) Electrodialysis tank and electrodialysis method
US4707229A (en) Method for evolution of oxygen with ternary electrocatalysts containing valve metals
US4457824A (en) Method and device for evolution of oxygen with ternary electrocatalysts containing valve metals
KR101451630B1 (en) Method for reducing carbon dioxide and reductor of carbon dioxide using the same
JPH03111586A (en) Electrolytic bath for reduction of carbon dioxide
JP2010144203A (en) Cathode for hydrogen peroxide production
US7550072B2 (en) Method of producing electrolytic hydrogen using rare element-deposit electrode
Rocha et al. Discriminating between the effect of pulse width and duty cycle on the hydrogen generation performance of 3-D electrodes during pulsed water electrolysis
JPH04314881A (en) Electrolytic device
JP2007046130A (en) Electrolytic hydrogen production system, and method for producing the same
CN114402095B (en) Cross-flow water electrolysis
JPH07258877A (en) Electrolytic reduction method of gas
JP4601647B2 (en) Hydrogen generator and fuel cell system using the same
JPH01205088A (en) Method for electrolytically reducing carbon dioxide
JP6200475B2 (en) System and method for electrochemical reduction of carbon dioxide
JPH04311586A (en) Device for electrolytically reducing carbon dioxide
JP6991893B2 (en) Carbon dioxide reduction method and carbon dioxide reduction device
Grigor’ev et al. Electrolyzers with solid polymer electrolyte for getting special-purity gases
JPH0693485A (en) Reduction method for carbon dioxide
CN111206265B (en) Air-water circulating system and multifunctional water electrolysis device thereof
Auer An introduction to electrochemical energy conversion-From basic principles to where we stand
JPH0244908B2 (en)