JP2010144203A - Cathode for hydrogen peroxide production - Google Patents

Cathode for hydrogen peroxide production Download PDF

Info

Publication number
JP2010144203A
JP2010144203A JP2008321340A JP2008321340A JP2010144203A JP 2010144203 A JP2010144203 A JP 2010144203A JP 2008321340 A JP2008321340 A JP 2008321340A JP 2008321340 A JP2008321340 A JP 2008321340A JP 2010144203 A JP2010144203 A JP 2010144203A
Authority
JP
Japan
Prior art keywords
cathode
hydrogen peroxide
anode
electrode
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008321340A
Other languages
Japanese (ja)
Other versions
JP5470833B2 (en
Inventor
Masao Someya
昌男 染谷
Daiko Takasuka
大晃 高須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2008321340A priority Critical patent/JP5470833B2/en
Publication of JP2010144203A publication Critical patent/JP2010144203A/en
Application granted granted Critical
Publication of JP5470833B2 publication Critical patent/JP5470833B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for producing hydrogen peroxide with high efficiency even by the use of an acidic electrolyte in the electrode used for electrochemical production of hydrogen peroxide. <P>SOLUTION: A cathode is used for the production of hydrogen peroxide by reducing oxygen on the electrode and is obtained by supporting a conductive carbon oxide obtained by oxidizing a conductive carbon on a conductive base material or the conductive carbon oxide obtained by molding a conductive carbon oxide containing a binder. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電気化学的な過酸化水素の製造に用いるためのカソードに関するものである。   The present invention relates to a cathode for use in the production of electrochemical hydrogen peroxide.

工業的な過酸化水素の製造方法としては、アルキルアントラキノンを用いた自動酸化法が用いられている。ただし、大量の有機溶媒の添加を必要とし、また、多くの副生物や触媒の劣化が生じるので、さまざまな分離工程や再生工程を必要とする等の不利な点がある。一方、酸素の還元を電気化学的に行うことによって過酸化水素を製造する方法も種々検討されている(特許文献1参照)。   As an industrial method for producing hydrogen peroxide, an auto-oxidation method using alkylanthraquinone is used. However, since a large amount of organic solvent needs to be added and many by-products and catalysts are deteriorated, there are disadvantages such as requiring various separation steps and regeneration steps. On the other hand, various methods for producing hydrogen peroxide by electrochemically reducing oxygen have been studied (see Patent Document 1).

電気化学的方法は、簡単で安全な装置で過酸化水素水をオンサイト製造できる利点があるため、主に製紙メーカーなどで多くの検討がなされてきたが以下の問題がある。1)アルカリ性電解液を用い、両極の隔膜にカチオン交換膜を用いると、高電流効率で過酸化水素が得られるが、理論的にアルカリ濃度の高い過酸化水素水しか得られず用途が限られる。2)酸性電解液を用いると電流効率が低く、これまでに種々の電極が検討されているが電流効率は60%以下である(特許文献2、5参照)。   The electrochemical method has an advantage that hydrogen peroxide solution can be produced on-site with a simple and safe apparatus. Therefore, many studies have been made mainly by paper makers, but there are the following problems. 1) When an alkaline electrolyte is used and a cation exchange membrane is used for the bipolar membrane, hydrogen peroxide can be obtained with high current efficiency, but theoretically, only hydrogen peroxide water with a high alkali concentration can be obtained, and its application is limited. . 2) When an acidic electrolyte is used, the current efficiency is low, and various electrodes have been studied so far, but the current efficiency is 60% or less (see Patent Documents 2 and 5).

酸素の還元を電気化学的に行うことによって過酸化水素を製造する方法において、アルカリ性電解液を用い、隔膜としてカチオン交換膜を用いると、カソード上で次式の反応が起こり、過酸化水素のアルカリ水溶液が高効率で生成する。
O + HO + 2Na+ 2e → NaOOH + NaOH (E−0.08V)
しかし、生成液には過酸化水素に対し2当量のアルカリが混入するため、アルカリ濃度の高い過酸化水素水溶液となり用途が限られる。
一方、酸性の電解液を用いると、次式の反応が起こり、副生物の増減なしで過酸化水素の酸性水溶液が得られる。
+ 2H + 2e → H(E+0.69V)
ただし、副反応として、次式に示す水への還元反応や分解反応も同時に起こりやすいため、一般的に電流効率が低くなるといわれている。
+ 4H + 4e → 2HO (E+1.23V)
+ 2H + 2e→ 2HO (E0 +1.77V)
2H → 2HO + O
In the method of producing hydrogen peroxide by electrochemically reducing oxygen, when an alkaline electrolyte is used and a cation exchange membrane is used as a diaphragm, the following reaction occurs on the cathode, and the hydrogen peroxide An aqueous solution is produced with high efficiency.
O 2 + H 2 O + 2Na + + 2e - → NaOOH + NaOH (E 0 -0.08V)
However, since 2 equivalents of alkali are mixed in the product liquid with respect to hydrogen peroxide, the aqueous solution has a high alkali concentration and its application is limited.
On the other hand, when an acidic electrolytic solution is used, a reaction of the following formula occurs, and an acidic aqueous solution of hydrogen peroxide is obtained without increasing or decreasing by-products.
O 2 + 2H + 2e → H 2 O 2 (E 0 +0.69 V)
However, it is generally said that the current efficiency is lowered because a side reaction such as a reduction reaction to water and a decomposition reaction are likely to occur simultaneously.
O 2 + 4H + + 4e → 2H 2 O (E 0 + 1.23V)
H 2 O 2 + 2H + + 2e → 2H 2 O (E 0 +1.77 V)
2H 2 O 2 → 2H 2 O + O 2

また、燃料電池のシステムを利用して水素と酸素から過酸化水素を製造する方法(非特許文献1参照)が提案されている。これは、カチオン交換膜を隔膜とし、アノード側は白金黒を、カソード側は金メッシュもしくはグラファイトを触媒電極とし、アノード室に水素ガス、塩酸水溶液が導入されたカソード室に酸素ガスを吹き込むことによって過酸化水素を製造するものである。   In addition, a method for producing hydrogen peroxide from hydrogen and oxygen using a fuel cell system has been proposed (see Non-Patent Document 1). This is because the cation exchange membrane is a diaphragm, the anode side is platinum black, the cathode side is gold mesh or graphite as the catalyst electrode, and oxygen gas is blown into the cathode chamber into which hydrogen gas and hydrochloric acid aqueous solution are introduced into the anode chamber. It produces hydrogen peroxide.

さらに、過酸化水素を高濃度で効率よく生成する方法として、アノードの内側とカソードの内側の間に形成された中間室、アノードの外側にあるアノード室、及びカソードの外側にあるカソード室を有する三槽構造からなり、さらにその中間室がアニオン交換膜によってカソード側中間室とアノード側中間室とに仕切られており、このカソード側中間室とアノード側中間室に電解質水溶液が導入されている装置を用いて、アノード室に水素、カソード室に酸素を供給して、カソード側中間室に過酸化水素等を発生させる方法が提案されている(特許文献3〜5参照)。これらの方法では、アルカリ電解液の使用により、100mA/cm以上と高電流密度で、過酸化水素の蓄積濃度が最大8.5重量%と飛躍的に反応性が向上している。しかしながら、アルカリ電解液では高アルカリ濃度の過酸化水素であり、酸性電解液では電流効率が低い。 Furthermore, as a method for efficiently generating hydrogen peroxide at a high concentration, an intermediate chamber formed between the inside of the anode and the inside of the cathode, an anode chamber outside the anode, and a cathode chamber outside the cathode are provided. An apparatus that has a three-tank structure, and that the intermediate chamber is further divided into a cathode-side intermediate chamber and an anode-side intermediate chamber by an anion exchange membrane, and an aqueous electrolyte solution is introduced into the cathode-side intermediate chamber and the anode-side intermediate chamber Has been proposed in which hydrogen is supplied to the anode chamber and oxygen is supplied to the cathode chamber to generate hydrogen peroxide or the like in the cathode-side intermediate chamber (see Patent Documents 3 to 5). In these methods, the use of an alkaline electrolyte dramatically improves the reactivity at a high current density of 100 mA / cm 2 or more and a maximum hydrogen peroxide accumulation concentration of 8.5% by weight. However, alkaline electrolyte has a high alkali concentration of hydrogen peroxide, and acidic electrolyte has low current efficiency.

米国特許第4,431,494号US Pat. No. 4,431,494 特開2007−162033号公報JP 2007-162033 A 特開2001−236968号公報JP 2001-236968 A 特開2005−76043号公報JP-A-2005-76043 特開2005−281057号公報JP 2005-281577 A Electrochimica Acta,Vol.35,No.2,319,1990Electrochimica Acta, Vol. 35, no. 2,319,1990

従来のカソード上で酸素を還元することにより電気化学的に過酸化水素を製造するためのカソードでは、電解質にアルカリ性電解液を用いる場合には、効率良く過酸化水素を生成可能であるのに対して、酸性電解液を用いる場合には反応速度の低下および電流効率が低いという問題があった。本発明の目的は、過酸化水素製造用のカソードにおいて、アルカリ性電解液のみならず、酸性電解液でも効率良く過酸化水素を生成することができるカソードを提供することである。   In a cathode for producing hydrogen peroxide electrochemically by reducing oxygen on a conventional cathode, hydrogen peroxide can be generated efficiently when an alkaline electrolyte is used as the electrolyte. In the case of using an acidic electrolyte, there are problems that the reaction rate is lowered and the current efficiency is low. An object of the present invention is to provide a cathode capable of efficiently producing hydrogen peroxide not only with an alkaline electrolyte but also with an acidic electrolyte in a cathode for producing hydrogen peroxide.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、カソードに導電性炭素酸化物を用いることにより、酸性電解液において効率良く過酸化水素を製造できること、アルカリ性電解液においても過酸化水素の生成能力が向上することを見出した。すなわち、本発明は、電極上で酸素を還元して過酸化水素を製造するためのカソードであって、導電性炭素酸化物を用いることを特徴とするカソードに関するものである。   As a result of intensive studies to solve the above problems, the present inventors have been able to efficiently produce hydrogen peroxide in an acidic electrolyte by using a conductive carbon oxide for the cathode, and in an alkaline electrolyte as well. It has been found that the hydrogen peroxide generation ability is improved. That is, the present invention relates to a cathode for producing hydrogen peroxide by reducing oxygen on an electrode, and using a conductive carbon oxide.

本発明の過酸化水素製造用のカソードは、アルカリ性電解液においては従来のグラファイトを用いた電極よりも過酸化水素の生成能力が向上し、かつ、酸性電解液においては反応速度および反応効率が大きく向上し高効率で過酸化水素を製造できる。さらに、酸性電解液が適用できるために、アノードとカチオン交換膜を貼り合せ使用することによる装置構造の簡略化が可能となり、これにより電極間距離が短縮され反応速度を向上させることができる。また、比較的薄い酸性液中に過酸化水素を生成できるため、精製が容易であり、酸化反応剤用途への応用も期待できる。   The cathode for producing hydrogen peroxide according to the present invention has an ability to generate hydrogen peroxide in an alkaline electrolyte as compared with a conventional electrode using graphite, and has a higher reaction rate and efficiency in an acidic electrolyte. Improve and produce hydrogen peroxide with high efficiency. Furthermore, since an acidic electrolyte solution can be applied, it is possible to simplify the device structure by bonding the anode and the cation exchange membrane, thereby shortening the distance between the electrodes and improving the reaction rate. Further, since hydrogen peroxide can be generated in a relatively thin acidic solution, purification is easy, and application to oxidation reagent applications can also be expected.

以下に本発明を詳しく説明する。
本発明のカソードは、カソード上で酸素を還元することによって過酸化水素を電気化学的に直接製造するための電極である。本発明のカソードは、電解合成による過酸化水素製造装置や燃料電池システムによる過酸化水素製造装置などの電気化学的な過酸化水素製造装置に利用できる。
本発明のカソードには、導電性炭素酸化物を用いた電極が用いられる。導電性炭素酸化物とは、導電性炭素を酸化処理したものである。
The present invention is described in detail below.
The cathode of the present invention is an electrode for directly producing hydrogen peroxide electrochemically by reducing oxygen on the cathode. The cathode of the present invention can be used in an electrochemical hydrogen peroxide production apparatus such as a hydrogen peroxide production apparatus by electrolytic synthesis or a hydrogen peroxide production apparatus by a fuel cell system.
An electrode using a conductive carbon oxide is used for the cathode of the present invention. The conductive carbon oxide is obtained by oxidizing conductive carbon.

原料となる導電性炭素は、電気伝導性を有する種々の炭素材料が使用できるが、反応速度向上のためには、水溶液との接触面積を増やし、さらにガス拡散を妨げないように、微粒子状の導電性炭素が好ましい。このような導電性炭素としては、活性炭、グラファイト、カーボンブラック、アセチレンブラック、カーボンファイバー、気相成長炭素繊維、カーボンナノチューブ、フラーレン、ケッチェンブラックから選ばれる1種を単独で、または2種以上を組み合わせて使用することができる。   As the conductive carbon used as a raw material, various carbon materials having electrical conductivity can be used. However, in order to improve the reaction rate, the contact area with the aqueous solution is increased, and further, in order to prevent gas diffusion, fine particles are used. Conductive carbon is preferred. As such conductive carbon, one kind selected from activated carbon, graphite, carbon black, acetylene black, carbon fiber, vapor grown carbon fiber, carbon nanotube, fullerene, and ketjen black is used alone, or two or more kinds are used. Can be used in combination.

上述の導電性炭素を酸化処理することにより、導電性炭素酸化物が得られる。酸化処理方法としては、空気酸化、硫酸酸化、硝酸酸化、過マンガン酸酸化、陽極酸化等が挙げられる。例えば、硝酸酸化を行う場合には、濃硝酸中に導電性炭素を添加し攪拌することで導電性炭素を酸化させる。処理した導電性炭素酸化物は、従来公知の方法により水洗、ろ過、乾燥を行い電極に供する導電性炭素酸化物となる。
前記処理によって導電性炭素の少なくとも一部が酸化され、例えばカルボキシル基、水酸基、ラクトン環などを有した構造になると考えられる。
Conductive carbon oxide is obtained by oxidizing the conductive carbon described above. Examples of the oxidation treatment method include air oxidation, sulfuric acid oxidation, nitric acid oxidation, permanganic acid oxidation, and anodic oxidation. For example, when nitric acid oxidation is performed, conductive carbon is oxidized by adding conductive carbon to concentrated nitric acid and stirring. The treated conductive carbon oxide is washed with water, filtered and dried by a conventionally known method to become a conductive carbon oxide used for the electrode.
It is considered that at least a part of the conductive carbon is oxidized by the treatment, and a structure having, for example, a carboxyl group, a hydroxyl group, a lactone ring, or the like is obtained.

前記の導電性炭素酸化物を用いたカソードが本発明に用いられる電極である。ただし、電極として用いるためには、電極としての形状と導電性が必要である。電極形状の導電性炭素を酸化して得た導電性炭素酸化物であれば問題ないが、粒子状の導電性炭素を用いた場合は、電極形状に加工する必要がある。   The cathode using the conductive carbon oxide is an electrode used in the present invention. However, in order to use as an electrode, the shape and conductivity as an electrode are required. There is no problem as long as the conductive carbon oxide is obtained by oxidizing electrode-shaped conductive carbon, but when particulate conductive carbon is used, it needs to be processed into an electrode shape.

電極形状に加工する方法として、基体上に導電性炭素酸化物粒子を担持する方法がある。前記基体は電極で用いるために導電性の基体であることが好ましい。また、導電性基体の片面に導電性炭素酸化物を塗布し、もう一方の面には導電性炭素酸化物を塗布せずに、導電性炭素酸化物塗布面に導電性基体を介して酸素を供給するための酸素供給面とすることで、効率よく酸素を供給できる電極となる。この場合の導電性基体としては多孔性の導電性基体を用いることが好ましい。導電性があり多孔性である基体としては、カーボンペーパーやカーボンクロス等が好ましく用いられる。このように酸素供給部と反応部とに分ける場合、反応部は電解液に浸されるため、電極面で電解液を隔離する必要がある。そこで、通常は撥水処理された基体を用いる。カーボンペーパーやカーボンクロスの撥水処理は、一般的にテフロン(登録商標)微粒子を焼結することにより行われる。
任意の形状の導電性基体上に、導電性炭素酸化物を塗布する。導電性炭素酸化物の基体への接着には、接着剤を用いて行う方法がある。例えば、プロトン伝導性の高いナフィオン溶液と導電性炭素酸化物粒子を懸濁させ、上記基体上に塗布し、乾燥、焼結させることにより、接着することができる。これにより、電極形状に加工されたカソードが完成する。
As a method of processing into an electrode shape, there is a method of supporting conductive carbon oxide particles on a substrate. The substrate is preferably a conductive substrate for use in electrodes. Also, apply conductive carbon oxide to one side of the conductive substrate, and apply oxygen to the coated surface of the conductive carbon oxide without applying conductive carbon oxide to the other side. By providing an oxygen supply surface for supply, an electrode capable of efficiently supplying oxygen is obtained. In this case, a porous conductive substrate is preferably used as the conductive substrate. As the conductive and porous substrate, carbon paper, carbon cloth or the like is preferably used. Thus, when dividing into an oxygen supply part and a reaction part, since a reaction part is immersed in electrolyte solution, it is necessary to isolate electrolyte solution in an electrode surface. Therefore, a substrate that has been subjected to a water repellent treatment is usually used. Water repellent treatment of carbon paper or carbon cloth is generally performed by sintering Teflon (registered trademark) fine particles.
A conductive carbon oxide is applied on a conductive substrate having an arbitrary shape. For bonding the conductive carbon oxide to the substrate, there is a method of using an adhesive. For example, a Nafion solution having high proton conductivity and conductive carbon oxide particles can be suspended, applied onto the substrate, dried, and sintered to be bonded. Thereby, the cathode processed into the electrode shape is completed.

電極形状に加工する別の方法として、導電性炭素酸化物粒子にバインダーを含むように混合して成形する方法がある。導電性炭素酸化物の導電性が小さい場合は、導電性炭素粒子を添加することもできる。バインダーとしては、導電性炭素酸化物を成形し電極としての強度を保てるものならいずれでも良い。ただし、酸素供給部と反応部を分ける場合、反応部は電解液に浸されるため、当電極で電解液を隔離する必要がある。この場合、テフロン(登録商標)粒子等の撥水性のバインダーが用いられる。   As another method for processing into an electrode shape, there is a method in which conductive carbon oxide particles are mixed and molded so as to contain a binder. When the conductivity of the conductive carbon oxide is small, conductive carbon particles can also be added. Any binder may be used as long as it can form a conductive carbon oxide and maintain the strength as an electrode. However, when the oxygen supply unit and the reaction unit are separated, since the reaction unit is immersed in the electrolyte solution, it is necessary to isolate the electrolyte solution with the electrode. In this case, a water-repellent binder such as Teflon (registered trademark) particles is used.

上述のグラファイト酸化物電極をカソードとし、対極にアノード、両電極間に電解質を備えることにより、過酸化水素製造装置となる。本発明の電解質は電解槽に電解液を充填した液体電解質であるが、ナフィオン(登録商標)のような固体電解質を用いてもよい。液体電解質の使用に際しては、通常は電解槽中に隔膜としてイオン交換膜を設置する。これにより、カソードで生成した過酸化水素が、アノードで分解してしまうことを防ぐことができる。液体電解質の液性はアルカリ性または酸性のどちらでも過酸化水素が生成するが、いずれにしてもイオン交換膜としては、カチオン交換膜が好ましい。アニオン交換膜を使用した場合、アルカリ性においては過酸化水素がアニオン交換膜を通過しやすくなるため、生成効率が悪化する。一方、酸性においてはカソード電解液のプロトンが減少してしまうためカソード電解液への酸の供給が必要となり、低濃度の過酸化水素しか生成しえない。ここで用いるカチオン交換膜については、特に限定はされないが、過酸化水素のような酸化剤に対して耐久性のあるフッ素系の樹脂が好ましく用いられる。   By using the above graphite oxide electrode as a cathode, an anode as a counter electrode, and an electrolyte between both electrodes, a hydrogen peroxide production apparatus is obtained. The electrolyte of the present invention is a liquid electrolyte in which an electrolytic cell is filled with an electrolytic solution, but a solid electrolyte such as Nafion (registered trademark) may be used. When using a liquid electrolyte, an ion exchange membrane is usually installed as a diaphragm in an electrolytic cell. Thereby, it is possible to prevent hydrogen peroxide generated at the cathode from being decomposed at the anode. Hydrogen peroxide is generated regardless of whether the liquid electrolyte is alkaline or acidic. In any case, a cation exchange membrane is preferred as the ion exchange membrane. When an anion exchange membrane is used, hydrogen peroxide tends to pass through the anion exchange membrane in alkalinity, so that the generation efficiency is deteriorated. On the other hand, in the case of acidity, protons in the cathode electrolyte are reduced, so that it is necessary to supply an acid to the cathode electrolyte, and only low concentration hydrogen peroxide can be generated. The cation exchange membrane used here is not particularly limited, but a fluorine-based resin that is durable against an oxidizing agent such as hydrogen peroxide is preferably used.

本発明のカソードとアノードおよび前記電極間に電解質を備えた装置により過酸化水素を製造する際に、カソードへの電子の供給は、電解反応のように外部電圧を用いることができる。また、燃料電池システムのように、アノードでは酸素が過酸化水素に還元される電極電位より低い電位で酸化反応を行うことにより、電子を供給することもできる。例として、アノードでの水素の酸化反応を示す。
アルカリ性:H+ 2OH→ 2HO + 2e(E−0.828V)
酸性 :H → 2H + 2e (E 0.0V)
When hydrogen peroxide is produced by an apparatus having an electrolyte between the cathode and the anode of the present invention and the electrode, an external voltage can be used to supply electrons to the cathode as in an electrolytic reaction. Further, as in the fuel cell system, electrons can be supplied by performing an oxidation reaction at a potential lower than the electrode potential at which oxygen is reduced to hydrogen peroxide at the anode. As an example, the oxidation reaction of hydrogen at the anode is shown.
Alkalinity: H 2 + 2OH → 2H 2 O + 2e (E 0 −0.828V)
Acidity: H 2 → 2H + + 2e (E 0 0.0V)

対極に用いるアノードは、カソードとアノード間に外部電圧を印加する方法と燃料電池システムを利用する方法とで必要構造が異なる。外部電圧をかける方法の場合、アノードでは通常電解液の電気分解が行われ、電子が生じる。カソードとアノード間の電圧の印加は、例えば直流電源で両極に電圧を印加する方法や、図4に示すようなポテンショスタットとAg/AgCl等の参照電極を用いる方法が挙げられるが、これに限定されるものではない。使用できるアノードとしては種々あるが、耐久性の点から白金電極や炭素電極が挙げられる。また、必要電圧を下げるために、酸素発生過電圧の低い電極も鋭意検討がなされている。   The required structure of the anode used for the counter electrode differs between a method of applying an external voltage between the cathode and the anode and a method of using the fuel cell system. In the method of applying an external voltage, the electrolyte is usually electrolyzed at the anode to generate electrons. Examples of the application of the voltage between the cathode and the anode include a method of applying a voltage to both electrodes with a DC power supply, and a method of using a potentiostat and a reference electrode such as Ag / AgCl as shown in FIG. Is not to be done. There are various kinds of anodes that can be used, and platinum electrodes and carbon electrodes are mentioned from the viewpoint of durability. In addition, in order to lower the required voltage, an electrode having a low oxygen generation overvoltage has been intensively studied.

燃料電池システムを利用する場合、アノードでは酸素が過酸化水素に還元される電極電位より低い電位で酸化反応を行う必要がある。アノードでの原料の酸化により、プロトンまたはカチオンと電子が生成する。このような反応が可能な原料としては、水素、メタノール、エタノール、ジメチルエーテルが挙げられる。ヒドラジン、ボロハイドライド類、アルミニウム等の卑金属類等でも可能であるが、通常過酸化水素より高価である。現状、実用的な原料としては水素またはメタノールが好ましい。両者のアノードにおける反応を以下に示す。
→ 2H + 2e(E0.0V)
CHOH + HO → 6H + 6e+ CO(E+0.02V)
When using a fuel cell system, it is necessary to perform an oxidation reaction at a potential lower than the electrode potential at which oxygen is reduced to hydrogen peroxide at the anode. Oxidation of the raw material at the anode produces protons or cations and electrons. Examples of raw materials capable of such a reaction include hydrogen, methanol, ethanol, and dimethyl ether. Although hydrazine, borohydrides, base metals such as aluminum and the like are possible, they are usually more expensive than hydrogen peroxide. At present, hydrogen or methanol is preferred as a practical raw material. The reaction at both anodes is shown below.
H 2 → 2H + + 2e (E 0 0.0V)
CH 3 OH + H 2 O → 6H + + 6e + CO 2 (E 0 + 0.02V)

ここで用いられる電極触媒としては、水素の場合は白金、メタノールの場合は白金・ルテニウムを含む単体あるいは合金が一般に用いられる。これらの触媒は、通常、炭素担体上に担持される。また、反応部である電解液側と原料部を隔離するのが好ましいため、カーボンペーパーの片面に触媒を塗布した電極が一般に用いられる。   As the electrode catalyst used here, platinum or ruthenium containing platinum or ruthenium is generally used in the case of hydrogen, or in the case of methanol. These catalysts are usually supported on a carbon support. Moreover, since it is preferable to isolate the raw material part from the electrolyte solution side which is a reaction part, the electrode which apply | coated the catalyst to the single side | surface of carbon paper is generally used.

本発明で用いるアルカリ性の電解質としては、電解液として水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどの水酸化物水溶液、炭酸ナトリウム、炭酸カリウムなどの炭酸塩水溶液、塩化アンモニウム、硫酸アンモニウムなどのアンモニウム塩水溶液およびこれらの混合液を電解槽に充填したものが挙げられるが、これらに限定されるものではない。電気伝導度の優れた電解液として水酸化物水溶液が好ましく用いられる。酸性の電解質としては、電解液として塩酸、硫酸、硝酸およびこれらの混合液を電解槽に充填したものが挙げられるが、これらに限定されるものではない。電気化学的に安定な電解液として硫酸が好ましく用いられる。   Examples of the alkaline electrolyte used in the present invention include an aqueous solution of hydroxide such as lithium hydroxide, sodium hydroxide, and potassium hydroxide, an aqueous solution of carbonate such as sodium carbonate and potassium carbonate, and an ammonium salt such as ammonium chloride and ammonium sulfate. Although what filled the electrolytic vessel with aqueous solution and these liquid mixture is mentioned, It is not limited to these. A hydroxide aqueous solution is preferably used as the electrolytic solution having excellent electrical conductivity. Examples of the acidic electrolyte include, but are not limited to, an electrolytic solution in which an electrolytic cell is filled with hydrochloric acid, sulfuric acid, nitric acid and a mixture thereof. Sulfuric acid is preferably used as the electrochemically stable electrolyte.

以下に実施例をあげて本発明の方法を更に詳しく説明するが、本発明はこれらの実施例によって何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

実施例1
(グラファイトの酸化)
ケッチェンブラック(ライオン社EC−600JD)10gに濃硝酸383gを添加し、48℃で24時間攪拌した。冷却後、2.5Lのイオン交換水で6回洗浄およびろ過を行った。得られた粒子を減圧乾燥し、ケッチェンブラック酸化物10gを得た。
(カソードの作製)
丸底フラスコに電極触媒として上記ケッチェンブラック酸化物0.2gを秤量し、フラスコ内をアルゴンガスで置換した。ここに、イソプロパノール1.5g、5%ナフィオン溶液1.0gを添加し、攪拌と超音波洗浄機による分散を2度行い、ケッチェンブラック酸化物分散液を得た。100mlのビーカーの底に撥水処理したカーボンペーパーを置き、これに上記ケッチェンブラック酸化物分散液を入れ、東レ社製カーボンペーパー(TGP−H−060)上で室温乾燥後、80℃でさらに10分間乾燥、続いて、アルゴン気流下130℃で1時間加熱しケッチェンブラック酸化物電極を得た。カーボンペーパーの重量変化量から、塗膜物の量は0.9mg/cm2であった。
Example 1
(Oxidation of graphite)
Concentrated nitric acid 383 g was added to 10 g of ketjen black (Lion Corporation EC-600JD), and the mixture was stirred at 48 ° C. for 24 hours. After cooling, it was washed 6 times with 2.5 L of ion exchange water and filtered. The obtained particles were dried under reduced pressure to obtain 10 g of ketjen black oxide.
(Preparation of cathode)
In a round bottom flask, 0.2 g of the above ketjen black oxide was weighed as an electrode catalyst, and the inside of the flask was replaced with argon gas. To this, 1.5 g of isopropanol and 1.0 g of a 5% Nafion solution were added, and the mixture was stirred and dispersed twice by an ultrasonic cleaner to obtain a ketjen black oxide dispersion. Place a water repellent treated carbon paper on the bottom of a 100 ml beaker, put the ketjen black oxide dispersion into this, dry at room temperature on carbon paper (TGP-H-060) manufactured by Toray Industries, and then further at 80 ° C. It was dried for 10 minutes and then heated at 130 ° C. for 1 hour under an argon stream to obtain a ketjen black oxide electrode. From the amount of change in the weight of the carbon paper, the amount of the coating was 0.9 mg / cm 2 .

(アノードの作製)
丸底フラスコに電極触媒として50%白金/バルカン(エヌ・イーケムキャット社)0.5gを秤量し、フラスコ内をアルゴンガスで置換した。ここに、イソプロパノール2.0g、5%ナフィオン溶液1.0gを添加し、攪拌と超音波洗浄機による分散を2度行い、白金/バルカン分散液を得た。100mlのビーカーの底に撥水処理したカーボンペーパーを置き、これに上記白金/バルカン分散液を入れ、カーボンペーパー上で室温乾燥後、80℃でさらに10分間乾燥、続いて、アルゴン気流下130℃で1時間加熱し白金/バルカン電極を得た。カーボンペーパーの重量変化量から、塗膜物の量は0.65mg/cm2であった。
(Preparation of anode)
In a round bottom flask, 0.5 g of 50% platinum / Vulcan (N.E. Chemcat) was weighed as an electrode catalyst, and the inside of the flask was replaced with argon gas. To this, 2.0 g of isopropanol and 1.0 g of a 5% Nafion solution were added, and the mixture was stirred and dispersed twice with an ultrasonic cleaner to obtain a platinum / Vulcan dispersion. Place the water-repellent treated carbon paper on the bottom of a 100 ml beaker, put the platinum / Vulcan dispersion above onto this paper, dry at room temperature on the carbon paper, and then dry at 80 ° C. for another 10 minutes, followed by 130 ° C. under an argon stream. For 1 hour to obtain a platinum / Vulcan electrode. From the weight change amount of the carbon paper, the amount of the coated material was 0.65 mg / cm 2 .

(過酸化水素生成反応)
図1に示す反応セル(内径2.4cm)を用い、カソード室、集電板(図2参照。開口面積3.14cm、厚さ0.2mm)、カソード、カソード側中間室(厚さ5mm)、ナフィオン117膜(デュポン社)、アノード側中間室(厚さ5mm)、アノード、集電板(図2参照。開口面積3.14cm、厚さ0.2mm)、アノード室と積み重ね、外側から金具で押し付けた。なお、カソード室、カソード側中間室、アノード側中間室、アノード室はアクリル製、集電板はSUS板の金メッキである。続いて、カソード側中間室には2N水酸化ナトリウム水溶液20gをポンプで外部循環させ、また、アノード側中間室は2N水酸化ナトリウム水溶液を10g/時間の速度で流し続けた。次に、カソード室に酸素ガス、アノード室に水素ガスをそれぞれ30ml/分で流した。ここで、カソードとアノード間の電圧を測定したところ、0.888Vであった。続いて、アノードとカソードを無抵抗電流計(北斗電工社HM−104)を介して短絡したところ、平均812mAの電流値を観測した。反応セルの断面積を有効面積とすると、電流密度は、180mA/cmとなる。10分間反応を継続し、カソード液を全て捕集したところ、20.2gであった。当カソード液を過マンガン酸カリウム水溶液で滴定したところ、過酸化水素の濃度は0.41wt%であった。つまり、過酸化水素生成量は2.44mmolである。電流効率を以下の式で求めたところ、96%であった。
理論生成量(mmol)=平均電流値(mA)×時間(秒)/96500(C/mol)/2
電流効率(%)=過酸化水素生成量(mmol)/理論生成量(mmol)×100
(Hydrogen peroxide generation reaction)
Using the reaction cell (inner diameter 2.4 cm) shown in FIG. 1, a cathode chamber, a current collector (see FIG. 2 , opening area 3.14 cm 2 , thickness 0.2 mm), cathode, cathode side intermediate chamber (thickness 5 mm) ), Nafion 117 membrane (DuPont), anode-side intermediate chamber (thickness 5 mm), anode, current collector (see FIG. 2 , opening area 3.14 cm 2 , thickness 0.2 mm), stacked with anode chamber, outside Pressed with metal fittings. The cathode chamber, cathode-side intermediate chamber, anode-side intermediate chamber, and anode chamber are made of acrylic, and the current collector plate is gold-plated SUS plate. Subsequently, 20 g of a 2N sodium hydroxide aqueous solution was externally circulated in the cathode side intermediate chamber by a pump, and the 2N sodium hydroxide aqueous solution was continuously supplied to the anode side intermediate chamber at a rate of 10 g / hour. Next, oxygen gas was supplied to the cathode chamber and hydrogen gas was supplied to the anode chamber at 30 ml / min. Here, the voltage between the cathode and the anode was measured and found to be 0.888V. Subsequently, when the anode and the cathode were short-circuited via a non-resistance ammeter (Hokuto Denko HM-104), an average current value of 812 mA was observed. When the cross-sectional area of the reaction cell and the effective area, the current density becomes 180 mA / cm 2. The reaction was continued for 10 minutes and all the catholyte was collected and found to be 20.2 g. When the catholyte was titrated with an aqueous potassium permanganate solution, the hydrogen peroxide concentration was 0.41 wt%. That is, the amount of hydrogen peroxide produced is 2.44 mmol. The current efficiency was determined by the following formula and found to be 96%.
Theoretical production amount (mmol) = average current value (mA) × time (seconds) / 96500 (C / mol) / 2
Current efficiency (%) = hydrogen peroxide production (mmol) / theoretical production (mmol) × 100

実施例2
(カソードの作製)
実施例1と同様に行った。
(アノードの作製)
実施例1と同様に行った。
(過酸化水素生成反応)
実施例1と同様に行った。ただし、カソード室には空気圧縮機器を用いて空気を500ml/分で流した。平均722mAの電流値を観測した。電流密度は、160mA/cmとなる。つまり、酸素原料と比較して、89%の反応速度である。10分間反応を継続し、カソード液を全て捕集したところ、20.0gであった。当カソード液を過マンガン酸カリウム水溶液で滴定したところ、過酸化水素の濃度は0.38wt%であった。つまり、過酸化水素生成量は2.24mmolである。電流効率を実施例1と同様に求めたところ、99.6%であった。
次に、カソード液を、過酸化水素4.0wt%、水酸化ナトリウム9.4wt%の水溶液に変更した。その結果、電流値は628mAとなった。過水濃度0%の結果と比較して、77%の反応速度である。
Example 2
(Production of cathode)
The same operation as in Example 1 was performed.
(Production of anode)
The same operation as in Example 1 was performed.
(Hydrogen peroxide generation reaction)
The same operation as in Example 1 was performed. However, air was allowed to flow through the cathode chamber at 500 ml / min using an air compression device. An average current value of 722 mA was observed. The current density is 160 mA / cm 2 . That is, the reaction rate is 89% compared to the oxygen source. The reaction was continued for 10 minutes and all the catholyte was collected to find 20.0 g. When this catholyte was titrated with an aqueous potassium permanganate solution, the hydrogen peroxide concentration was 0.38 wt%. That is, the amount of hydrogen peroxide produced is 2.24 mmol. When the current efficiency was determined in the same manner as in Example 1, it was 99.6%.
Next, the catholyte was changed to an aqueous solution of 4.0 wt% hydrogen peroxide and 9.4 wt% sodium hydroxide. As a result, the current value was 628 mA. The reaction rate is 77% compared to the result of 0% overwater concentration.

実施例3
(カソードの作製)
実施例1と同様に行った。ただし、ケッチェンブラック酸化物は、濃硝酸中50℃で200時間酸化したものを用いケッチェンブラック酸化物電極を得た。
(アノードの作製)
実施例1と同様に行った。
(過酸化水素生成反応)
実施例1と同様に行った。ただし、カソードには上記のケッチェンブラック酸化物電極を用い、電解液には10%硫酸を用いた。電解液をセルに充填した後は、電解液の循環は行わなかった。水素と酸素を流通した後、カソードとアノード間の電圧を測定したところ、0.663Vであった。続いて、アノードとカソードを無抵抗電流計(北斗電工社HM−104)を介して短絡したところ、平均155mAの電流値を観測した。反応セルの断面積を有効面積とすると、電流密度は、34mA/cmとなる。15分間反応を継続し、カソード液を回収したところ、2.46gであった。当カソード液を過マンガン酸カリウム水溶液で滴定したところ、過酸化水素の濃度は0.79wt%であった。つまり、過酸化水素生成量は0.57mmolである。電流効率を実施例1と同様に求めたところ、79%であった。
Example 3
(Preparation of cathode)
The same operation as in Example 1 was performed. However, the ketjen black oxide was oxidized in concentrated nitric acid at 50 ° C. for 200 hours to obtain a ketjen black oxide electrode.
(Production of anode)
The same operation as in Example 1 was performed.
(Hydrogen peroxide generation reaction)
The same operation as in Example 1 was performed. However, the above ketjen black oxide electrode was used for the cathode, and 10% sulfuric acid was used for the electrolyte. After the electrolytic solution was filled in the cell, the electrolytic solution was not circulated. After flowing hydrogen and oxygen, the voltage between the cathode and the anode was measured and found to be 0.663V. Subsequently, when the anode and the cathode were short-circuited via a non-resistance ammeter (Hokuto Denko HM-104), an average current value of 155 mA was observed. Assuming that the cross-sectional area of the reaction cell is an effective area, the current density is 34 mA / cm 2 . The reaction was continued for 15 minutes, and the catholyte was recovered and found to be 2.46 g. When the catholyte was titrated with an aqueous potassium permanganate solution, the hydrogen peroxide concentration was 0.79 wt%. That is, the amount of hydrogen peroxide produced is 0.57 mmol. When the current efficiency was determined in the same manner as in Example 1, it was 79%.

実施例4
(カソードの作製)
実施例3と同様に行った。
(アノードの作製)
実施例1と同様に行った。
(過酸化水素生成反応)
図3に示す反応セルを用いた。すなわち、図1の装置のアノード側中間室のない装置構成である。なお、ナフィオン117膜とアノードは120℃の熱プレスであらかじめ密着した。電解液には10%硫酸を用い、電解液をセルに充填した後は、電解液の循環は行わなかった。そして水素と酸素を流通した。アノードとカソードを無抵抗電流計(北斗電工社HM−104)を介して短絡したところ、平均234mAの電流値を観測した。反応速度は実施例3に比較して151%であった。反応セルの断面積を有効面積とすると、電流密度は、52mA/cmとなる。10分間反応を継続し、カソード液を回収したところ、2.27gであった。当カソード液を過マンガン酸カリウム水溶液で滴定したところ、過酸化水素の濃度は0.80wt%であった。つまり、過酸化水素生成量は0.54mmolである。電流効率を実施例1と同様に求めたところ、78%であった。
Example 4
(Production of cathode)
The same operation as in Example 3 was performed.
(Preparation of anode)
The same operation as in Example 1 was performed.
(Hydrogen peroxide generation reaction)
The reaction cell shown in FIG. 3 was used. That is, the apparatus configuration without the anode-side intermediate chamber of the apparatus of FIG. The Nafion 117 membrane and the anode were adhered in advance by hot pressing at 120 ° C. 10% sulfuric acid was used as the electrolytic solution, and the electrolytic solution was not circulated after filling the cell with the electrolytic solution. Hydrogen and oxygen were circulated. When the anode and the cathode were short-circuited via a non-resistance ammeter (Hokuto Denko HM-104), an average current value of 234 mA was observed. The reaction rate was 151% compared to Example 3. When the cross-sectional area of the reaction cell is an effective area, the current density is 52 mA / cm 2 . The reaction was continued for 10 minutes, and the catholyte was recovered and found to be 2.27 g. When this catholyte was titrated with an aqueous potassium permanganate solution, the hydrogen peroxide concentration was 0.80 wt%. That is, the amount of hydrogen peroxide produced is 0.54 mmol. When the current efficiency was determined in the same manner as in Example 1, it was 78%.

実施例5
(カソードの作製)
実施例1と同様に行った。ただし、ケッチェンブラック酸化物は、濃硝酸中50℃で100時間酸化したものを用いケッチェンブラック酸化物電極を得た。
(アノードの作製)
丸底フラスコにカーボンブラック(東海カーボン社7100F)0.1gを秤量し、フラスコ内をアルゴンガスで置換した。ここに、イソプロパノール2.0g、5%ナフィオン溶液1.0gを添加し、攪拌と超音波洗浄機による分散を2度行いカーボンブラック分散液を得た。100mlのビーカーの底に撥水処理したカーボンペーパーを置き、これに上記カーボンブラック分散液を入れ、カーボンペーパー上で室温乾燥後、80℃でさらに10分間乾燥、続いて、アルゴン気流下130℃で1時間加熱しカーボンブラック電極を得た。カーボンペーパーの重量変化量から、塗膜物の量は0.30mg/cm2であった。
Example 5
(Production of cathode)
The same operation as in Example 1 was performed. However, the ketjen black oxide was oxidized in concentrated nitric acid at 50 ° C. for 100 hours to obtain a ketjen black oxide electrode.
(Preparation of anode)
In a round bottom flask, 0.1 g of carbon black (Tokai Carbon 7100F) was weighed, and the inside of the flask was replaced with argon gas. To this, 2.0 g of isopropanol and 1.0 g of 5% Nafion solution were added, and the mixture was stirred and dispersed twice by an ultrasonic cleaner to obtain a carbon black dispersion. Place the water-repellent treated carbon paper on the bottom of a 100 ml beaker, put the above carbon black dispersion on it, dry at room temperature on the carbon paper, then dry at 80 ° C for another 10 minutes, then at 130 ° C under argon stream A carbon black electrode was obtained by heating for 1 hour. From the amount of change in weight of the carbon paper, the amount of the coating was 0.30 mg / cm 2 .

(過酸化水素生成反応)
図4に示す反応セルを用いた。すなわち、図1の装置と同様のセル構成で、アノード側中間室に参照電極を設置し、両電極と参照電極はポテンショスタット(北斗電工社:HA−151A)に結線した。カソードには上記のケッチェンブラック酸化物電極を用い、アノードには上記のカーボンブラック電極を用いた。また、電解液には10%硫酸を用いた。電解液をセルに充填した後は、電解液の循環は行わなかった。ポテンショスタットを用いて、Ag/AgCl参照電極に対するアノード電位を+2.0Vとし、カソードとアノード間に電圧を印加したところ、平均157mAの電流値を観測した。反応セルの断面積を有効面積とすると、電流密度は、35mA/cmとなる。10分間反応を継続し、カソード液を回収したところ、2.44gであった。当カソード液を過マンガン酸カリウム水溶液で滴定したところ、過酸化水素の濃度は0.55wt%であった。つまり、過酸化水素生成量は0.39mmolである。電流効率を実施例1と同様に求めたところ、81%であった。
(Hydrogen peroxide generation reaction)
The reaction cell shown in FIG. 4 was used. That is, with the same cell configuration as the apparatus of FIG. 1, a reference electrode was installed in the anode-side intermediate chamber, and both electrodes and the reference electrode were connected to a potentiostat (Hokuto Denko: HA-151A). The above ketjen black oxide electrode was used for the cathode, and the above carbon black electrode was used for the anode. Further, 10% sulfuric acid was used as the electrolytic solution. After the electrolytic solution was filled in the cell, the electrolytic solution was not circulated. Using a potentiostat, the anode potential with respect to the Ag / AgCl reference electrode was set to +2.0 V, and when a voltage was applied between the cathode and the anode, an average current value of 157 mA was observed. When the cross-sectional area of the reaction cell is an effective area, the current density is 35 mA / cm 2 . The reaction was continued for 10 minutes, and the catholyte was recovered and found to be 2.44 g. When this catholyte was titrated with an aqueous potassium permanganate solution, the concentration of hydrogen peroxide was 0.55 wt%. That is, the amount of hydrogen peroxide produced is 0.39 mmol. When the current efficiency was determined in the same manner as in Example 1, it was 81%.

実施例6
(カソードの作製)
実施例1と同様に行った。ただし、電極触媒にはカーボンファイバー粉末(昭和電工社)を100℃で24時間、硝酸酸化したものを用い、カーボンファイバー酸化物電極を得た。
(アノードの作製)
実施例1と同様に行った。
(過酸化水素生成反応)
実施例3と同様に行った。ただし、カソードには上記のカーボンファイバー酸化物電極を用いた。電解液には10%硫酸を用いた。電流値は平均45mAを観測した。電流密度は、10mA/cmとなる。10分間反応を継続し、カソード液を回収したところ、2.50gであった。当カソード液を過マンガン酸カリウム水溶液で滴定したところ、過酸化水素の濃度は0.18wt%であった。つまり、過酸化水素生成量は0.13mmolである。電流効率を実施例1と同様に求めたところ、95%であった。
Example 6
(Production of cathode)
The same operation as in Example 1 was performed. However, a carbon fiber oxide electrode was obtained by using a carbon fiber powder (Showa Denko) which was oxidized with nitric acid at 100 ° C. for 24 hours as an electrode catalyst.
(Production of anode)
The same operation as in Example 1 was performed.
(Hydrogen peroxide generation reaction)
The same operation as in Example 3 was performed. However, the above carbon fiber oxide electrode was used for the cathode. 10% sulfuric acid was used as the electrolytic solution. An average current of 45 mA was observed. The current density is 10 mA / cm 2 . The reaction was continued for 10 minutes, and the catholyte was recovered and found to be 2.50 g. When the catholyte was titrated with an aqueous potassium permanganate solution, the hydrogen peroxide concentration was 0.18 wt%. That is, the amount of hydrogen peroxide produced is 0.13 mmol. When the current efficiency was determined in the same manner as in Example 1, it was 95%.

比較例1
(カソードの作製)
電極触媒としてケッチェンブラックを用いた他は実施例1と同様に行い、ケッチェンブラック電極を得た。
(アノードの作製)
実施例1と同様に行った。
(過酸化水素生成反応)
カソードに上記のケッチェンブラック電極を用いた他は実施例1と同様に行った。
電流値は684mAを観測した。電流密度は、151mA/cmとなる。11分間反応を継続し、カソード液を回収したところ、20.4gであった。当カソード液を過マンガン酸カリウム水溶液で滴定したところ、過酸化水素の濃度は0.39wt%であった。つまり、過酸化水素生成量は2.34mmolである。電流効率を実施例1と同様に求めたところ、100%であった。
Comparative Example 1
(Production of cathode)
A ketjen black electrode was obtained in the same manner as in Example 1 except that ketjen black was used as the electrode catalyst.
(Preparation of anode)
The same operation as in Example 1 was performed.
(Hydrogen peroxide generation reaction)
The same procedure as in Example 1 was performed except that the above ketjen black electrode was used as the cathode.
A current value of 684 mA was observed. The current density is 151 mA / cm 2 . The reaction was continued for 11 minutes, and the catholyte was recovered and found to be 20.4 g. When the catholyte was titrated with an aqueous potassium permanganate solution, the hydrogen peroxide concentration was 0.39 wt%. That is, the amount of hydrogen peroxide produced is 2.34 mmol. When the current efficiency was determined in the same manner as in Example 1, it was 100%.

比較例2
(カソードの作製)
電極触媒としてケッチェンブラックを用いた他は実施例2と同様に行い、ケッチェンブラック電極を得た。
(アノードの作製)
実施例2と同様に行った。
(過酸化水素生成反応)
カソードに上記のケッチェンブラック電極を用いた他は実施例2と同様に行った。
電流値は566mAを観測した。電流密度は、125mA/cmとなる。つまり、酸素原料と比較して、83%の反応速度である。10分間反応を継続し、カソード液を回収したところ、20.2gであった。当カソード液を過マンガン酸カリウム水溶液で滴定したところ、過酸化水素の濃度は0.29wt%であった。つまり、過酸化水素生成量は1.72mmolである。電流効率を実施例1と同様に求めたところ、98%であった。
次に、カソード液を、過酸化水素4.0wt%、水酸化ナトリウム9.4wt%の水溶液に変更した。その結果、電流値は475mAとなった。過水濃度0%の結果と比較して、69%の反応速度であった。
Comparative Example 2
(Preparation of cathode)
A ketjen black electrode was obtained in the same manner as in Example 2 except that ketjen black was used as the electrode catalyst.
(Production of anode)
The same operation as in Example 2 was performed.
(Hydrogen peroxide generation reaction)
The same procedure as in Example 2 was performed except that the above ketjen black electrode was used as the cathode.
A current value of 566 mA was observed. The current density is 125 mA / cm 2 . That is, the reaction rate is 83% compared to the oxygen raw material. The reaction was continued for 10 minutes, and the catholyte was recovered and found to be 20.2 g. When the catholyte was titrated with an aqueous potassium permanganate solution, the hydrogen peroxide concentration was 0.29 wt%. That is, the amount of hydrogen peroxide produced is 1.72 mmol. When the current efficiency was determined in the same manner as in Example 1, it was 98%.
Next, the catholyte was changed to an aqueous solution of 4.0 wt% hydrogen peroxide and 9.4 wt% sodium hydroxide. As a result, the current value was 475 mA. The reaction rate was 69% compared to the result with a superwater concentration of 0%.

比較例3
(カソードの作製)
電極触媒としてケッチェンブラックを用いた他は実施例3と同様に行い、ケッチェンブラック電極を得た。
(アノードの作製)
実施例3と同様に行った。
(過酸化水素生成反応)
カソードに上記のケッチェンブラック電極を用いた他は実施例3と同様に行った。7mAの電流値を観測した。反応セルの断面積を有効面積とすると、電流密度は、1.5mA/cmとなる。10分間反応を継続し、カソード液を回収したところ、2.38gであった。当カソード液を過マンガン酸カリウム水溶液で滴定したところ、過酸化水素の濃度は0.016wt%であった。つまり、過酸化水素生成量は0.011mmolである。電流効率を実施例1と同様に求めたところ、51%であった。
Comparative Example 3
(Preparation of cathode)
A ketjen black electrode was obtained in the same manner as in Example 3 except that ketjen black was used as the electrode catalyst.
(Production of anode)
The same operation as in Example 3 was performed.
(Hydrogen peroxide generation reaction)
The same procedure as in Example 3 was performed except that the above ketjen black electrode was used for the cathode. A current value of 7 mA was observed. When the cross-sectional area of the reaction cell is an effective area, the current density is 1.5 mA / cm 2 . The reaction was continued for 10 minutes, and the catholyte was recovered and found to be 2.38 g. When the catholyte was titrated with an aqueous potassium permanganate solution, the hydrogen peroxide concentration was 0.016 wt%. That is, the amount of hydrogen peroxide produced is 0.011 mmol. When the current efficiency was determined in the same manner as in Example 1, it was 51%.

アルカリ性電解液の場合、従来電極においても過酸化水素が電流効率約95%以上で生成できるが、反応速度はカソード原料ガスを純酸素から空気に変更すると低下してしまう。比較例2のカソードに酸化処理を施していないケッチェンブラックを用いた場合では、反応速度が純酸素原料に対して83%にまで低下したが、実施例2のケッチェンブラック酸化物を用いた場合の反応速度は89%であり、安価な空気原料を使用しても反応速度の低下を抑制できることがわかった。
さらに、従来の電極では過酸化水素の生成反応が進行すると電解液中の過酸化水素濃度が上昇し反応速度の低下がさらに起こるといった問題があった。実施例2、比較例2に例示したカソード液の過酸化水素濃度を4.0wt%、水酸化ナトリウム9.4wt%の水溶液に変更した場合には、導電性炭素酸化物を用いた実施例2にて反応速度の低下を抑制できることが分かった。本発明の導電性炭素酸化物を用いるカソードを過酸化水素製造装置に使用すると、従来電極の問題であった空気の使用や過酸化水素濃度上昇による反応速度低下を改善する効果がある。
In the case of an alkaline electrolyte, hydrogen peroxide can be generated with a current efficiency of about 95% or more even in the conventional electrode, but the reaction rate decreases when the cathode raw material gas is changed from pure oxygen to air. In the case where ketjen black not subjected to oxidation treatment was used for the cathode of Comparative Example 2, the reaction rate decreased to 83% with respect to the pure oxygen raw material, but the ketjen black oxide of Example 2 was used. In this case, the reaction rate was 89%, and it was found that even if an inexpensive air raw material was used, a decrease in the reaction rate could be suppressed.
Furthermore, the conventional electrode has a problem that when the hydrogen peroxide production reaction proceeds, the hydrogen peroxide concentration in the electrolyte solution increases and the reaction rate further decreases. When the hydrogen peroxide concentration of the catholyte illustrated in Example 2 and Comparative Example 2 was changed to an aqueous solution of 4.0 wt% and sodium hydroxide 9.4 wt%, Example 2 using conductive carbon oxide was used. It was found that the decrease in reaction rate can be suppressed. When the cathode using the conductive carbon oxide of the present invention is used in an apparatus for producing hydrogen peroxide, there is an effect of improving the reduction in reaction rate due to the use of air and the increase in the concentration of hydrogen peroxide, which has been a problem with conventional electrodes.

電解液が酸性の場合、比較例3に示した従来の電極では反応速度が遅く、電流効率は51%と低いものであった。一方、本発明の導電性炭素酸化物を用いた実施例3〜6では、反応速度が向上し電流効率は約80%以上に向上しており、酸性電解液での過酸化水素製造の実用可能レベルとなった。また、酸性電解液が適用可能であれば、実施例4に示したようにアノードとカチオン交換膜を貼り合せることも可能であり、これにより装置構造が簡略化され、さらに電極間距離の短縮により反応速度を向上させることができる。   When the electrolytic solution was acidic, the reaction rate of the conventional electrode shown in Comparative Example 3 was slow, and the current efficiency was as low as 51%. On the other hand, in Examples 3 to 6 using the conductive carbon oxide of the present invention, the reaction rate was improved and the current efficiency was improved to about 80% or more, and the hydrogen peroxide production with an acidic electrolyte was practical. It became a level. If an acidic electrolyte is applicable, the anode and the cation exchange membrane can be bonded as shown in Example 4, thereby simplifying the device structure and further reducing the distance between the electrodes. The reaction rate can be improved.

実施例1で用いた装置の概略図。1 is a schematic diagram of an apparatus used in Example 1. FIG. 実施例1で用いた集電板の概略図。1 is a schematic diagram of a current collector plate used in Example 1. FIG. 実施例4で用いた装置の概略図。FIG. 6 is a schematic view of an apparatus used in Example 4. 実施例5で用いた装置の概略図。FIG. 6 is a schematic diagram of an apparatus used in Example 5.

符号の説明Explanation of symbols

1 アノード室
2A カソード側中間室
2B アノード側中間室
3 カソード室
4 アノード
5 カソード
6 水素の入口
7 酸素(空気)の入口
8 生成液の出口
9 導線
10 電流計
11 電解質水溶液の入口
12 イオン交換膜
13 電解質水溶液の出口
14 水素の出口
15 酸素(空気)の出口
16 集電板
17 ポテンショスタット
18 参照電極(Ag/AgCl)
DESCRIPTION OF SYMBOLS 1 Anode chamber 2A Cathode side intermediate chamber 2B Anode side intermediate chamber 3 Cathode chamber 4 Anode 5 Cathode 6 Hydrogen inlet 7 Oxygen (air) inlet 8 Product solution outlet 9 Conductor 10 Ammeter 11 Electrolyte aqueous solution inlet 12 Ion exchange membrane 13 Electrolyte aqueous solution outlet 14 Hydrogen outlet 15 Oxygen (air) outlet 16 Current collector plate 17 Potentiostat 18 Reference electrode (Ag / AgCl)

Claims (9)

電極上で酸素を還元して過酸化水素を製造するためのカソードであって、導電性炭素酸化物を用いることを特徴とするカソード。   A cathode for producing hydrogen peroxide by reducing oxygen on an electrode, wherein the cathode uses a conductive carbon oxide. 導電性炭素酸化物が、活性炭、カーボンブラック、アセチレンブラック、カーボンファイバー、気相成長炭素繊維、カーボンナノチューブ、フラーレンおよびケッチェンブラックからなる群から選ばれた少なくとも一種を酸化したものである請求項1記載のカソード。   2. The conductive carbon oxide is obtained by oxidizing at least one selected from the group consisting of activated carbon, carbon black, acetylene black, carbon fiber, vapor grown carbon fiber, carbon nanotube, fullerene, and ketjen black. The described cathode. カソードが、導電性基体上に導電性炭素酸化物を担持させたものである請求項1または2に記載のカソード。   The cathode according to claim 1 or 2, wherein the cathode has a conductive carbon oxide supported on a conductive substrate. 導電性基体がカーボンペーパーまたはカーボンクロスである請求項3記載のカソード。   The cathode according to claim 3, wherein the conductive substrate is carbon paper or carbon cloth. カソードが、バインダーを含む導電性炭素酸化物を成形したものである請求項1または2に記載のカソード。   The cathode according to claim 1 or 2, wherein the cathode is formed by molding a conductive carbon oxide containing a binder. 請求項1〜5のいずれかに記載のカソード(1)、アノード(2)およびカソードとアノード間に電解質(3)を備えた装置により過酸化水素を製造する方法であって、カソード(1)とアノード(2)間に外部電圧を印加することを特徴とする過酸化水素の製造方法。   A method for producing hydrogen peroxide by means of a cathode (1) according to any one of claims 1 to 5, an anode (2) and an apparatus comprising an electrolyte (3) between the cathode and the anode, the cathode (1) And an anode (2), an external voltage is applied, The manufacturing method of hydrogen peroxide characterized by the above-mentioned. 請求項1〜5のいずれかに記載のカソード(1)、アノード(2)およびカソードとアノード間に電解質(3)を備えた装置により過酸化水素を製造する方法であって、アノード(2)の酸化反応を酸素が過酸化水素に還元される電極電位より低い電位で行うことを特徴とする過酸化水素の製造方法。   A method for producing hydrogen peroxide with a cathode (1) according to any one of claims 1 to 5, an anode (2) and an apparatus comprising an electrolyte (3) between the cathode and the anode, the anode (2) A method for producing hydrogen peroxide, wherein the oxidation reaction is performed at a potential lower than an electrode potential at which oxygen is reduced to hydrogen peroxide. アノード(2)の酸化反応に水素、メタノール、エタノール、ジメチルエーテルのいずれかを用いることを特徴とする請求項7記載の過酸化水素の製造方法。   8. The method for producing hydrogen peroxide according to claim 7, wherein any one of hydrogen, methanol, ethanol, and dimethyl ether is used for the oxidation reaction of the anode (2). 請求項1〜5のいずれかに記載のカソード(1)、アノード(2)およびカソードとアノード間に電解液(3)を充填した過酸化水素製造装置。   6. The hydrogen peroxide production apparatus according to claim 1, wherein the cathode (1), the anode (2), and the electrolyte solution (3) are filled between the cathode and the anode.
JP2008321340A 2008-12-17 2008-12-17 Method for producing hydrogen peroxide Active JP5470833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008321340A JP5470833B2 (en) 2008-12-17 2008-12-17 Method for producing hydrogen peroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008321340A JP5470833B2 (en) 2008-12-17 2008-12-17 Method for producing hydrogen peroxide

Publications (2)

Publication Number Publication Date
JP2010144203A true JP2010144203A (en) 2010-07-01
JP5470833B2 JP5470833B2 (en) 2014-04-16

Family

ID=42564922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008321340A Active JP5470833B2 (en) 2008-12-17 2008-12-17 Method for producing hydrogen peroxide

Country Status (1)

Country Link
JP (1) JP5470833B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013131494A (en) * 2011-12-20 2013-07-04 General Electric Co <Ge> Methods of making and using electrode compositions and articles
KR101644101B1 (en) * 2015-11-19 2016-07-29 한국항공우주연구원 Fuel cell of recycle type for monopropellant system and method thereof
CN107200384A (en) * 2017-07-13 2017-09-26 陕西科技大学 A kind of carbon fiber electrode preparation method of efficient production hydrogen peroxide treatment organic wastewater
US9787105B2 (en) 2011-02-15 2017-10-10 Samsung Electronics Co., Ltd. Apparatus and method for high efficiency variable power transmission
WO2019216288A1 (en) * 2018-05-07 2019-11-14 アイカーボン株式会社 Method for producing sugar from cellulose and device therefor
CN111465718A (en) * 2017-12-15 2020-07-28 小利兰·斯坦福大学托管委员会 Catalytic efficient oxygen reduction of oxidized carbon materials to hydrogen peroxide
CN115259492A (en) * 2022-07-12 2022-11-01 大连海事大学 Photoelectric series ballast water treatment method and application thereof
CN116081782A (en) * 2022-03-31 2023-05-09 南京理工大学 Pilot scale hydrogen peroxide preparing apparatus and application

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236968A (en) * 2000-02-23 2001-08-31 Asahi Kasei Corp Fuel cell reactor and method of using the same
JP2005076043A (en) * 2003-08-28 2005-03-24 Asahi Kasei Chemicals Corp Fuel cell type reaction apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236968A (en) * 2000-02-23 2001-08-31 Asahi Kasei Corp Fuel cell reactor and method of using the same
JP2005076043A (en) * 2003-08-28 2005-03-24 Asahi Kasei Chemicals Corp Fuel cell type reaction apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9787105B2 (en) 2011-02-15 2017-10-10 Samsung Electronics Co., Ltd. Apparatus and method for high efficiency variable power transmission
JP2013131494A (en) * 2011-12-20 2013-07-04 General Electric Co <Ge> Methods of making and using electrode compositions and articles
US10707512B2 (en) 2015-11-19 2020-07-07 Korea Aerospace Research Institute Monopropellant system for regenerative fuel cell and method for mono-propulsion using same
KR101644101B1 (en) * 2015-11-19 2016-07-29 한국항공우주연구원 Fuel cell of recycle type for monopropellant system and method thereof
WO2017086749A1 (en) * 2015-11-19 2017-05-26 한국항공우주연구원 Monopropellant system for regenerative fuel cell and method for mono-propulsion using same
CN108292767A (en) * 2015-11-19 2018-07-17 韩国航空宇宙研究院 For regenerative fuel cell monopropellant system and utilize its monopropellant propulsion method
CN108292767B (en) * 2015-11-19 2021-02-19 韩国航空宇宙研究院 Single-unit propellant system for regenerative fuel cell and single-unit propulsion method using same
CN107200384A (en) * 2017-07-13 2017-09-26 陕西科技大学 A kind of carbon fiber electrode preparation method of efficient production hydrogen peroxide treatment organic wastewater
CN111465718A (en) * 2017-12-15 2020-07-28 小利兰·斯坦福大学托管委员会 Catalytic efficient oxygen reduction of oxidized carbon materials to hydrogen peroxide
CN111465718B (en) * 2017-12-15 2024-01-05 小利兰·斯坦福大学托管委员会 Catalytic efficient oxygen reduction of oxidized carbon materials to hydrogen peroxide
WO2019216288A1 (en) * 2018-05-07 2019-11-14 アイカーボン株式会社 Method for producing sugar from cellulose and device therefor
CN116081782A (en) * 2022-03-31 2023-05-09 南京理工大学 Pilot scale hydrogen peroxide preparing apparatus and application
CN115259492A (en) * 2022-07-12 2022-11-01 大连海事大学 Photoelectric series ballast water treatment method and application thereof
CN115259492B (en) * 2022-07-12 2024-03-05 大连海事大学 Photoelectric serial ballast water treatment method and application thereof

Also Published As

Publication number Publication date
JP5470833B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5470833B2 (en) Method for producing hydrogen peroxide
EP2792639B1 (en) Carbon-based material, electrode catalyst, oxygen reduction electrode catalyst, gas diffusion electrode, aqueous solution electrolysis device, and method of preparing carbon-based material
US7858551B2 (en) Electrode catalyst for electrochemical reaction, process for producing the electrode catalyst and electrode for electrochemical reaction having the electrode catalyst
CN109996905B (en) Organic hydride manufacturing device and organic hydride manufacturing method
CA2857110A1 (en) Precious metal oxide catalyst for water electrolysis
JP5960795B2 (en) Method for producing oxygen gas diffusion electrode
WO2018037774A1 (en) Cathode, electrolysis cell for producing organic hydride, and organic hydride production method
JP2009068080A (en) Fuel cell type reaction apparatus and method of manufacturing compound using the same
KR101931504B1 (en) Membrane Electrode Assembly for the Electrochemical Cell
JP2018141227A (en) Method for producing ethylene in larger amount by electrochemically reducing carbon dioxide, electrolytic apparatus, carbon dioxide reduction electrode and carbon dioxide reduction catalyst
KR102338318B1 (en) Organic hydride manufacturing equipment
CA2413727A1 (en) Electrochemical cell
JP5386684B2 (en) FUEL CELL REACTOR AND METHOD FOR PRODUCING COMPOUND USING THE SAME
JP4610217B2 (en) Fuel cell type reactor and method for producing hydrogen peroxide using the same
JP2001236968A (en) Fuel cell reactor and method of using the same
Quan et al. In situ surface reduction for accessing atomically dispersed platinum on carbon sheets for acidic hydrogen evolution
JP4368166B2 (en) Fuel cell reactor
Foroughi et al. Sonochemical and Sonoelectrochem-ical Production of Energy Materials. Catalysts 2021, 11, 284
JP2018083978A (en) Hydrogen generator and method for generating hydrogen
CN111206265B (en) Air-water circulating system and multifunctional water electrolysis device thereof
de Leon et al. Recent developments in borohydride fuel cells
JP2009108406A (en) Fuel cell type reaction apparatus
JP2023133965A (en) Carbon dioxide reduction apparatus, and artificial photosynthesis apparatus
KR100704438B1 (en) Method for manufacturing membrane electrode assembly
JP2000256887A (en) Electrode for hydrogen peroxide production and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111028

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R151 Written notification of patent or utility model registration

Ref document number: 5470833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151