JPH0431480B2 - - Google Patents

Info

Publication number
JPH0431480B2
JPH0431480B2 JP60163084A JP16308485A JPH0431480B2 JP H0431480 B2 JPH0431480 B2 JP H0431480B2 JP 60163084 A JP60163084 A JP 60163084A JP 16308485 A JP16308485 A JP 16308485A JP H0431480 B2 JPH0431480 B2 JP H0431480B2
Authority
JP
Japan
Prior art keywords
radial
resonant
transducer
type transducer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60163084A
Other languages
English (en)
Other versions
JPS6146698A (ja
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Publication of JPS6146698A publication Critical patent/JPS6146698A/ja
Publication of JPH0431480B2 publication Critical patent/JPH0431480B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0655Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element of cylindrical shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電気機械変換器に関し、特に主要な機
械的動作が円筒形又は球形の変換器の径方向にあ
り、変換器の膨脹、収縮を交互に生じさせるラジ
アル振動子型変換器(radial vibrator
transducer)に関するものである。
[従来の技術] 「ラジアル振動子又は放射振動子」(radial
vibrator)として一般に知られている素子は、簡
単であり、電気機械又は電気音響変換器等に広く
用いられている。最も簡単なこの種の素子は、電
気的に駆動されると放射膨脹又はラジアル膨脹を
起こす活性物質(active material)からなる円
筒形又は球形の部材から構成される。例えば、内
表面と外表面とに電極を有し、径方向に分極させ
られる圧電セラミツク「ジルコン酸鉛又はチタン
酸鉛系統のようなもの(lead zirconate titanate
formulation)]筒又はリングが、ラジアル振動
子として作動することができる。このタイプの素
子は、より高い出力を得るために通常第1の円周
共振周波数又はブリージングモード(breathing
mode)共振周波数で作動させられる。
単独の円筒又は球のものでは、この共振周波数
が主に材料の種類とリング又は筒の直径によつて
定まる。そして共振周波数の制御を相当な程度ま
で行えるようにするために、活性物質からなる部
分と不活性物質からなる部分とを交互に組合せて
複合構造としてリングを組立てる多数の設計案が
提案されている。これらの方法では複合リングを
形成するために、樽を構成する複数の板(barrel
staves)のような、異なる物質からなる複数の棒
部材を一緒に接合している。不活性物質は、ラジ
アル共振周波数(radial resonance frequency)
を下げる役割を果す付加質量及び(又は)付加コ
ンプライアント(compliance)として作用する。
第1図は従来の分割リング状ラジアル振動子の
一例を示している。圧電材料即ち活性体(active
staves)1と不活性体2とが接着されて複合円筒
を形成しており、各活性体1は電気的に並列接続
され、電圧がリード線に印加されると、複合円筒
は素子の放射軸(radial axis)に沿つて膨脹又
は収縮を行う。第1図の矢印は分極の方向を示し
ており、図示しているように、電極は活性体1と
不活性体2との間の境界部分に配置されている。
第1図の素子は機械的又は音響エネルギーの発振
器又は受信器として用いることができ、この素子
は主機械共振周波数がほぼその中心になる周波数
帯で正常に動作する。第1図の従来の変換器の動
作は、第2図に示す簡易化された電気的等価回路
の類似動作に近似させることができるをは当該業
者には明らかであろう。この近似は固体のリング
にも、また第1図に示す分割されたリングに対し
ても同様に等しく適用される。この回路におい
て、Mはリングの全質量を表わし、リングの円周
コンプライアンスはキヤパシタCで表される。
C0はリングの拘束容量(cramped capacitance)
を表をし、φは活性物質の電気機械変成比を表わ
す。等価回路の右側の抵抗Rは媒体の放射抵抗
(radiation resistance)の電気的質量を表わし、
抵抗Rにおける等価電流uは発振子(radiator)
の動いている面の速度を表わす。
従来の素子の伝達電圧応答TVR(transmitting
voltage response)はこの等価回路近似から計算
され、電流uを変換器回路に入力される駆動電圧
Eで割つたものに比例する。素子の応答の決定に
おいて、以下の式(1)に示すように発振子のインピ
ーダンスは無視できる。
TVR∝u/E=jωcφ/(1−ω2Mc) ……(1) 伝達電圧応答は上記式の分母が0になる周波数
近傍で単一ピークを持つ。これは以下の式(2)に示
すもうな共振(角)周波数ωrで起る。
ωr=1/(MC)1/2 ……(2) 以上で述べた解析の方法は、例えばニユーヨー
クのウイル・アンド・サンズ社(Wiley &
Sons)が1970年に発行したレオン・カンプ
(Leon Canp)著の「Underwater Acoustics」
の第136〜142頁やバルター(Butler)の1976年2
月発行第59巻第2号“Model for a ring
transducer with inactive segments”、J.Acoust
Soc.Am.、の第480〜482頁で述べられているよう
に、変換器業界では周知である。さらに完全で正
確な変換器の動作の予測はケイ・エム・フアーン
ハム(K.M.Farnham)によつて開発され、アメ
リカ合衆国、コネチカツト州、ニユー・ロンドン
のニユー・ロンドン研究所の変換器及びアレイ部
門(Trasducer and Arrays Division、Naval
Underwater Systems Center、New London
Labovatory)で利用できるようなコンピユータ
モデルを使うことによつて得ることができる。第
1図に示した従来の変換器について上述したプロ
グラムを用いて得た典型的な応答曲線のグラフ
を、第7図に曲線20によつて示してある。
[発明が解決しようとする問題点] 第1図の従来の変換器の重大な欠点は、変換器
の共振周波数と動作帯域とが、所定の寸法の素子
では独立して制御できないことである。またこの
変換器は放射面における機械的入力インピーダン
スが低いために、放射面における入力インピーダ
ンスが高いことが要求されるアレイ構成(array
configuration)にこの変換器を使用する場合に
問題がある。実用上の限界として、アレイの構成
要素の機械的入力インピーダンスは、全ての動作
可能な周波数に対してアレイの音響相互インピー
ダンスよりも高く保たれねばならない。したがつ
て機械的インピーダンスが小さくなる変換器応答
のピーク近傍の狭い帯域では、動作しなくなるこ
とになる。また第1図に示すような基本的素子で
は、得られる帯域幅で重大な実用上の制限を有す
る。動作帯域幅は、活性体1のリングの厚みを増
減することにより、或は不活性体2のコンプライ
アンスを変化させることにより変えることができ
る。しかしながら、この設計技術は次のような実
用的設計理由により制限を受ける。すなわち動作
周波数帯域幅を広げようとすると、活性体の厚み
は薄くなり、素子は機械的に弱くなるため、静水
圧の効果に耐えなければならない水中下での用途
に用いられる変換器では重大な欠陥となる。更
に、不活性物質の棒部材が共振周波数を減少する
ために取入れられると、素子の感度と電力取扱容
量とが減少することになり、高い音響出力レベル
を必要とする用途又は装置では重大な欠点とな
る。
ラジアル振動子の動作帯域幅を広げるために多
くの付加的技術が試みられている。一つの技術
は、変換器の複数の電気端子と素子の応答を調整
する増幅回路との間に誘導素子又は容量素子のよ
うな電気部品を接続して用いることである。この
ような特殊な電気端子を使う改良は、大きさ、重
さ及び複雑さを増大させることを犠牲にすれば、
制限された範囲内で帯域幅を広げることができ
る。またこの技術ではある回路接点に局所化され
た高電圧が発生し、高価な高電圧絶縁と遮蔽とが
必要になる。アレイ構成で動作させる時に同調さ
れた変換器は重大な実用上の問題に遭遇する。
変換器の動作帯域を広げる他の技術として外部
マツチング層(matching layer)を用いたもの
が知られている。変換器と媒体の音響インピーダ
ンスは第3図に示すように外部マツチング層を介
して調整される。第3図において、内部の活性リ
ング1′は、好ましくは媒体と同じ液体から成つ
ているマツチング層3によつて完全に囲まれてい
る。液体層であるマツチング層3は鋼のような物
質の固体リング4によつて囲まれている。この技
術によれば第7図の曲線21に示されているよう
にいくらか帯域幅を広げることができる。しかし
ながら、これらの層には表面に適合し且つ完全に
素子を覆わなければならないという要件があるた
め、この要件が動作周波数帯域の範囲に大きな制
約を課している。いくつかの応用面では、この液
体マツチング層は望ましくない。これらの場合に
は、プラステイツクのような加工性のある固体
(campliant solid)を使用できるであろう。しか
しながら応答曲線の形は、マツチング層内の音密
度と音速のかなり鋭敏な関数になつているので、
条件にあつた材料を見出すことは困難である。さ
らに、外部マツチング層が用いられる場合いは、
少なくとも二つの周波数が動作帯域で生じ、その
場合前面の機械的入力インピーダンス(head
mechanical input impedance)は、アレイ構成
の動作では受け入れられないほど低くなる。この
ことは使用帯域幅を少なくとも20%減らすことに
なる。
本発明の目的は、従来のものよりさらに広い周
波数範囲で動作し得るラジアル振動子型変換器を
提供することにある。
本発明の一実施例によれば、特別の電気端子部
品を用いることなく広い動作周波数帯域幅を実現
することができる。
本発明の一実施例によれば、また、単一の広い
動作周波数帯域又は二つ以上の分れた別個の動作
周波数帯域を備えた変換器を提供することができ
る。
さらに本発明の一実施例によれば、変換器をア
レイ構成で使用できるように、動作周波数帯域内
において機械的入力インピーダンスが放射面
(rad iating face)で高くなる変換器を提供する
ことである。
本発明の一実施例によれば、マツチング層を必
要とせずに広い動作周波数帯域幅を有する変換器
を提供することができる。
さらに本発明の一実施例によれば、高い伝達電
圧応答を有する変換器を提供することができる。
本発明の一実施例によれば、重大な効率の低下
なしに広帯域の周波数応答を実現することができ
る。
本発明の一実施例によれば、変換器の動作帯域
で比較的平坦な応答を実現することができる。
[問題点を解決するための手段] 本出願の第1の発明は、その実施例を示す第4
図に示したように、ラジアル電気機械変換素子9
と、層構造を有し且つ前記ラジアル電気機械変換
素子に接触する少なくとも二つの機械的共振部材
10とから成るラジアル振動子型変換器である。
また第2の発明は、径方向に電気機械的変換を
与えるラジアル変換器手段9、前記ラジアル変換
器手段上に装着され、前記ラジアル変換器を少な
くとも第一と第二の共振周波数で共振させること
を許容する少なくとも二つの共振手段10とから
成るラジアル振動子型変換器である。
[発明の作用] 本発明は活性リング又は球の外表面と放射媒体
(radiating medium)との間に複合構造の多数の
機械的共振部材又は共振手段を設けることによつ
て、上記の目的を達成する。機械的共振部材は同
一の構造及び材料から構成でき、また寸法及び材
料を異ならせることもできる。各共振部材又は共
振手段はコンプライアント層(compliant
layer)又はコンプライアント部材層と質量層
(mass layer)とを有している。質量層と活性材
料からなる活性リングとは互いにコンプライアン
ト部材層によつて分離されている。このコンプラ
イアント部材層は変換器を二つの共振周波数で振
動させるようにしている。二つの共振周波数のう
ちの一つの共振周波数は、コンプライアント部材
層を除いたとした場合の、質量が負荷されたリン
グの共振周波数として近似かれ得るもので、他の
共振周波数は機械的共振部材が鋼性を有する又は
硬い構造上に装着されるとした場合の共振周波数
として近似され得るものである。
[実施例] 以下図面を参照して本発明の好ましい実施例を
説明する。
第4図には本発明の一実施例が示してあり、同
図において9はラジアル電気機械変換素子を構成
する活性リングであり、活性リング9の外側に
は、層構造(laminar structure)を有する複数
の共振部材10が機械的に取付けられており、こ
れにより広帯域の動作周波数特性を得る。各共振
部材10は、板(stave)と板との間隔が最少と
なるような樽板型配置で取付けられている。
第5図には一本の共振部材10が示してある。
同図において11はアルミニウム、鋼、金属マト
リツクス複合物(metal matrix composite)ま
たはエポキシ樹脂含有の黒鉛(graphite epoxy)
のような、曲げ共振をさけるのに十分強い材料か
ら作られた共振質量部又は質量層である。質量層
11と活性リング9との間にはコンプライアント
部材層12が挿入されている。コンプライアント
部材層はデユポン社(Dupont)が「VESPEL]
の商標で販売しているポリイミド樹脂
(polyimide plastic)又は、アムコ・ケミカル・
コーポレイシヨン(Amoco Chemical
Corporation)が「TORLON」の商標で販売し
ているポリアミド−イミド樹脂(polyamid−
imide plastic)のような樹脂から作ることがで
きるが、所望のコンプライアンスを得ることがで
きるものであれば他のいかなる物質でもよい。
活性振動素子としての活性リング9はジルコン
酸鉛チタン酸鉛系統のものでアメリカ合衆国、オ
ハイオ州のベドフオードにあるバーニトロン・イ
ンコーポレイテツド社が製造する圧電セラミツク
材料から作られる電圧素子である。各共振部材1
0の側面13は、他の共振部材の側面に沿つて適
合するようにするためにわずかに傾斜がつけられ
ており、またコンプライアント部材層12の内面
14は、活性リング1の曲面に合うようにするた
め、わずかに曲面がつけてある。変換器の電極は
図示していないが、活性リング9の内面と外面と
に取付けられており、周知の方法で径方向に分極
されている。変換器全体はエポキシ樹脂を使つて
組立てられるか、又は圧縮帯によつてゆるく組立
て保持することができる。圧縮帯を使用する圧縮
する加減の調整は従来の技術の範囲でできる。
第4図の変換器の近似的な電気等価回路は第6
図に示されている。この等価回路において、M1
は媒体に接触する質量層11の質量である。Mは
活性リング9の質量である。C0は活性リング9
の拘束電気容量(Clamped electrical
capacitance)を表わし、Cは活性リング1のコ
ンプライアンスを表わし、また、C1は活性リン
グ9と質量層11とを分離するコンプライアント
部材層12のコンプライアンスを表わす。φは活
性材料の電気機械的変成比を表わす。この変換器
に対する伝達電圧応答は次の式(3)から得られる。
TVR∝u/E=jωCφ/[1−ω2(MC+M1C+M1C1)+
ω4MM1CC1]……(3) 式(3)は二重の共振システムの応答を示してい
る。分母の表示は、先に述べた式(1)を実行して式
(2)を得たようにして、近似的な共振周波数を出す
ために解くことができる式(3)は、質量層11の質
量とコンプライアント部材層12のコンプライア
ンスの選定により、二つの共振モードの周波数と
インターモダル・カプリング(intermodal
coupling)とが調整されることを許容している。
この実施例の二つの共振周波数は、付加される
共振部材のコンプライアンスが除かれたとした場
合の質量が負荷されたリングが有する周波数及び
共振部材が硬い面上に装着されるとした場合の付
加される共振部材の周波数として更に単純に近似
することができる。しかしながら、これは近似で
あるため、最終形状に設計を調整するためにはす
こしの実験作業が必要である。先に述べたコンピ
ユータプログラムをこの実施例の伝達電圧応答を
計算するために用いて得たのが第7図の曲線22
である。第7図の曲線22は、電気端子も、また
同調部品も無い第3図の変換器の応答を示してい
る。ANST変換器基準Sl.20−1972(ANST
Transducer Standard Sl.20−1972)によつて定
義された理論伝達電圧応答も図示してある。
従来の応答曲線20及び21と本発明の上記実
施例の応答曲線22とを比較すると分るように、
本発明を用いれば従来よりも使用できる周波数帯
域幅を広くすることができる。また本発明によれ
ば、帯域幅を増大させる一方で比較的高い信号レ
ベルと平坦な応答曲線とを得ることができる。更
に本発明によれば、アレイ構成において秀れた動
作をする。本発明によれば、応答が比較的高く、
同時に機械的入力インピーダンスが高いところで
広い帯域幅を得ることができ、従来技術を大幅に
改良することができる。また本発明は、変換器の
構成にマツチング層の機能を組込むことによつ
て、マツチング層の必要性を無くしている。
式(3)を使つて変換器の素子の質量とコンプライ
アンスとを調整すれば、二つの別個の動作帯域を
有する単一の変換器を提供することもまた可能で
ある。また、互いに近接した異なつた質量の複数
の質量層11を有すること及び互いに近接した異
なつたコンプライアンスの複数のコンプライアン
ト部材層12を有することも可能である。これら
の同一でない複数の共振部材によれば、非常な平
坦な応答曲線が得られる二以上の共振周波数とな
る。第8図に示すように、多数の質量層11,1
1とコンプライアント部材層12,12とを有す
ることも追加的に可能である。N個の質量層11
を有する実施の態様では(N+1)個の共振周波
数が生じ、応答曲線のピークが互いに十分に近接
した位置になれば、非常に平坦な応答曲線を得る
ことができる。
尚当業者には明らかな通り、本発明のラジアル
振動子型変換器の動作周波数帯域幅を広げるため
に更に従来技術を本発明に適用すれば、更に動作
を改良することができるのは勿論である。
[発明の効果] 本発明によれば、従来のものより動作周波数帯
域を広くすることができ、また動作周波数帯域内
において機械的入力インピーダンスが放射面で高
くなる変換器を提供することができる。さらに本
発明によれば、伝達電圧応答を高くすることがで
きる上、大きな効率の低下なしに広帯域の周波数
応答を得ることができる。
【図面の簡単な説明】
第1図は従来の変換器の要素と構造を示す図、
第2図は第1図の変換器の電気等価回路図、第3
図はマツチング層を有する従来の変換器の横断面
図、第4図は本発明の一実施例に係る変換器を示
す図、第5図は本発明の変換器で用いる共振部材
の一例を示す図、第6図は第4図の実施例に係る
変換器の電気等価回路図、第7図は従来の変換器
と第4図に示した本発明の変換器の応答の比較
図、第8図は本発明で用いることのでる共振部材
の他の実施例を示す図である。 1……活性体、2……不活性体、3及び4……
マツチング層、9……活性リング、10……共振
部材、11……質量層、12……コンプライアン
ト部材層、13……側面、14……内面。

Claims (1)

  1. 【特許請求の範囲】 1 ラジアル電気機械変換素子と、層構造を有し
    且つ前記ラジアル電気機械変換素子に接触する少
    なくとも二つの機械的共振部材とから成るラジア
    ル振動子型変換器。 2 前記機械的共振部材のそれぞれは、前記ラジ
    アル電気機械変換素子と接触するコンプライアン
    ト部材層と、前記コンプライアント部材層に接触
    する質量層とからなる特許請求の範囲第1項に記
    載のラジアル振動子型変換器。 3 前記コンプライアント部材層はプラステイツ
    クからなることを特徴とする特許請求の範囲第2
    項に記載のラジアル振動子型変換器。 4 前記機械的共振部材は同一の共振周波数を有
    しないで異なつた共振周波数を有していることを
    特徴とする特許請求の範囲第1項に記載のラジア
    ル振動子型変換器。 5 前記機械的共振部材はそれぞれ2以上の層を
    有しており、各層はコンプライアント部材層と質
    量層とが交互になつていることを特徴とする特許
    請求の範囲第1項に記載のラジアル振動子型変換
    器。 6 前記コンプライアント部材層はプラステイツ
    クからなることを特徴とする特許請求の範囲第5
    項に記載のラジアル振動子型変換器。 7 前記ラジアル電気機械変換素子は湾曲した放
    射面を有することを特徴とする特許請求の範囲第
    1項に記載のラジアル振動子型変換器。 8 径方向に電気機械的変換を与えるラジアル変
    換器手段と、前記ラジアル変換器手段上に装着さ
    れ、前記ラジアル変換器手段を少なくとも第一と
    第二の共振周波数で共振させることを許容する少
    なくとも二つの共振手段とから成るラジアル振動
    子型変換器。 9 前記第一の共振周波数は、前記ラジアル変換
    器手段と前記少なくとも二つの共振手段とを一緒
    にしたものによつて調整され、前記第二の共振周
    波数は、前記共振手段単独で調整されることを特
    徴とする特許請求の範囲第8項に記載のラジアル
    振動子型変換器。 10 前記変換器は少なくとも第三の共振周波数
    で共振し、前記第二の共振周波数は単独で考えた
    前記二つの共振手段の一つにより調整され、前記
    第三の共振周波数は単独で考えた前記二つの共振
    手段の他の一つにより調整されることを特徴とす
    る特許請求の範囲第9項に記載のラジアル振動子
    型変換器。 11 前記第一と第二の共振周波数は単一の動作
    周波数帯域を形成することを特徴とする特許請求
    の範囲第8項に記載のラジアル振動子型変換器。 12 前記第一と第二の共振周波数は二つの分離
    した動作帯域を形成することを特徴とする特許請
    求の範囲第8項に記載のラジアル振動子型変換
    器。 13 前記各共振手段は、前記第一と第二の共振
    周波数での共振を許容する少なくとも一つのコン
    プライアント手段と、前記コンプライアント手段
    に接触する少なくとも一つの共振質量層とから構
    成されることを特徴とする特許請求の範囲第8項
    に記載のラジアル振動子型変換器。 14 前記コンプライアント手段はプラステイツ
    クから構成されることを特徴とする特許請求の範
    囲第13項に記載のラジアル振動子型変換器。
JP60163084A 1984-07-25 1985-07-25 ラジアル振動子型変換器 Granted JPS6146698A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/634,073 US4604542A (en) 1984-07-25 1984-07-25 Broadband radial vibrator transducer with multiple resonant frequencies
US634073 1984-07-25

Publications (2)

Publication Number Publication Date
JPS6146698A JPS6146698A (ja) 1986-03-06
JPH0431480B2 true JPH0431480B2 (ja) 1992-05-26

Family

ID=24542324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60163084A Granted JPS6146698A (ja) 1984-07-25 1985-07-25 ラジアル振動子型変換器

Country Status (4)

Country Link
US (1) US4604542A (ja)
EP (1) EP0169727B1 (ja)
JP (1) JPS6146698A (ja)
CA (1) CA1232672A (ja)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3620085C2 (de) * 1986-06-14 1994-03-10 Honeywell Elac Nautik Gmbh Rohrförmiger elektroakustischer Wandler
US4700100A (en) * 1986-09-02 1987-10-13 Magnavox Government And Industrial Electronics Company Flexural disk resonant cavity transducer
DE3812244C1 (ja) * 1988-04-13 1989-11-09 Honeywell-Elac-Nautik Gmbh, 2300 Kiel, De
JP2626026B2 (ja) * 1989-02-15 1997-07-02 日本電気株式会社 送受波器
EP0383972B1 (de) * 1989-02-22 1993-12-15 Siemens Aktiengesellschaft Ultraschall-Array mit trapezförmigen Schwingerelementen sowie Verfahren und Vorrichtung zu seiner Herstellung
US5020035A (en) * 1989-03-30 1991-05-28 Undersea Transducer Technology, Inc. Transducer assemblies
JP2556150B2 (ja) * 1989-11-07 1996-11-20 株式会社村田製作所 超音波照射装置
JPH0494884U (ja) * 1991-01-09 1992-08-18
US5235557A (en) * 1992-02-13 1993-08-10 Karl Masreliez Combined speed and depth sensor transducer
US5321332A (en) * 1992-11-12 1994-06-14 The Whitaker Corporation Wideband ultrasonic transducer
FR2786957B1 (fr) * 1998-12-07 2001-02-23 Sfim Ind Actionneur piezo-electrique ou electrostrictif
US6426918B1 (en) 1999-08-18 2002-07-30 Airmar Technology Corporation Correlation speed sensor
US6678208B2 (en) 1999-08-18 2004-01-13 Airmar Technology Corporation Range computations for correlation speed sensor
US6467350B1 (en) * 2001-03-15 2002-10-22 The Regents Of The University Of California Cylindrical acoustic levitator/concentrator
US6800987B2 (en) * 2002-01-22 2004-10-05 Measurement Specialties, Inc. Protective housing for ultrasonic transducer apparatus
US6950373B2 (en) * 2003-05-16 2005-09-27 Image Acoustics, Inc. Multiply resonant wideband transducer apparatus
US7340957B2 (en) 2004-07-29 2008-03-11 Los Alamos National Security, Llc Ultrasonic analyte concentration and application in flow cytometry
WO2006033232A1 (ja) * 2004-09-21 2006-03-30 Olympus Corporation 超音波振動子、超音波振動子アレイ、及び超音波内視鏡装置
JP4601471B2 (ja) * 2004-11-12 2010-12-22 富士フイルム株式会社 超音波トランスデューサアレイ及びその製造方法
US7944548B2 (en) 2006-03-07 2011-05-17 Leica Geosystems Ag Increasing measurement rate in time of flight measurement apparatuses
JP4929791B2 (ja) * 2006-03-30 2012-05-09 日本電気株式会社 水中音響送波器
US7692363B2 (en) * 2006-10-02 2010-04-06 Image Acoustics, Inc. Mass loaded dipole transduction apparatus
US7835000B2 (en) 2006-11-03 2010-11-16 Los Alamos National Security, Llc System and method for measuring particles in a sample stream of a flow cytometer or the like
EP2664916B1 (en) * 2007-04-02 2017-02-08 Acoustic Cytometry Systems, Inc. Method for manipulating a fluid medium within a flow cell using acoustic focusing
US7837040B2 (en) 2007-04-09 2010-11-23 Los Alamos National Security, Llc Acoustic concentration of particles in fluid flow
US8083068B2 (en) 2007-04-09 2011-12-27 Los Alamos National Security, Llc Apparatus for separating particles utilizing engineered acoustic contrast capture particles
US7453186B1 (en) 2007-10-17 2008-11-18 Image Acoustics, Inc Cantilever driven transduction apparatus
US8263407B2 (en) 2007-10-24 2012-09-11 Los Alamos National Security, Llc Method for non-contact particle manipulation and control of particle spacing along an axis
US8528406B2 (en) * 2007-10-24 2013-09-10 Los Alamos National Security, LLP Method for non-contact particle manipulation and control of particle spacing along an axis
US8266950B2 (en) 2007-12-19 2012-09-18 Los Alamos National Security, LLP Particle analysis in an acoustic cytometer
US8714014B2 (en) * 2008-01-16 2014-05-06 Life Technologies Corporation System and method for acoustic focusing hardware and implementations
US8072843B1 (en) 2009-03-18 2011-12-06 Image Acoustics, Inc. Stepped multiply resonant wideband transducer apparatus
US8311261B2 (en) * 2009-08-14 2012-11-13 Graber Curtis E Acoustic transducer array
US8854923B1 (en) * 2011-09-23 2014-10-07 The United States Of America As Represented By The Secretary Of The Navy Variable resonance acoustic transducer
WO2014144199A2 (en) 2013-03-15 2014-09-18 Weber Ronald Gene Cost effective broadband transducer assembly and method of use
GB2516976B (en) 2013-08-09 2016-10-12 Atlas Elektronik Uk Ltd System for producing sound waves

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2774892A (en) * 1951-05-29 1956-12-18 Bendix Aviat Corp Annular vibrator with lumped loading
US2775749A (en) * 1953-04-01 1956-12-25 Sussman Harry Mass-loaded ring vibrator
US3142035A (en) * 1960-02-04 1964-07-21 Harris Transducer Corp Ring-shaped transducer
US3230505A (en) * 1963-06-27 1966-01-18 David E Parker Reinforced ceramic cylindrical transducers
US3277433A (en) * 1963-10-17 1966-10-04 William J Toulis Flexural-extensional electromechanical transducer
FR2123048B1 (ja) * 1970-08-07 1974-03-01 Electronique Appliquee
US3845333A (en) * 1973-09-27 1974-10-29 Us Navy Alternate lead/ceramic stave free-flooded cylindrical transducer
US3952216A (en) * 1975-04-04 1976-04-20 The United States Of America As Represented By The Secretary Of The Navy Multiple-frequency transducer
FR2361033A1 (fr) * 1976-08-03 1978-03-03 France Etat Transducteurs piezoelectriques et antennes acoustiques immergeables a grande profondeur
US4433399A (en) * 1979-07-05 1984-02-21 The Stoneleigh Trust Ultrasonic transducers
US4373143A (en) * 1980-10-03 1983-02-08 The United States Of America As Represented By The Secretary Of The Navy Parametric dual mode transducer
US4435794A (en) * 1981-07-06 1984-03-06 Sanders Associates, Inc. Wall-driven oval ring transducer
US4432080A (en) * 1981-10-01 1984-02-14 The United States Of America As Represented By The Secretary Of The Navy Subwavelength monopole underwater sound radiator
US4525645A (en) * 1983-10-11 1985-06-25 Southwest Research Institute Cylindrical bender-type vibration transducer

Also Published As

Publication number Publication date
US4604542A (en) 1986-08-05
EP0169727B1 (en) 1990-06-13
EP0169727A3 (en) 1987-05-27
CA1232672A (en) 1988-02-09
EP0169727A2 (en) 1986-01-29
JPS6146698A (ja) 1986-03-06

Similar Documents

Publication Publication Date Title
JPH0431480B2 (ja)
US4633119A (en) Broadband multi-resonant longitudinal vibrator transducer
US3360664A (en) Electromechanical apparatus
US3370187A (en) Electromechanical apparatus
US4072871A (en) Electroacoustic transducer
US5321332A (en) Wideband ultrasonic transducer
US4525645A (en) Cylindrical bender-type vibration transducer
US8508107B2 (en) Low frequency oscillator, the omni-directional type low frequency underwater acoustic transducer using the same and the cylindrical radiation type low frequency underwater acoustic transducer using the same
US2895061A (en) Piezoelectric sandwich transducer
US6614143B2 (en) Class V flextensional transducer with directional beam patterns
US4016530A (en) Broadband electroacoustic converter
US3497731A (en) Bender type transducers
US3521089A (en) Piezoelectric feedthrough device
US5608692A (en) Multi-layer polymer electroacoustic transducer assembly
US3363228A (en) Pressure gradient hydrophone
US5229980A (en) Broadband electroacoustic transducer
US3309654A (en) Acoustic apparatus
JPH02309799A (ja) 送受波器
AU2421000A (en) Pressure tolerant transducer
JPH0511711B2 (ja)
CA1277414C (en) Broadband longitudinal vibrator transducer
JPS6341022B2 (ja)
JPH03151948A (ja) 超音波探触子
JPH02303299A (ja) 送受波器
JP2581466B2 (ja) 低周波水中送波器