JPH04314367A - Planar diode and its manufacture - Google Patents

Planar diode and its manufacture

Info

Publication number
JPH04314367A
JPH04314367A JP7938191A JP7938191A JPH04314367A JP H04314367 A JPH04314367 A JP H04314367A JP 7938191 A JP7938191 A JP 7938191A JP 7938191 A JP7938191 A JP 7938191A JP H04314367 A JPH04314367 A JP H04314367A
Authority
JP
Japan
Prior art keywords
impurity concentration
region
conductivity type
layer
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7938191A
Other languages
Japanese (ja)
Inventor
Jiro Terajima
寺嶋 二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7938191A priority Critical patent/JPH04314367A/en
Publication of JPH04314367A publication Critical patent/JPH04314367A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve high frequency characteristics by decentralizingly forming a plurality of recessed parts having a specified second depth which is shallower than a first depth in a part apart from a peripheral edge part of a high impurity concentration region surface of a second conductivity type. CONSTITUTION:A silicon substrate consisting of an n<->-layer 1 and an n<+>-layer 2 is used and a 20 to 25mum-deep p<->-region 3 of a surface impurity concentration of 10<18> to 10<19>/cm<3> is formed by diffusion and introduction of impurities from an opening part of an oxide film 4 formed on a surface. Simultaneously, two p<+>-guard rings 5 are formed by diffusion and introduction of impurities from an opening part of an oxide film. Thereafter, an oxide film is formed all over again and etching is carried out from a surface of a p<+>-region 3; thereby, a recessed part 8 is formed making a depletion layer extending from a p-n junction with the n<->-layer 1 remain by about 6mum width when a reverse voltage of a rated voltage of 1000V or more is applied. Thereafter, Al is deposit- patterned on a surface of the region 3 to form an anode electrode 6 in contact with an inner side of the recessed part 8 and an Al cathode electrode 7 is formed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、低不純物濃度層をはさ
んで互いに異なる導電型の高不純物濃度層が存在するP
IN構造を有するプレーナダイオードおよびその製造方
法に関する。
[Industrial Application Field] The present invention is directed to a P layer in which there are high impurity concentration layers of different conductivity types sandwiching a low impurity concentration layer.
The present invention relates to a planar diode having an IN structure and a method for manufacturing the same.

【0002】0002

【従来の技術】大容量の高耐圧のPIN構造を有するダ
イオードは、第一導電型の低不純物濃度半導体基板の両
面から異なる不純物を拡散することにより、第一および
第二導電型の高不純物濃度層を形成することによって製
造するのが一般的である。プレーナ型の場合は、第二導
電型の高不純物濃度拡散層を酸化膜の開口部からの不純
物拡散により形成する。図2はそのようなプレーナダイ
オードを示し、低不純物濃度で高抵抗のn− 層1と高
不純物濃度のn+ 層2を有するシリコン基板のn−層
1の表面に形成した酸化膜4の開口部からのアクセプタ
の拡散により高不純物濃度のp+ 領域3を形成したも
のである。さらに耐圧向上のために、p+ 領域3形成
の際にp+ 領域を囲む環状のp+ ガードリング5が
形成されている。そして、p+ 領域3にアノード電極
6, n+ 層2にカソード電極7を接触させる。この
場合、p+ 領域3の深さを20〜25μm程度に深く
することは、このダイオードに逆電圧印加の際にp+ 
領域3とn− 層1の間のPN接合からp+ 領域3内
に延びる空乏層に対して余裕をとることと、表面の可動
イオンなどの影響がPN接合に及ぶのを防ぐのに有効で
ある。
[Prior Art] A diode having a large-capacity, high-voltage PIN structure is manufactured by diffusing different impurities from both sides of a first conductivity type, low impurity concentration semiconductor substrate. It is generally manufactured by forming layers. In the case of a planar type, a second conductivity type high impurity concentration diffusion layer is formed by impurity diffusion from an opening in the oxide film. FIG. 2 shows such a planar diode, showing an opening in an oxide film 4 formed on the surface of an n- layer 1 of a silicon substrate, which has an n- layer 1 with low impurity concentration and high resistance and an n+ layer 2 with high impurity concentration. A p+ region 3 with a high impurity concentration is formed by diffusion of acceptors from the substrate. Furthermore, in order to improve the breakdown voltage, an annular p+ guard ring 5 surrounding the p+ region is formed when the p+ region 3 is formed. Then, an anode electrode 6 is brought into contact with the p+ region 3, and a cathode electrode 7 is brought into contact with the n+ layer 2. In this case, increasing the depth of the p+ region 3 to about 20 to 25 μm means that when a reverse voltage is applied to this diode, the p+
This is effective in providing a margin for the depletion layer extending from the PN junction between region 3 and n- layer 1 into p+ region 3, and in preventing the influence of surface mobile ions from affecting the PN junction. .

【0003】一方、ダイオードを高周波領域で動作させ
る際に重要なことは、(1) オン電圧を低くして定常
損失を減らすこと、(2) 逆回復時間を短くしてスイ
ッチング損失を減らすこと、(3) 逆回復時の逆電流
を少なくすることなどがある。これらを同時に満足させ
るには、図2の構造の場合、p+ 領域3の拡散深さを
浅くし、不純物濃度を低くすることが有効である。それ
によってp+ 領域3内の総不純物量が少なくなるので
、オン時にp+ 領域3からn− 層1への正孔の注入
量が少なくなって、逆回復時間は短くなり、逆回復電流
も少なくすることができる。
On the other hand, the important things when operating a diode in a high frequency region are (1) reducing the on-state voltage to reduce steady-state loss, (2) shortening the reverse recovery time to reduce switching loss, (3) Reverse current during reverse recovery may be reduced. In order to simultaneously satisfy these requirements, in the case of the structure shown in FIG. 2, it is effective to make the diffusion depth of p+ region 3 shallow and to lower the impurity concentration. This reduces the total amount of impurities in the p+ region 3, which reduces the amount of holes injected from the p+ region 3 into the n- layer 1 when turned on, shortening the reverse recovery time and reducing the reverse recovery current. be able to.

【0004】0004

【発明が解決しようとする課題】しかしながら、図2に
示すような高耐圧プレーナダイオードのp+ 領域3を
浅くし、その不純物濃度を低くすることは、いくつかの
問題が生ずる。すなわち、p+ 領域3を浅くすると、
p+ 拡散領域底部の周縁部31におけるPN接合の曲
率半径が小さくなり、電界の集中が強くなるため高耐圧
化に不利である。またp+領域3の不純物濃度を低くす
ることは、表面の影響を大きく受け、逆耐圧特性の安定
性が低下する。このため、従来は高耐圧特性を重視し、
逆回復特性を犠牲にせざるを得なかった。
However, several problems arise when the p+ region 3 of the high breakdown voltage planar diode as shown in FIG. 2 is made shallower and its impurity concentration is lowered. That is, if p+ region 3 is made shallow,
The radius of curvature of the PN junction at the peripheral edge 31 at the bottom of the p+ diffusion region becomes smaller, and the concentration of the electric field becomes stronger, which is disadvantageous for increasing the breakdown voltage. Further, lowering the impurity concentration of the p+ region 3 is greatly affected by the surface, and the stability of the reverse breakdown voltage characteristics decreases. For this reason, in the past, emphasis was placed on high voltage characteristics,
The reverse recovery property had to be sacrificed.

【0005】本発明の目的は、上述の問題を解決し、高
耐圧特性をもち、かつ高周波領域で作動するのに適する
プレーナダイオードとその製造方法を提供するものとす
る。
An object of the present invention is to solve the above-mentioned problems and provide a planar diode that has high breakdown voltage characteristics and is suitable for operation in a high frequency region, and a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、第一導電型の低不純物濃度層の一側に
第一導電型の高不純物濃度層を備え、他側の表面の所定
の部分から所定の第一の深さをもつ第二導電型の高不純
物濃度拡散領域が設けられた半導体素体を有するダイオ
ードにおいて、第二導電型の高不純物濃度領域の表面の
周縁部より離れた部分に第一の深さより浅い所定の第二
の深さをもつ複数の凹部が分散して形成されたものとす
る。そして、第二導電型の高不純物濃度領域の外側に間
隔を介してほぼ第一の深さを有する一つまたは複数の環
状の第二導電型の高不純物濃度領域が前記領域を囲んで
形成されることが有効である。また本発明のプレーナダ
イオードの製造方法は、第一導電型の低不純物濃度層と
高不純物濃度層とが積層された半導体素体を形成する工
程と、その第一導電型の低不純物濃度層の表面の所定の
部分から不純物を導入, 拡散して所定の第一の深さを
もつ第二導電型の高不純物濃度領域を形成する工程と、
その高不純物濃度領域の表面の複数部分からエッチング
して第一の深さより浅い所定の第二の深さをもつ凹部を
形成する工程と、第一導電型の高不純物濃度層の表面に
接触する電極を設ける工程と、第二導電型の高不純物濃
度領域の表面に凹部の内面を含めて接触する電極を設け
る工程とを含むものとする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a first conductivity type high impurity concentration layer on one side of the first conductivity type low impurity concentration layer, and a first conductivity type high impurity concentration layer on the other side. In a diode having a semiconductor body provided with a second conductivity type high impurity concentration diffusion region having a predetermined first depth from a predetermined portion of the surface, the periphery of the surface of the second conductivity type high impurity concentration region. It is assumed that a plurality of recesses having a predetermined second depth shallower than the first depth are formed in a distributed manner in a portion remote from the first depth. One or more annular second conductivity type high impurity concentration regions having a substantially first depth are formed outside the second conductivity type high impurity concentration regions at intervals, surrounding the regions. It is effective to Further, the method for manufacturing a planar diode of the present invention includes a step of forming a semiconductor body in which a first conductivity type low impurity concentration layer and a high impurity concentration layer are laminated, and a step of forming a semiconductor body in which a first conductivity type low impurity concentration layer and a high impurity concentration layer are stacked. introducing and diffusing impurities from a predetermined portion of the surface to form a second conductivity type high impurity concentration region having a predetermined first depth;
etching a plurality of parts of the surface of the high impurity concentration region to form a recess having a predetermined second depth shallower than the first depth, and contacting the surface of the high impurity concentration layer of the first conductivity type. The method includes a step of providing an electrode, and a step of providing an electrode in contact with the surface of the second conductivity type high impurity concentration region including the inner surface of the recess.

【0007】[0007]

【作用】高不純物濃度の第二導電型の拡散領域を深くし
て第一導電型の抵抗層との間のPN接合への表面の影響
を受けにくくし、またその領域底部周縁の曲率半径を大
きくして高耐圧特性を安定して出すことができるように
しても、その拡散領域の濃度の高い表面部分に凹部を形
成してその分だけ総不純物量低減することにより、逆回
復時に逆回復時間が短く、逆回復電流が小さくなる。
[Effect] The diffusion region of the second conductivity type with a high impurity concentration is deepened to make it less susceptible to the influence of the surface on the PN junction between it and the resistance layer of the first conductivity type, and the radius of curvature of the periphery of the bottom of the region is reduced. Even if it is made larger and can stably exhibit high breakdown voltage characteristics, by forming a recess in the high-concentration surface area of the diffusion region and reducing the total amount of impurities by that amount, reverse recovery can be prevented during reverse recovery. The time is short and the reverse recovery current is small.

【0008】[0008]

【実施例】図1は本発明の一実施例のプレーナ型高耐圧
ダイオードを示し、図2と共通の部分には同一の符号が
付されている。このダイオードも、図2の従来例のプレ
ーナダイオードと同様、n− 層1とn+ 層2よりな
るシリコン基板を用い、表面に形成した酸化膜4の開口
部からの不純物の拡散, 導入により表面不純物濃度1
018〜19/cm3 , 深さ20〜25μmのp+
 領域3を形成し、同時に酸化膜の開口部からの不純物
の拡散, 導入により二つのp+ ガードリング5を形
成した。その後、再び全面に酸化膜を形成し、開口部を
明けてp+ 領域3の表面からエッチングすることによ
り、1000V以上の定格耐圧の値の逆電圧が印加の際
にn− 層1との間のPN接合から延びる空乏層の幅約
6μmを残して凹部8を形成した。そのあと、p+ 領
域3表面にAlを蒸着, パターニングしてアノード電
極6を凹部8の内面にも接触するように形成し、また、
n+ 層2に接触するAlカソード電極7を形成するこ
とにより完成した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a planar type high voltage diode according to an embodiment of the present invention, and parts common to those in FIG. 2 are given the same reference numerals. Similar to the conventional planar diode shown in FIG. 2, this diode uses a silicon substrate consisting of an n- layer 1 and an n+ layer 2, and the surface impurities are diffused and introduced through the opening of the oxide film 4 formed on the surface. Concentration 1
018-19/cm3, p+ depth of 20-25 μm
Region 3 was formed, and at the same time, two p+ guard rings 5 were formed by diffusion and introduction of impurities from the opening of the oxide film. After that, an oxide film is again formed on the entire surface, and by making an opening and etching from the surface of the p+ region 3, when a reverse voltage of rated withstand voltage of 1000 V or more is applied, the oxide film is formed on the entire surface. The recess 8 was formed leaving a width of about 6 μm in the depletion layer extending from the PN junction. Thereafter, Al was deposited on the surface of the p+ region 3 and patterned to form the anode electrode 6 so as to contact the inner surface of the recess 8.
This was completed by forming an Al cathode electrode 7 in contact with the n+ layer 2.

【0009】図3, 図4, 図5はアノード領域3の
表面に形成される凹部8の形状の例を示す。図3の場合
は帯状、図4の場合は格子状、図5の場合は島状である
が、p+領域3の周縁部より離れた全面になるべく分散
して設けることが有効である。
FIGS. 3, 4, and 5 show examples of the shape of the recess 8 formed on the surface of the anode region 3. FIG. In the case of FIG. 3, the shape is a strip, in the case of FIG. 4, it is in the shape of a lattice, and in the case of FIG.

【0010】このようなPIN構造プレーナ型高耐圧ダ
イオードは定格耐圧特性を満足すると共に、従来の80
%になった逆回復時間を有し、高周波領域で動作させる
ことができるようになった。さらに導電型を逆にしたダ
イオードにおいても同様の効果が得られた。
[0010] Such a PIN structure planar type high voltage diode satisfies the rated voltage characteristics and is superior to the conventional 80
% of the reverse recovery time, and can now operate in the high frequency range. Furthermore, similar effects were obtained using diodes with reversed conductivity types.

【0011】[0011]

【発明の効果】本発明によれば、第一導電型の低不純物
濃度層の表面から拡散によって形成した第二導電型の高
不純物濃度領域の不純物濃度の高い表面層を部分的に除
去して凹部とすることにより、高不純物濃度領域の拡散
深さを減らすことなくまた拡散濃度を低くすることなし
に総不純物量を減少させることができた。その結果、オ
ン電圧が低く、かつ高不純物濃度領域底部周縁における
曲率半径が大きめで電界の集中が弱く、PN接合への表
面の可動イオン等の影響も少ないため高耐圧特性が確保
され、その上総不純物量の減少で逆回復時の逆回復時間
が短く、逆回復電流の小さい高周波動作特性のすぐれた
プレーナダイオードを容易に製造することが可能になっ
た。もちろん、さらにガードリングを設けることは耐圧
の向上に有効である。
According to the present invention, the high impurity concentration surface layer of the second conductivity type high impurity concentration region formed by diffusion from the surface of the first conductivity type low impurity concentration layer is partially removed. By forming the concave portion, the total amount of impurities could be reduced without reducing the diffusion depth of the high impurity concentration region or lowering the diffusion concentration. As a result, the on-voltage is low, and the radius of curvature at the bottom edge of the high impurity concentration region is large, so the concentration of electric field is weak, and the influence of mobile ions on the surface on the PN junction is small, ensuring high breakdown voltage characteristics. By reducing the amount of impurities, it has become possible to easily manufacture planar diodes with short reverse recovery time, small reverse recovery current, and excellent high-frequency operating characteristics. Of course, additionally providing a guard ring is effective in improving pressure resistance.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例のプレーナ型高耐圧ダイオー
ドの断面図
FIG. 1 is a cross-sectional view of a planar high voltage diode according to an embodiment of the present invention.

【図2】従来のプレーナ型高耐圧ダイオードの断面図[Figure 2] Cross-sectional view of a conventional planar high voltage diode


図3】本発明の一実施例のプレーナダイオードシリコン
基板の平面図
[
FIG. 3: A plan view of a planar diode silicon substrate according to an embodiment of the present invention

【図4】本発明の別の実施例のプレーナダイオードシリ
コン基板の平面図
FIG. 4 is a plan view of a planar diode silicon substrate according to another embodiment of the present invention.

【図5】本発明のさらに別の実施例のプレーナダイオー
ドのシリコン基板の平面図
FIG. 5 is a plan view of a silicon substrate of a planar diode according to yet another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1    n− 層 2    n+ 層 3    p+ 領域 5    p+ ガードリング 6    アノード電極 7    カソード電極 8    凹部 1 n- layer 2 n+ layer 3 p+ area 5 p+ guard ring 6 Anode electrode 7 Cathode electrode 8 Recessed part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】第一導電型の低不純物濃度層の一側に第一
導電型の高不純物濃度層を備え、他側の表面の所定の部
分から所定の第一の深さをもつ第二導電型の高不純物濃
度拡散領域が設けられた半導体素体を有するダイオード
において、第二導電型の高不純物濃度領域表面の周縁部
より離れた部分に第一の深さより浅い所定の第二の深さ
をもつ複数の凹部が分散して形成されたことを特徴とす
るプレーナダイオード。
Claims: 1. A first conductivity type high impurity concentration layer on one side of the first conductivity type low impurity concentration layer; In a diode having a semiconductor body provided with a high impurity concentration diffusion region of the second conductivity type, a predetermined second depth shallower than the first depth is provided at a portion of the surface of the second conductivity type high impurity concentration region away from the peripheral edge. A planar diode characterized in that a plurality of concave portions having a high temperature are formed in a dispersed manner.
【請求項2】第二導電型の高不純物濃度領域の外側に間
隔を介してほぼ第一の深さを有する一つまたは複数の環
状の第二導電型の高不純物濃度領域が前記領域を囲んで
形成された請求項1記載のプレーナダイオード。
2. One or more annular high impurity concentration regions of a second conductivity type having a substantially first depth at a distance outside the high impurity concentration region of the second conductivity type surround the region. 2. A planar diode according to claim 1, formed of:
【請求項3】第一導電型の低不純物濃度層と高不純物濃
度層とが積層された半導体素体を形成する工程と、第一
導電型の低不純物濃度層の所定の部分から不純物を導入
, 拡散して所定の第一の深さをもつ第二導電型の高不
純物濃度領域を形成する工程と、その高不純物濃度領域
の表面の複数部分からエッチングして第一の深さより浅
い所定の第二の深さをもつ凹部を形成する工程と、第一
導電型の高不純物濃度層の表面に接触する電極を設ける
工程と、第二導電型の高不純物濃度領域の表面に凹部の
内面を含めて接触する電極を設ける工程とを含むことを
特徴とするプレーナダイオードの製造方法。
3. A step of forming a semiconductor element in which a first conductivity type low impurity concentration layer and a high impurity concentration layer are laminated, and introducing an impurity from a predetermined portion of the first conductivity type low impurity concentration layer. , forming a high impurity concentration region of a second conductivity type by diffusion to a predetermined first depth, and etching a plurality of parts of the surface of the high impurity concentration region to a predetermined depth shallower than the first depth. a step of forming a recess having a second depth; a step of providing an electrode in contact with the surface of the high impurity concentration layer of the first conductivity type; and a step of forming an inner surface of the recess on the surface of the high impurity concentration region of the second conductivity type. 1. A method for manufacturing a planar diode, the method comprising: providing an electrode that is in contact with the electrode.
JP7938191A 1991-04-12 1991-04-12 Planar diode and its manufacture Pending JPH04314367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7938191A JPH04314367A (en) 1991-04-12 1991-04-12 Planar diode and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7938191A JPH04314367A (en) 1991-04-12 1991-04-12 Planar diode and its manufacture

Publications (1)

Publication Number Publication Date
JPH04314367A true JPH04314367A (en) 1992-11-05

Family

ID=13688295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7938191A Pending JPH04314367A (en) 1991-04-12 1991-04-12 Planar diode and its manufacture

Country Status (1)

Country Link
JP (1) JPH04314367A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340528A (en) * 2004-05-27 2005-12-08 Fuji Electric Device Technology Co Ltd Semiconductor device and its manufacturing method
JP2012089822A (en) * 2010-09-21 2012-05-10 Toshiba Corp Semiconductor device
JP2012165013A (en) * 2012-04-26 2012-08-30 Fuji Electric Co Ltd Semiconductor device and manufacturing method of the same
JP2016001754A (en) * 2015-08-27 2016-01-07 富士電機株式会社 Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340528A (en) * 2004-05-27 2005-12-08 Fuji Electric Device Technology Co Ltd Semiconductor device and its manufacturing method
JP2012089822A (en) * 2010-09-21 2012-05-10 Toshiba Corp Semiconductor device
JP2012165013A (en) * 2012-04-26 2012-08-30 Fuji Electric Co Ltd Semiconductor device and manufacturing method of the same
JP2016001754A (en) * 2015-08-27 2016-01-07 富士電機株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
US7816733B2 (en) SiC semiconductor having junction barrier schottky device
US7863682B2 (en) SIC semiconductor having junction barrier Schottky diode
US5723890A (en) MOS type semiconductor device
JP5565461B2 (en) Semiconductor device
US7915705B2 (en) SiC semiconductor device having outer periphery structure
EP0663698B1 (en) Semiconductor device and its manufacture
JP2003101039A (en) High voltage semiconductor device
TW201222649A (en) HV Schottky diode with dual guard regions
US20150069412A1 (en) Schottky barrier diode and method for manufacturing schottky barrier diode
KR101490937B1 (en) Schottky barrier diode and method for manufacturing the same
WO2004032244A1 (en) Semiconductor device and process for fabricating the same
JP4550182B2 (en) High density MOS technology power device structure
US5213994A (en) Method of making high voltage semiconductor device
JP3357804B2 (en) Semiconductor device and manufacturing method thereof
JP5134746B2 (en) Method for manufacturing field effect transistor
JPH04314367A (en) Planar diode and its manufacture
JPH06283727A (en) Power semiconductor element
JPH06244405A (en) Semiconductor device
JP3623687B2 (en) Schottky barrier diode and manufacturing method thereof
US6635926B2 (en) Field effect transistor with high withstand voltage and low resistance
US20230155021A1 (en) Silicon carbide semiconductor device
JP2000294783A (en) Power mos transistor and its manufacture
JPH04125972A (en) Mos semiconductor element and manufacture thereof
JPH10303436A (en) Semiconductor device
JP2005136116A (en) Semiconductor element and its manufacturing method