JPH04313275A - Semiconductor pressure sensor - Google Patents

Semiconductor pressure sensor

Info

Publication number
JPH04313275A
JPH04313275A JP7799091A JP7799091A JPH04313275A JP H04313275 A JPH04313275 A JP H04313275A JP 7799091 A JP7799091 A JP 7799091A JP 7799091 A JP7799091 A JP 7799091A JP H04313275 A JPH04313275 A JP H04313275A
Authority
JP
Japan
Prior art keywords
single crystal
pressure sensor
wafer
gauge element
semiconductor pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7799091A
Other languages
Japanese (ja)
Inventor
Yasuhiro Koike
靖弘 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP7799091A priority Critical patent/JPH04313275A/en
Publication of JPH04313275A publication Critical patent/JPH04313275A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

PURPOSE:To improve output characteristics and temperature characteristics and at the same time simplify a production process regarding a cross-type semiconductor pressure sensor utilizing a property that directional property appears at a specific resistance when an Si single-crystal body is compressed in a certain face direction. CONSTITUTION:An Si single-crystal body 2 which has a piezo resistance coefficient pi63' and becomes a gauge by allowing a specific crystal surface to be formed as a surface where a compression force is applied to is constituted by using a wafer in SOI structure. The gauge element is formed by etching, etc., from an Si single-crystal layer 3c of a wafer 3 in SOI structure. Therefore, a specific resistance and a thickness of the Si single-crystal body 2 which becomes the guide element are prescribed by the specific resistance and thickness of Si single-crystal layer of the wafer 3 in SOI structure, thus eliminating lapping process of the Si single-crystal body 2 and at the same time preventing a pn junction from being formed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、Si単結晶体のピエゾ
抵抗効果を利用して圧縮力の検出を行う直交型の半導体
圧力センサに係り、特にゲージ素子をシリコンオンイン
シュレータ(SOI:Silicon On Insu
lator) 構造のウエハを用いて構成した半導体圧
力センサに関する。
[Field of Industrial Application] The present invention relates to an orthogonal semiconductor pressure sensor that detects compressive force by utilizing the piezoresistance effect of a Si single crystal. Insu
The present invention relates to a semiconductor pressure sensor constructed using a wafer with a wafer structure.

【0002】0002

【従来の技術】従来の圧力センサとしては、加えられた
圧縮力に対応して生ずる起歪体の歪みを、接着剤を用い
て起歪体に複数個貼付し、ホイートストンブリッジ回路
を形成するよう電気的に結線した歪ゲージに伝達し、こ
の歪ゲージの抵抗変化に基づき生じる電圧出力の大きさ
として検知するように構成されていた。それに用いられ
る歪ゲージも近年においてはシリコン(Silicon
、以下Siとする)を中心とした半導体単結晶よりなる
半導体歪ゲージが主流を占めるようになってきた。しか
し半導体歪ゲージを接着剤を用いて起歪体に複数個貼付
してホイートストンブリッジ回路を形成するよう結線し
てなる半導体圧力センサは、その製造にあたり特に貼付
に際して複雑で高いノウハウを要することから、特性の
バラツキが大きくコスト高となり、また貼付に用いられ
る接着剤はクリープ、ヒステリシス等の悪影響を招く上
に歪みの伝達を確実になさず、半導体圧力センサの信頼
性を著しく低減させるという欠点があった。
[Prior Art] Conventional pressure sensors use adhesives to form a Wheatstone bridge circuit by attaching a plurality of strain-generating bodies to a strain-generating body using an adhesive to measure the distortion of a strain-generating body that occurs in response to an applied compressive force. The voltage was transmitted to an electrically connected strain gauge and detected as the magnitude of the voltage output generated based on the change in resistance of the strain gauge. In recent years, the strain gauges used for this purpose have also been made of silicon (Silicon).
Semiconductor strain gauges made of semiconductor single crystals, mainly Si (hereinafter referred to as Si), have become mainstream. However, semiconductor pressure sensors, which are made by attaching a plurality of semiconductor strain gauges to a strain body using an adhesive and connecting them to form a Wheatstone bridge circuit, require complicated and high know-how to manufacture, especially when attaching them. There are large variations in characteristics, resulting in high costs, and the adhesive used for pasting causes negative effects such as creep and hysteresis, and does not ensure strain transmission, which significantly reduces the reliability of semiconductor pressure sensors. Ta.

【0003】そこで、上記欠点の解消のため、以下のよ
うな方式が採用されてきた。それは、1つのSi結晶体
で複数の歪ゲージを構成する、つまり1つのSi単結晶
体に一対の出力電極と入力電極とを各々交差して設け、
望ましくは直交する方向に設ける構成とする。その上、
そのSi単結晶体の結晶面に直交するように圧縮力を作
用させた時の、圧縮歪に基づくSi単結晶体のピエゾ抵
抗効果を利用して圧縮力を検知する構成とする、という
方式である。この方式の直交型の半導体圧力センサに、
以下のような第1のタイプと第2のタイプのものが知ら
れている。
[0003] Therefore, in order to eliminate the above-mentioned drawbacks, the following methods have been adopted. In this method, a plurality of strain gauges are constructed using a single Si crystal, in other words, a pair of output electrodes and an input electrode are provided in a single Si crystal, each intersecting with the other.
Preferably, they are arranged in orthogonal directions. On top of that,
When a compressive force is applied perpendicular to the crystal plane of the Si single crystal, the compressive force is detected using the piezoresistance effect of the Si single crystal based on compressive strain. be. This type of orthogonal semiconductor pressure sensor has
The following first type and second type are known.

【0004】第1のタイプの従来の直交型の半導体圧力
センサを図4に示す。同図において、半導体圧力センサ
11のゲージ素子であるピエゾ抵抗係数π63′を有す
るSi単結晶体12は、結晶面である上面が(110)
面となるように、例えばSiウエハから水平断面形状が
略正方形のシリコン片として切り出されたものである。 このSi単結晶体12は、ホウ素等の不純物を低濃度に
含有した高抵抗体であって、厚さは不純物濃度と、入力
抵抗とのかね合いで数十乃至数百μmに設定されており
、厚みと不純物の濃度は均一とされている。
A first type of conventional orthogonal semiconductor pressure sensor is shown in FIG. In the figure, a Si single crystal 12 having a piezoresistance coefficient π63', which is a gauge element of a semiconductor pressure sensor 11, has an upper surface (110) as a crystal plane.
For example, a silicon piece having a substantially square horizontal cross section is cut out from a Si wafer so as to form a plane. This Si single crystal 12 is a high resistance material containing a low concentration of impurities such as boron, and its thickness is set to several tens to hundreds of μm depending on the impurity concentration and input resistance. , the thickness and impurity concentration are assumed to be uniform.

【0005】また、このSi単結晶体12の上面には、
アルミニウム等の金属でできた一対の相対する入力電極
14,15と出力電極16,17が真空蒸着やメッキ等
で形成されている。この入力電極14,15の方向と出
力電極16,17の方向は、各々<001>方向から4
5°の方向と、  外1  方向から45°の方向を向
[0005] Furthermore, on the upper surface of this Si single crystal body 12,
A pair of opposing input electrodes 14, 15 and output electrodes 16, 17 made of metal such as aluminum are formed by vacuum deposition, plating, or the like. The direction of the input electrodes 14 and 15 and the direction of the output electrodes 16 and 17 are respectively 4 from the <001> direction.
5° direction and 45° direction from the outside direction

【0006】[0006]

【外1】[Outside 1]

【0007】ように形成されている。そして、Si単結
晶体12の上面と後述の上部台座18との接合面の一方
の相対する各辺に対し、入力電極14,15が該各辺の
大部分に沿うように形成されているのに対し、出力電極
16,17は図4に明らかなように、上記接合面の他方
の相対する各辺に向く部分が、該各辺の中央部に位置精
度良く僅かな幅を有して形成されている。
It is formed as follows. Input electrodes 14 and 15 are formed along most of the opposing sides of the joint surface between the upper surface of the Si single crystal 12 and the upper pedestal 18, which will be described later. On the other hand, as is clear from FIG. 4, the output electrodes 16 and 17 are formed such that the portions facing the other opposing sides of the bonding surface have a small width at the center of each side with good positional accuracy. has been done.

【0008】さらに、Si単結晶体12の上面及び下面
には、例えばガラスやセラミック等を用いて絶縁性を有
する厚さ1mm程度の上部台座18及び下部台座19が
例えば静電接合により接合されている。上部台座18は
、上方より加えられる圧縮力Wを確実にSi単結晶体1
2に伝達するものであり、下部台座19は圧縮力Wが作
用したときの圧縮力以外の他の圧力により悪影響をもた
らさぬよう確実にSi単結晶体12を支持するものであ
る。
Furthermore, an upper pedestal 18 and a lower pedestal 19 having an insulating property and having a thickness of about 1 mm are bonded to the upper and lower surfaces of the Si single crystal body 12 by, eg, electrostatic bonding. There is. The upper pedestal 18 reliably absorbs the compressive force W applied from above to the Si single crystal 1.
2, and the lower pedestal 19 reliably supports the Si single crystal 12 so that pressure other than the compressive force when the compressive force W acts does not have an adverse effect.

【0009】このように、圧縮力の伝達材料である台座
を介して圧縮力をSi単結晶体の結晶面へ加えるように
構成したので、接着剤のもたらす出力特性への悪影響が
無くなり、圧縮力に対するSi単結晶体のピエゾ抵抗効
果を有効に利用でき、圧縮力に比例した電圧出力を得る
ことができる。電圧検出の動作原理について、図6に基
づき、以下に具体的に説明する。
[0009] In this way, since the compressive force is applied to the crystal plane of the Si single crystal through the pedestal, which is a compressive force transmitting material, there is no negative effect on the output characteristics caused by the adhesive, and the compressive force is reduced. It is possible to effectively utilize the piezoresistance effect of the Si single crystal against the compressive force, and it is possible to obtain a voltage output proportional to the compressive force. The operating principle of voltage detection will be specifically explained below based on FIG. 6.

【0010】上記のようにピエゾ抵抗係数π63′を有
するSi単結晶体12に対し、その垂直方向に圧縮力W
を加えると、Si単結晶体12の互いに直交する抵抗成
分RL とRR が変化することにより、上記圧縮力W
に応じた電圧出力ΔVが得られる。即ち、圧縮力Wを加
えない状態では、図6(a) に示すようにRL とR
R が等しいため、電流は入力電極14,15間に真っ
直ぐに流れ、これと垂直方向の出力電極16,17間に
電圧は生じない。ところが、圧縮力Wを加えると、その
力に応じて図6(b) に示すようにRL とRR が
変化して互いに異なる値となるため、より小さい抵抗成
分の方に電流が流れやすくなって電流密度分布が変化し
、これに従い電圧分布が変化するので、出力電極16,
17間に電圧が生じる。
As mentioned above, a compressive force W is applied to the Si single crystal 12 having a piezoresistance coefficient π63' in the vertical direction.
, the mutually orthogonal resistance components RL and RR of the Si single crystal body 12 change, and the compressive force W
A voltage output ΔV corresponding to the voltage can be obtained. That is, when no compressive force W is applied, RL and R
Since R 2 are equal, the current flows straight between the input electrodes 14 and 15 and no voltage is produced between this and the vertical output electrodes 16 and 17. However, when a compressive force W is applied, RL and RR change depending on the force as shown in Figure 6(b) and become different values, so current flows more easily to the smaller resistance component. Since the current density distribution changes and the voltage distribution changes accordingly, the output electrodes 16,
A voltage is generated between 17.

【0011】つまり、図6において、Y方向に入力電極
14,15を設けた対向する辺間の距離をaとし、X方
向に出力電極16,17を設けた対向する辺間の距離を
bとし、入力電極14,15間に電流を流し出力電極1
6,17より電圧出力ΔVを取り出すようにして、Si
単結晶体12の結晶面に垂直に圧縮力Wを加えれば、Z
方向へ働く圧縮応力σz =(W/A,W:圧縮力、A
:結晶面の面積)が生じたSi単結晶体12において得
られる電圧出力ΔVは、次の(1) 式により書き表わ
される。
That is, in FIG. 6, the distance between the opposing sides where the input electrodes 14 and 15 are provided in the Y direction is a, and the distance between the opposing sides where the output electrodes 16 and 17 are provided in the X direction is b. , a current is passed between the input electrodes 14 and 15, and the output electrode 1
By extracting the voltage output ΔV from 6 and 17,
If a compressive force W is applied perpendicularly to the crystal plane of the single crystal 12, Z
Compressive stress acting in the direction σz = (W/A, W: compressive force, A
The voltage output ΔV obtained in the Si single crystal 12 in which .

【0012】   ΔV=b・ρ・J2 ・π63′・σz     
          ・・・(1) (1) 式におい
て、ρはSi単結晶体12の比抵抗、J2 は電流速度
、π63′はピエゾ抵抗係数である。また、入力電極1
4,15間にVなる電圧が印加されていると仮定すれば
、(1) 式は次の(2)式のように書き表わされる。
[0012] ΔV=b・ρ・J2・π63′・σz
(1) In the equation (1), ρ is the specific resistance of the Si single crystal 12, J2 is the current velocity, and π63' is the piezoresistance coefficient. In addition, input electrode 1
Assuming that a voltage of V is applied between 4 and 15, equation (1) can be written as equation (2) below.

【0013】   ΔV=(b/a)・V・π63′・σz     
        ・・・(2) 以上のように圧縮力W
に比例した電圧出力が極めて簡単に得られる。そして、
上記第1のタイプの半導体圧力センサは、下部台座19
上に適正な結晶方向と比抵抗とを持つSi結晶体12を
接合した後、入力抵抗の適性化のため、ゲージ素子とな
るSi単結晶体12の厚さをラッピング加工で薄化して
その比抵抗を調整していた。次に、入力電極14,15
、出力電極16,17をSi単結晶体12の上面に形成
した後、上部台座18を接合して製造されていた。
[0013] ΔV=(b/a)・V・π63′・σz
...(2) As above, the compressive force W
A voltage output proportional to can be obtained very easily. and,
The first type of semiconductor pressure sensor has a lower pedestal 19
After bonding the Si crystal body 12 having an appropriate crystal orientation and specific resistance on top, the thickness of the Si single crystal body 12 that will become the gauge element is thinned by lapping to optimize the input resistance. I was adjusting the resistance. Next, input electrodes 14, 15
, the output electrodes 16 and 17 were formed on the upper surface of the Si single crystal 12, and then the upper pedestal 18 was bonded.

【0014】第2のタイプの従来の半導体圧力センサを
図5に示す。同図に示すように、第2のタイプの半導体
センサ21は、第1のタイプの半導体センサ11のよう
な下部台座19にSi単結晶体12を接合する構成では
なく、厚めのSi単結晶基板23に高濃度の不純物のド
ーピングにより形成した不純物領域22でゲージ素子を
形成する構成である。つまり、Si単結晶基板23がp
型であればn型の不純物をドーピングするというように
不純物領域22の形成によりゲージ素子を形成している
。これに対し、第1のタイプの半導体圧力センサ11は
、Si単結晶体12全体がゲージ素子となっている。 第1のタイプと同様に、ゲージ素子の上面は所定の方向
の結晶面となるように形成され、入力電極24,25及
び出力電極26,27が所定の方向に形成された後、上
部台座28が接合される。動作原理は両者共通する。
A second type of conventional semiconductor pressure sensor is shown in FIG. As shown in the figure, the second type semiconductor sensor 21 does not have a structure in which a Si single crystal 12 is bonded to a lower pedestal 19 like the first type semiconductor sensor 11, but uses a thick Si single crystal substrate. In this configuration, a gauge element is formed by an impurity region 22 formed by doping 23 with impurity at a high concentration. In other words, the Si single crystal substrate 23 has p
If it is a type, the gauge element is formed by forming the impurity region 22 by doping with an n-type impurity. On the other hand, in the first type of semiconductor pressure sensor 11, the entire Si single crystal 12 serves as a gauge element. Similar to the first type, the upper surface of the gauge element is formed to be a crystal plane in a predetermined direction, and after input electrodes 24, 25 and output electrodes 26, 27 are formed in a predetermined direction, the upper pedestal 28 are joined. The operating principle is common to both.

【0015】[0015]

【発明が解決しようとする課題】上記従来の構造の第1
のタイプの半導体圧力センサ11においては、Si単結
晶体12からなるゲージ素子は、上下方向の圧縮(また
は引張)応力だけを感知するように構成されているが、
圧縮力Wを加えたときに力の加わり方が均一とならず、
Si単結晶体12がたわみ、ズレ応力や横方向の応力が
生じてしまう。この結果、検知される出力電圧ΔVは理
論値の約2/3となり、出力持性の直線性も損なわれて
いた。
[Problem to be Solved by the Invention] First of the above conventional structures
In the type of semiconductor pressure sensor 11, the gauge element made of Si single crystal 12 is configured to sense only compressive (or tensile) stress in the vertical direction.
When compressive force W is applied, the force is not applied uniformly,
The Si single crystal body 12 is bent, resulting in shear stress and lateral stress. As a result, the detected output voltage ΔV was about 2/3 of the theoretical value, and the linearity of the output characteristic was also impaired.

【0016】また、ゲージ素子の入力抵抗の適性化を、
ゲージ素子となるSi単結晶体12の厚みの調整で行っ
ていたが、このSi単結晶体12のラッピングによる薄
化には限界があり、従ってゲージ素子の比抵抗を自由に
選択することはできなかった。さらに、Si単結晶体1
2自身のラッピングによる薄化には手間がかかるという
欠点があった。
[0016] Furthermore, the input resistance of the gauge element is optimized by
This was done by adjusting the thickness of the Si single crystal 12 that becomes the gauge element, but there is a limit to the thinning of this Si single crystal 12 by wrapping, and therefore the resistivity of the gauge element cannot be freely selected. There wasn't. Furthermore, Si single crystal 1
There was a drawback that thinning by wrapping No. 2 itself was time-consuming.

【0017】さらに、上記従来の構造の第2のタイプの
半導体圧力センサ21においては、厚めのSi単結晶基
板23に対して高濃度不純物のドーピングによりできる
pn接合を利用してゲージ素子を形成している。このた
め、第1のタイプの半導体圧力センサ11と比べて、下
部台座19とSi単結晶体12との接合工程とSi単結
晶体12のラッピング工程がない上に、ドープする不純
物濃度の調整によりゲージ素子の比抵抗を調整しやすく
電流の流路を規制できるという有利点がある。しかし、
ゲージ素子は、pn接合にて形成されているから、温度
の上昇とともにこのpn接合部からの漏れ電流が増加し
、高温域(約150°C以上)ではpn接合が損傷し電
圧出力ΔVを取り出せないという欠点があった。また、
ズレ応力、横応力の発生による出力への影響は解消し得
ず、出力感度が低く直線性も悪いという欠点も有してい
た。
Furthermore, in the second type of semiconductor pressure sensor 21 having the above conventional structure, a gauge element is formed using a pn junction formed by doping a thick Si single crystal substrate 23 with a high concentration of impurity. ing. Therefore, compared to the first type of semiconductor pressure sensor 11, there is no bonding process between the lower pedestal 19 and the Si single crystal body 12, and there is no lapping process for the Si single crystal body 12. This has the advantage that the specific resistance of the gauge element can be easily adjusted and the current flow path can be regulated. but,
Since the gauge element is formed of a pn junction, the leakage current from this pn junction increases as the temperature rises, and in the high temperature range (above about 150°C), the pn junction is damaged and the voltage output ΔV cannot be obtained. There was a drawback that there was no Also,
The influence on the output due to the generation of shear stress and lateral stress cannot be eliminated, and it also has the drawbacks of low output sensitivity and poor linearity.

【0018】本発明は、上記従来の問題点に鑑み、出力
特性の向上及び温度特性の向上が図られるとともに製造
プロセスの簡易化が達成される半導体圧力センサを提供
することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned conventional problems, it is an object of the present invention to provide a semiconductor pressure sensor that has improved output characteristics and temperature characteristics, and also simplifies the manufacturing process.

【0019】[0019]

【課題を解決するための手段】上記目的を達成するため
、本発明の直交型の半導体圧力センサは、ピエゾ抵抗係
数π63′を有し圧縮力が加えられる面として特定の結
晶面が形成されるSi単結晶体をゲージ素子として用い
、該Si単結晶体の有するピエゾ抵抗効果を利用して該
結晶面に垂直に加えられる圧縮力の検出を行う直交型の
半導体圧力センサにおいて、前記ゲージ素子の形成にシ
リコンオンインシュレータ(SOI)構造のウエハを用
い、該ゲージ素子となるSi単結晶体を該シリコンオン
インシュレータ(SOI)構造のウエハのSi単結晶層
より形成することを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the orthogonal type semiconductor pressure sensor of the present invention has a piezoresistance coefficient π63' and a specific crystal plane is formed as a surface to which a compressive force is applied. An orthogonal semiconductor pressure sensor that uses a Si single crystal as a gauge element and detects a compressive force applied perpendicular to the crystal plane by utilizing the piezoresistance effect of the Si single crystal. It is characterized in that a wafer with a silicon-on-insulator (SOI) structure is used for formation, and the Si single-crystal body serving as the gauge element is formed from the Si single-crystal layer of the wafer with the silicon-on-insulator (SOI) structure.

【0020】[0020]

【作用】上記のように、ゲージ素子の形成にシリコンオ
ンインシュレータ(SOI)構造のウエハを用い、ゲー
ジ素子となるSi単結晶体をシリコンオンインシュレー
タ(SOI)構造のSi単結晶層より形成する場合、ゲ
ージ素子となるSi単結晶体の比抵抗及び厚さはシリコ
ンオンインシュレータ(SOI)構造のウエハのSi単
結晶層の比抵抗及び厚さにより規定される。ゆえに、S
i単結晶体のラッピング工程がなくなるから製造工程が
簡略化され、ゲージ素子への圧縮力の加わり方が理想的
となるため出力特性の向上と高精度が達成される。さら
に、pn接合が形成されてはいないから、温度特性が向
上する。
[Operation] As described above, when a wafer with a silicon-on-insulator (SOI) structure is used to form a gauge element, and the Si single crystal that becomes the gauge element is formed from a Si single-crystal layer with a silicon-on-insulator (SOI) structure. The specific resistance and thickness of the Si single crystal material serving as the gauge element are defined by the specific resistance and thickness of the Si single crystal layer of the wafer having a silicon-on-insulator (SOI) structure. Therefore, S
The manufacturing process is simplified because the wrapping process of the single crystal is eliminated, and the compressive force applied to the gauge element is ideal, resulting in improved output characteristics and high accuracy. Furthermore, since no pn junction is formed, temperature characteristics are improved.

【0021】[0021]

【実施例】以下、本発明の実施例について、図面を参照
しながら説明する。図1は、本発明の一実施例の半導体
圧力センサの構成図である。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of a semiconductor pressure sensor according to an embodiment of the present invention.

【0022】同図において、半導体圧力センサ1のゲー
ジ素子であるSi単結晶体2は、結晶面である上面2a
が(100)面となるように形成されている。このSi
単結晶体2は、シリコンオンインシュレータ(Sili
con On Insulator 、以下SOIとす
る) 構造のウエハ3、すわちSi単結晶層3a上にS
i酸化膜(SiO2 )3bを形成しその上にSi単結
晶層3cを形成した総厚数百μmのSOI基板を用い、
その最上層のSi単結晶層3cをエッチング等により所
定の寸法に形成したものである。また、Si単結晶体2
の比抵抗と厚さは、ピエゾ抵抗係数π63′の大きさと
その温度特性、及び比抵抗の大きさとその温度特性を総
合的に判断して、最適値(例えば数Ω・cm、数μm乃
至数十μm)に設定されている。
In the figure, a Si single crystal 2 which is a gauge element of a semiconductor pressure sensor 1 has an upper surface 2a which is a crystal plane.
is formed to be a (100) plane. This Si
The single crystal body 2 is made of silicon on insulator (Sili
con On Insulator (hereinafter referred to as SOI) structure wafer 3, that is, Si single crystal layer 3a,
Using an SOI substrate with a total thickness of several hundred μm on which an i-oxide film (SiO2) 3b is formed and a Si single crystal layer 3c is formed on it,
The uppermost Si single crystal layer 3c is formed into a predetermined size by etching or the like. In addition, Si single crystal 2
The specific resistance and thickness of the piezoresistance coefficient π63′ and its temperature characteristics are determined comprehensively, and the optimum value (for example, several Ω・cm, several μm to several (10 μm).

【0023】また、Si単結晶体2の、その対向する2
つの側面にはアルミニウムや白金等の金属膜からなる一
対の入力電極4,5が、他の対向する2つの側面には上
記と同様な金属膜からなる一対の出力電極6,7が例え
ば真空蒸着やメッキ等の技術を用いて形成されている。 この入力電極4,5の方向と出力電極6,7の方向は各
々<001>方向から45°の方向と、  外2  方
向から45°の方向を向く
[0023] Also, the opposing 2 of the Si single crystal 2
A pair of input electrodes 4, 5 made of a metal film such as aluminum or platinum are formed on one side surface, and a pair of output electrodes 6, 7 made of a metal film similar to the above are formed on the other two opposing sides, for example, by vacuum evaporation. It is formed using techniques such as or plating. The direction of the input electrodes 4 and 5 and the direction of the output electrodes 6 and 7 are respectively 45 degrees from the <001> direction and 45 degrees from the outside direction.

【0024】[0024]

【外2】[Outside 2]

【0025】ように形成されている。ここで入力電極4
,5は、Si単結晶体2の側面から上面2aの側縁部を
覆うような接触部4a,5aが設けられるのに対し、出
力電極6,7は、Si単結晶体2の側面の中央部のほん
の僅かな部分のみを横切るようにその側面と上面の側縁
の一部を覆うような接触部6a,7aが設けられる。 この接触部6a、7aの接触幅については、出力を効率
良く取り出すためにはSi単結晶体2の僅かな電位分布
を検出する必要があり、この幅が大きくなると出力の感
度が小さくなってしまうので、小さいほど良い。
It is formed as follows. Here input electrode 4
, 5 are provided with contact portions 4a, 5a that cover the side edges of the upper surface 2a from the side surfaces of the Si single crystal body 2, whereas the output electrodes 6, 7 are provided at the center of the side surface of the Si single crystal body 2. Contact portions 6a and 7a are provided so as to traverse only a small portion of the portion and cover part of the side edges and upper surface thereof. Regarding the contact width of the contact portions 6a and 7a, it is necessary to detect a slight potential distribution of the Si single crystal 2 in order to extract the output efficiently, and as this width increases, the output sensitivity decreases. So the smaller the better.

【0026】さらに、Si単結晶体2の上面2aには、
上記入力電極4,5の接触部4a、5a及び出力電極6
,7の接触部6a、7aの配置部とは重ならないように
、ガラスやセラミック等でできた絶縁性の台座8が接合
される(図1(a) には接合前の状態を示している)
。 この接合は、例えば陽極接合(静電接合)、共晶接合、
ガラス接合等の、つまりクリープまたはヒステリシス等
の出力特性への悪影響をもたらすことが懸念される接着
剤を用いない技術を用いてなされる。
Furthermore, on the upper surface 2a of the Si single crystal 2,
Contact portions 4a and 5a of the input electrodes 4 and 5 and output electrode 6
, 7, an insulating pedestal 8 made of glass, ceramic, or the like is bonded so as not to overlap with the contact portions 6a, 7a (Fig. 1(a) shows the state before bonding). )
. This bonding is, for example, anodic bonding (electrostatic bonding), eutectic bonding,
This is done using techniques such as glass bonding, which do not use adhesives, which may cause adverse effects on output characteristics such as creep or hysteresis.

【0027】次に、上記構成からなる本実施例の半導体
圧力センサ1の製造方法の一例を図1及び図2を用いて
以下に説明する。まず、ゲージ素子となる最上層のSi
単結晶層3cの比抵抗及び厚さを予め所定の値に設定し
て製造したSOI構造のウエハ3を用意する(図2(a
))。この比抵抗及び厚さは、ピエゾ抵抗係数π63′
の大きさとその温度特性、及び比抵抗の大きさとその温
度特性を総合的に判断して最適値に設定しておくことは
既述した。
Next, an example of a method for manufacturing the semiconductor pressure sensor 1 of this embodiment having the above structure will be explained below with reference to FIGS. 1 and 2. First, the top layer of Si, which will become the gauge element,
A wafer 3 having an SOI structure is prepared by setting the specific resistance and thickness of the single crystal layer 3c to predetermined values in advance (see FIG. 2(a)).
)). This resistivity and thickness are the piezoresistance coefficient π63'
As described above, the magnitude of resistivity and its temperature characteristics, and the magnitude of resistivity and its temperature characteristics are comprehensively judged and set to the optimum value.

【0028】次に、例えばフォトリソグラフィー法等を
使用して、エッチング用のマスタパターンを形成し、こ
のマスクを介してエッチングを施して、ゲージ素子とな
る所定の寸法のSi単結晶体2を残しそれ以外の部分を
除去する。あるいは超音波加工やレーザ加工等の超微細
加工技術を用いることにより極めて高い精度に形成でき
る。
Next, a master pattern for etching is formed using, for example, a photolithography method, and etching is performed through this mask to leave a Si single crystal body 2 of a predetermined size that will become a gauge element. Remove other parts. Alternatively, it can be formed with extremely high precision by using ultrafine processing technology such as ultrasonic processing or laser processing.

【0029】さらに、入力電極4,5及び出力電極6,
7を、SOI構造のウエハ3のSi酸化膜3b上とエッ
チング等により形成されたSi単結晶体2の側面及び上
面2aの側縁に、図1に示すような所定の形状に即ち接
触部4a,5aがSi単結晶体2の側面から上面2aの
側縁部を覆うように、また接触部6a,7aがSi単結
晶体2の側面の中央部のほんの僅かな部分のみを横切り
その側面と上縁の一部を覆うように形成する。この両電
極の形成は、例えば電極パターンの形成後、Si酸化膜
3b及びSi単結晶体2の上部全面に真空蒸着やメッキ
等により堆積させた金属膜上にマスクを形成し、次にエ
ッチングを施して選択的に金属膜を除去して行える。
Furthermore, input electrodes 4, 5 and output electrodes 6,
7 is formed into a predetermined shape as shown in FIG. 1, that is, a contact portion 4a, on the Si oxide film 3b of the SOI structure wafer 3, and on the side and side edges of the top surface 2a of the Si single crystal 2 formed by etching or the like. , 5a cover the side edges of the upper surface 2a from the side surfaces of the Si single crystal 2, and the contact portions 6a, 7a cross only a small part of the center of the side surfaces of the Si single crystal 2, and the contact portions 6a, 7a cover the side edges of the upper surface 2a from the side surfaces of the Si single crystal 2. Form to cover part of the upper edge. For example, after forming the electrode pattern, a mask is formed on the metal film deposited by vacuum evaporation or plating on the entire upper surface of the Si oxide film 3b and the Si single crystal 2, and then etching is performed. This can be done by selectively removing the metal film.

【0030】その後、Si単結晶体2の上面2aの上記
両電極配置部と重ならないように、台座8を接合する(
図2(b) )。上記においては、ゲージ素子となるS
i単結晶体2が1つの場合について説明したが多数のS
i単結晶体形成領域に対して同時に行えることは勿論で
あり、その後、ウエハを個々の領域に切断すれば良い。
Thereafter, the pedestal 8 is bonded so as not to overlap the above-mentioned two electrode arrangement portions on the upper surface 2a of the Si single crystal body 2 (
Figure 2(b)). In the above, S serving as the gauge element
Although the case where there is one single crystal 2 has been explained, if there are many S
It goes without saying that this can be done simultaneously for the i single crystal formation region, and then the wafer can be cut into individual regions.

【0031】上記構成からなる半導体圧力センサにおい
て、上記のような方向で形成されたSi単結晶体2はピ
エゾ抵抗係数π63′を有しているため、入力電極4,
5間に電流を流しあるいは電圧を印加し、上部の台座8
を介してSi単結晶体2に垂直方向に圧縮力を加えると
、その力に応じて電圧が出力電極6,7間に生じる。こ
の電圧を検出することにより圧力検出が可能になること
は既述した(図6参照)。
In the semiconductor pressure sensor having the above structure, since the Si single crystal 2 formed in the above direction has a piezoresistance coefficient π63', the input electrodes 4,
5, by passing a current or applying a voltage between the upper pedestal 8
When a compressive force is applied in the vertical direction to the Si single crystal 2 through the compressive force, a voltage is generated between the output electrodes 6 and 7 in response to the force. It has already been mentioned that pressure can be detected by detecting this voltage (see FIG. 6).

【0032】本実施例は上記のように、Si単結晶体を
ある面方向に沿って圧縮した際、その比抵抗に方向性が
現れることを利用する半導体圧力センサのゲージ素子の
形成に、SOI構造のウエハ3を用い、そのSOI構造
のウエハ3の最上層のSi単結晶層3cからゲージ素子
を形成する。よって、比抵抗及び厚さが所定の値に設定
されているSi単結晶層3cを有するSOI構造のウエ
ハ3を用意さえすれば従来のようなSi単結晶体のラッ
ピング工程とラッピングによる薄化の制限がなくなると
ともに、ゲージ素子の厚さの制限が緩和できる。つまり
ゲージ素子の比抵抗の選択範囲が広がるとともに比抵抗
を精度よく制御可能となる。また、ゲージ素子となる部
分以外のSi単結晶を除去してゲージ素子を形成するか
ら、電流の流路を完全に規定可能となり出力特性の向上
につながり、この場合pn接合がないから高温領域(約
150°C以上)でも漏れ電流がなく耐熱性能も向上す
る。さらに、ゲージ素子への圧縮力の加わり方が理想的
となるため、Si単結晶体2には単純な圧縮応力σz 
のみ生じピエゾ抵抗効果を有効に利用できることになり
、出力特性の向上と高精度が達成できる。
As described above, this embodiment uses SOI to form a gauge element of a semiconductor pressure sensor that takes advantage of the fact that when a Si single crystal is compressed along a certain surface direction, the specific resistance appears directional. Using the wafer 3 having the SOI structure, a gauge element is formed from the uppermost Si single crystal layer 3c of the wafer 3 having the SOI structure. Therefore, as long as a wafer 3 with an SOI structure having a Si single crystal layer 3c with specific resistance and thickness set to predetermined values is prepared, the conventional lapping process of Si single crystal and thinning by lapping can be performed. In addition to eliminating the restriction, the restriction on the thickness of the gauge element can be relaxed. In other words, the selection range of the specific resistance of the gauge element is widened, and the specific resistance can be controlled with high precision. In addition, since the gauge element is formed by removing the Si single crystal other than the part that will become the gauge element, it is possible to completely define the current flow path, leading to improved output characteristics. There is no leakage current even at temperatures above 150°C, and heat resistance is improved. Furthermore, since the compressive force applied to the gauge element is ideal, the Si single crystal 2 has a simple compressive stress σz
This makes it possible to effectively utilize the piezoresistance effect that occurs only when using a conventional method, thereby achieving improved output characteristics and high accuracy.

【0033】図3(a) は、入力電極4,5に電圧印
加のため電流を流して垂直圧縮力を加え、出力電極6,
7から得られた電圧出力の大きさを示したものであり、
実線は本実施例の、鎖線は従来の第1のタイプ及び第2
のタイプの半導体圧力センサの出力特性を示す。本実施
例の場合、圧縮力に比例した直線的で実用的な改善され
た電圧出力が得られることが分かる。
FIG. 3(a) shows that a current is applied to the input electrodes 4 and 5 to apply a voltage to apply a vertical compressive force, and the output electrodes 6 and 5 are
This shows the magnitude of the voltage output obtained from 7.
The solid line is for this example, and the chain line is for the conventional first type and second type.
The output characteristics of this type of semiconductor pressure sensor are shown. It can be seen that in the case of this example, a linear and practically improved voltage output proportional to the compressive force is obtained.

【0034】図3(b) は、温度上昇に対する感度の
変化を表したグラフであり、実線が本実施例、鎖線が従
来の第1のタイプの、一点鎖線が従来の第2のタイプの
半導体圧力センサの温度特性を示す。第1のタイプ及び
第2のタイプとも温度変化とともに感度が変動し、特に
第2のpn接合を有するタイプでは約150°Cを越え
ると急激に感度が低下するのに対し、本実施例の場合、
高温領域(約150°C以上)になっても略一定の感度
を維持するのであり大幅に改善されていることが分かる
FIG. 3(b) is a graph showing the change in sensitivity to temperature rise, where the solid line represents the semiconductor of this embodiment, the chain line represents the conventional first type semiconductor, and the dashed-dotted line represents the conventional second type semiconductor. Shows the temperature characteristics of the pressure sensor. The sensitivity of both the first type and the second type fluctuates with temperature changes, and in particular the type with the second pn junction, where the sensitivity rapidly decreases when the temperature exceeds about 150°C, in this example ,
It can be seen that substantially constant sensitivity is maintained even in the high temperature range (approximately 150° C. or higher), which is a significant improvement.

【0035】尚、上記図1及び図2に示した実施例では
、ゲージ素子となるSi単結晶体2を、SOI構造のウ
エハ3のSi単結晶層3cから所定の寸法だけを残し、
それ以外の部分をエッチング等により除去することで形
成していたが、除去せず残しておいても良い。この場合
、出力特性の直線性及び温度上昇に対する感度が、ゲー
ジ素子となる部分以外を除去してしまうものに比べて若
干劣るが、エッチング等の工程を省くことができるので
工数削減が可能である。
In the embodiment shown in FIGS. 1 and 2, the Si single crystal 2 serving as the gauge element is formed by leaving only a predetermined dimension from the Si single crystal layer 3c of the wafer 3 having an SOI structure.
Although the other portions were formed by removing them by etching or the like, they may be left without being removed. In this case, the linearity of the output characteristics and the sensitivity to temperature rise are slightly inferior to those in which parts other than the part that will become the gauge element are removed, but steps such as etching can be omitted, so the number of man-hours can be reduced. .

【0036】また、ゲージ素子をSOI構造のウエハ3
のSi単結晶層3cからエッチング等により他の部分を
除去して形成する場合には、次のような形状に除去して
も良い。即ち、図4に示すように、Si単結晶層3cの
斜線で示す部分3′cを除去し、その後、残した部分に
電極パッド4′,5′,6′,7′を形成する。このよ
うにすると、上部台座8の接合位置が多少ズレても、こ
の接合ズレによる出力特性の変化が少ない。図1及び図
2に示した実施例では、ゲージ素子となるSi単結晶体
2の上面にも一部配置される電極4a,5a,6a,7
aの間に上部台座8を接合する為、その位置決めを正確
に行わねばならない。図4に示す形状とすれば、ゲージ
素子上に電極を形成する必要がなく、また面積も若干広
がり正確な上部座8の位置決めをしなくても済む。
[0036] Also, the gauge element is mounted on a wafer 3 having an SOI structure.
When forming the Si single crystal layer 3c by removing other portions by etching or the like, it may be removed in the following shape. That is, as shown in FIG. 4, a hatched portion 3'c of the Si single crystal layer 3c is removed, and then electrode pads 4', 5', 6', and 7' are formed in the remaining portions. In this way, even if the joining position of the upper pedestal 8 deviates somewhat, the change in output characteristics due to this joining deviation is small. In the embodiment shown in FIGS. 1 and 2, electrodes 4a, 5a, 6a, and 7 are partially disposed on the upper surface of the Si single crystal 2 serving as a gauge element.
In order to join the upper pedestal 8 between the parts a, it is necessary to position it accurately. With the shape shown in FIG. 4, there is no need to form electrodes on the gauge element, and the area is also slightly increased, eliminating the need for accurate positioning of the upper seat 8.

【0037】さらにまた、次のようなゲージ素子の形成
方法も考えられる。つまり、SOI構造のウエハ3に不
純物拡散処理を施し、リード線形成部以外をエッチング
等により除去する方法である。SOI構造のウエハ3に
はある程度の不純物のドーピングが行われているが、S
iでリード線を形成する場合、同リード線形成部に関し
ては不純物濃度を高めて抵抗を減らした方が感度が良い
。そこで、図5に示すように、ゲージ素子となる部分2
′以外のSi単結晶層3cに不純物拡散処理を施し、不
純物濃度を高めて(図5(a) のドット部分13c)
低抵抗部分とし、後にリード線形成部を残してエッチン
グ等により除去する(図5(b) 、13′c部分の除
去)。 その後、電極を接合する。上記低抵抗部分をリード線と
して使用することにより、特性の向上や工数の低減が図
れる。
Furthermore, the following method of forming a gauge element can also be considered. That is, this is a method in which an impurity diffusion process is performed on the wafer 3 having an SOI structure, and areas other than the lead wire formation portion are removed by etching or the like. The SOI structure wafer 3 is doped with impurities to some extent, but S
When a lead wire is formed using i, it is better to increase the impurity concentration and reduce the resistance in the lead wire forming portion for better sensitivity. Therefore, as shown in FIG.
The Si single crystal layer 3c other than ' is subjected to impurity diffusion treatment to increase the impurity concentration (dot portion 13c in Fig. 5(a)).
The low-resistance portion is then removed by etching or the like, leaving the lead wire formation portion (FIG. 5(b), removal of portion 13'c). After that, the electrodes are bonded. By using the low resistance portion as a lead wire, characteristics can be improved and man-hours can be reduced.

【0038】尚、上記の製造方法はほんの一例であり、
これに限定されることはない。
[0038] The above manufacturing method is just an example,
It is not limited to this.

【0039】[0039]

【発明の効果】上記のように本発明によれば、SOI構
造のウエハを用いそのSOI構造のウエハのSi単結晶
層からゲージ素子を形成するから、SOI構造のウエハ
のSi単結晶層の比抵抗及び厚さによりゲージ素子とな
るSi単結晶体の比抵抗及び厚さが規定され、出力特性
の向上及び耐温度特性の向上が図られるとともに製造プ
ロセスの簡易化が達成できる。
Effects of the Invention As described above, according to the present invention, a wafer with an SOI structure is used and a gauge element is formed from the Si single crystal layer of the SOI structure wafer, so that the ratio of the Si single crystal layer of the SOI structure wafer is reduced. The specific resistance and thickness of the Si single crystal that becomes the gauge element are determined by the resistance and thickness, and it is possible to improve output characteristics and temperature resistance characteristics, and to simplify the manufacturing process.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例の半導体圧力センサを示す図
で、(a) は上部台座を分離した斜視図、(b) は
上部台座を分離した平面図である。
FIG. 1 is a diagram showing a semiconductor pressure sensor according to an embodiment of the present invention, in which (a) is a perspective view with the upper pedestal separated, and (b) is a plan view with the upper pedestal separated.

【図2】本発明の図1の実施例の製造方法を示す図で、
(a) はSOI構造のウエハの断面図、(b) は本
発明の実施例の垂直断面図である。
FIG. 2 is a diagram showing a manufacturing method of the embodiment of FIG. 1 of the present invention,
(a) is a cross-sectional view of a wafer having an SOI structure, and (b) is a vertical cross-sectional view of an embodiment of the present invention.

【図3】本発明と従来例の半導体圧力センサとの特性を
比較するためのグラフで、(a)は出力特性、(b) 
は温度特性である。
FIG. 3 is a graph for comparing the characteristics of the present invention and a conventional semiconductor pressure sensor, in which (a) is the output characteristic; (b) is the output characteristic;
is the temperature characteristic.

【図4】図1の半導体圧力センサのゲージ素子の、他の
構成例を示す図である。
4 is a diagram showing another configuration example of the gauge element of the semiconductor pressure sensor of FIG. 1. FIG.

【図5】図1の半導体圧力センサのゲージ素子の、さら
に他の構成例を示す図で、(a)は不純物の拡散を示す
図で、(b) はエッチング等による除去を示す図であ
る。
5 is a diagram showing still another configuration example of the gauge element of the semiconductor pressure sensor in FIG. 1, in which (a) is a diagram showing diffusion of impurities, and (b) is a diagram showing removal by etching etc. .

【図6】従来の第1のタイプの半導体圧力センサを示す
図で、(a) は斜視図、(b) は平面図、(c) 
は正面図である。
FIG. 6 is a diagram showing a conventional first type semiconductor pressure sensor, in which (a) is a perspective view, (b) is a plan view, and (c) is a perspective view.
is a front view.

【図7】従来の第2のタイプの半導体圧力センサを示す
図で、(a) は斜視図、(b) は上部台座を省いた
平面図、(c) は正面図である。
FIG. 7 is a diagram showing a conventional second type semiconductor pressure sensor, in which (a) is a perspective view, (b) is a plan view with the upper pedestal omitted, and (c) is a front view.

【図8】図6に示した半導体圧力センサの動作原理を説
明するための図で、(a) はRL =RR 、(b)
 はRL >RR の場合である。
8 is a diagram for explaining the operating principle of the semiconductor pressure sensor shown in FIG. 6, in which (a) RL = RR; (b)
is the case when RL > RR.

【符号の説明】[Explanation of symbols]

1        半導体圧力センサ 2        Si単結晶体(ゲージ素子)3  
      SOI構造のウエハ3c      Si
単結晶層
1 Semiconductor pressure sensor 2 Si single crystal (gauge element) 3
Wafer 3c Si with SOI structure
single crystal layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  ピエゾ抵抗係数π63′を有し圧縮力
が加えられる面として特定の結晶面が形成されるSi単
結晶体をゲージ素子として用い、該Si単結晶体の有す
るピエゾ抵抗効果を利用して該結晶面に垂直に加えられ
る圧縮力の検出を行う直交型の半導体圧力センサにおい
て、前記ゲージ素子の形成にシリコンオンインシュレー
タ(SOI)構造のウエハを用い、該ゲージ素子となる
Si単結晶体を該シリコンオンインシュレータ(SOI
)構造のウエハのSi単結晶層より形成することを特徴
とする半導体圧力センサ。
Claim 1: A Si single crystal having a piezoresistance coefficient π63' and a specific crystal plane formed as a surface to which a compressive force is applied is used as a gauge element, and the piezoresistance effect of the Si single crystal is utilized. In an orthogonal semiconductor pressure sensor that detects compressive force applied perpendicularly to the crystal plane, a wafer with a silicon-on-insulator (SOI) structure is used to form the gauge element, and a Si single crystal that becomes the gauge element is used. The silicon-on-insulator (SOI)
) A semiconductor pressure sensor characterized in that it is formed from a Si single crystal layer of a wafer structure.
JP7799091A 1991-04-10 1991-04-10 Semiconductor pressure sensor Withdrawn JPH04313275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7799091A JPH04313275A (en) 1991-04-10 1991-04-10 Semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7799091A JPH04313275A (en) 1991-04-10 1991-04-10 Semiconductor pressure sensor

Publications (1)

Publication Number Publication Date
JPH04313275A true JPH04313275A (en) 1992-11-05

Family

ID=13649272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7799091A Withdrawn JPH04313275A (en) 1991-04-10 1991-04-10 Semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JPH04313275A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304997A (en) * 2000-04-27 2001-10-31 Toyota Central Res & Dev Lab Inc Semiconductor pressure sensor
JP4515549B2 (en) * 1999-03-12 2010-08-04 誠 石田 Semiconductor element and semiconductor sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4515549B2 (en) * 1999-03-12 2010-08-04 誠 石田 Semiconductor element and semiconductor sensor
JP2001304997A (en) * 2000-04-27 2001-10-31 Toyota Central Res & Dev Lab Inc Semiconductor pressure sensor

Similar Documents

Publication Publication Date Title
US10775248B2 (en) MEMS strain gauge sensor and manufacturing method
KR100502497B1 (en) Diaphragm-type semiconductor pressure sensor
US5000817A (en) Batch method of making miniature structures assembled in wafer form
US4071838A (en) Solid state force transducer and method of making same
US6642594B2 (en) Single chip multiple range pressure transducer device
EP0050136A1 (en) Silicon pressure sensor
JPS5999356A (en) Semiconductor accelerometer
JP3489309B2 (en) Method for manufacturing semiconductor dynamic quantity sensor and anisotropic etching mask
US4732647A (en) Batch method of making miniature capacitive force transducers assembled in wafer form
US11643324B2 (en) MEMS sensor
JPH04313275A (en) Semiconductor pressure sensor
JPS63308390A (en) Manufacture of semiconductor pressure sensor
JP3116384B2 (en) Semiconductor strain sensor and manufacturing method thereof
JP2864700B2 (en) Semiconductor pressure sensor and method of manufacturing the same
JP3433570B2 (en) Semiconductor acceleration sensor
JP3427462B2 (en) Manufacturing method of semiconductor acceleration sensor
JP3187754B2 (en) Semiconductor sensor and method of manufacturing the same
JPH1144705A (en) Semiconductor acceleration sensor and its manufacture
JPH10239345A (en) Semiconductor sensor
JPH0831608B2 (en) Method for manufacturing semiconductor pressure sensor
JP2009049026A (en) Semiconductor pressure sensor
JPH0714069B2 (en) Method of manufacturing force conversion element
JPH0821774A (en) Semiconductor pressure sensor and its manufacture
JPS6410110B2 (en)
JPH0234971A (en) Semiconductor pressure sensor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711