JPH04312901A - Production of superconducting coil using superconductive ceramic wire - Google Patents

Production of superconducting coil using superconductive ceramic wire

Info

Publication number
JPH04312901A
JPH04312901A JP3094828A JP9482891A JPH04312901A JP H04312901 A JPH04312901 A JP H04312901A JP 3094828 A JP3094828 A JP 3094828A JP 9482891 A JP9482891 A JP 9482891A JP H04312901 A JPH04312901 A JP H04312901A
Authority
JP
Japan
Prior art keywords
superconducting
wire
superconductive
superconducting ceramic
ceramic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3094828A
Other languages
Japanese (ja)
Other versions
JP2648724B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP3094828A priority Critical patent/JP2648724B2/en
Publication of JPH04312901A publication Critical patent/JPH04312901A/en
Application granted granted Critical
Publication of JP2648724B2 publication Critical patent/JP2648724B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Coil Winding Methods And Apparatuses (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To produce a product which has excellent ductility, malleability and bendability by filling the inside of a hollow supporting body with powder superconductive ceramic material, baking the supporting body so as to produce superconductive wire and coiling the wire. CONSTITUTION:The inside of a hollow supporting body 2 composed of metal or metal compound is filled with superconductive ceramic material 3. As the superconductive ceramic material, copper oxide ceramics (A1-X, BX)YCuZOW is used, where, A=Y, Gd, etc., B=Ba, Sr, etc., X=0-1, Y=2.0-4.0, Z=1.0-4.0, W=4.0-10.0). Then, the supporting body 2 is baked to oxidize the ceramics and superconductive material is formed. Such process is repeated several times and superconductive ceramics 3 which has a hollow 4 in the hollow supporting body 2 is formed. Then, the whole body is drawn into wire and superconductive wire 1 is produced. Then the superconductive wire 1 is coiled.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はセラミック系超電導材料
を応用したコイルの作製方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a coil using a ceramic superconducting material.

【0002】本発明は超電導セラミック伸線を用いて、
例えば超電導マグネットまたは電力蓄積装置に用いられ
るコイル等を作製する方法に関する。
[0002] The present invention uses superconducting ceramic wire drawing to
For example, the present invention relates to a method for manufacturing a superconducting magnet or a coil used in a power storage device.

【0003】0003

【従来の技術】従来、超電導材料はNb−Ge(例えば
Nb3Ge)等の金属材料が用いられている。この材料
は金属であるため、延性、展性または曲げ性を高く有し
、そのため有用な応用としては、超電導マグネット用コ
イル、また電力蓄積用コイルとして用いることが可能で
ある。
2. Description of the Related Art Hitherto, metal materials such as Nb-Ge (for example, Nb3Ge) have been used as superconducting materials. Since this material is a metal, it has high ductility, malleability, or bendability, and therefore, useful applications include coils for superconducting magnets and coils for power storage.

【0004】しかし、この金属の超電導材料はTc( 
超電導臨界温度を以下Tcという) オンセットが小さ
く、23K またはそれ以下でしかなかった。しかしそ
の工業的応用を考えるならば、このTcが100Kまた
はそれ以上を有し、Tco(電気抵抗が零となる温度)
 が77K またはそれ以上であることがきわめて重要
である。
However, this metallic superconducting material is Tc (
The superconducting critical temperature (hereinafter referred to as Tc) was small, at only 23K or lower. However, if we consider its industrial application, this Tc should be 100K or more, and Tco (temperature at which electrical resistance becomes zero)
It is extremely important that the value be 77K or greater.

【0005】最近、かかる超電導材料として銅の酸化物
セラミック材料が注目されている。
[0005] Recently, copper oxide ceramic materials have attracted attention as such superconducting materials.

【0006】[0006]

【発明が解決しようとする課題】この銅の酸化物セラミ
ックスは延性、展性および曲げ性が必ずしも十分ではな
い。加えて成型した後の加工がきわめて困難であるとい
う他の欠点を有する。そのため、銅の酸化物セラミック
スを用い、伸線とし、超電導コイルを作製する方法は全
く知られていなかった。
[Problems to be Solved by the Invention] This copper oxide ceramic does not necessarily have sufficient ductility, malleability, and bendability. In addition, it has another drawback in that it is extremely difficult to process after molding. Therefore, there was no known method of producing a superconducting coil by drawing wire using copper oxide ceramics.

【0007】[0007]

【課題を解決するための手段】本発明は金属または金属
化合物の中空支持体(パイプまたはシースともいう)を
用材として用いる。かかる中空支持体の内部に超電導セ
ラミック材料となるべき材料を混合または溶かした、ま
たはゲル状にした溶液、または超電導セラミックス材料
を溶媒を用いることなしに充填する。この充填は、中空
パイプの一方を一次的に塞いで他方より注入する。その
後加熱焼成することにより、この外側のセラミックスを
酸化して超電導材料に変成する。本発明における超電導
性を有するセラミック材料は、例えば銅の酸化物セラミ
ックスである(A1−x Bx)yCuzOw x=0
 〜1,y=2.0 〜4.0 好ましくは2.5 〜
3.5,z=1.0 〜4.0 好ましくは2.5 〜
3.5,w=4.0 〜10.0好ましくは6.0 〜
8.0 である。Aは元素周期表における3a族、例え
ばY(イットリュ−ム) またはGd( ガドリニュ−
ム),Yb( イッテルビュ−ム) の如きランタノイ
ド元素である。またBは元素周期表2a族、例えばBa
( バリュ−ム) またはSr  ( ストロンチュ−
ム),Ca( カルシュ−ム)より選ばれる。尚、本明
細書における元素周期表は理化学辞典(岩波書店  1
963年4月1日発行)による。
SUMMARY OF THE INVENTION The present invention uses a metal or metal compound hollow support (also referred to as a pipe or sheath) as a material. The inside of such a hollow support is filled with a solution obtained by mixing, melting, or gelling materials to become a superconducting ceramic material, or a superconducting ceramic material without using a solvent. This filling is performed by temporarily blocking one side of the hollow pipe and injecting from the other side. Thereafter, by heating and firing, this outer ceramic is oxidized and transformed into a superconducting material. The ceramic material having superconductivity in the present invention is, for example, copper oxide ceramic (A1-x Bx)yCuzOw x=0
~1, y=2.0 ~4.0 preferably 2.5 ~
3.5, z=1.0 ~ 4.0 preferably 2.5 ~
3.5, w=4.0 ~ 10.0 preferably 6.0 ~
It is 8.0. A is a group 3a in the periodic table of elements, such as Y (yttrium) or Gd (gadolinium).
These are lanthanide elements such as Yb (Ytterbium) and Yb (Ytterbium). In addition, B is an element group 2a of the periodic table, for example, Ba
(Value) or Sr (Strontue)
Calcium), Ca (Calcium). The periodic table of elements in this specification is based on the Physical and Chemistry Dictionary (Iwanami Shoten 1).
(Published April 1, 1963).

【0008】本発明で用いられるセラミックスは上記以
外の元素をA,Bに加えることが可能である。
[0008] In the ceramics used in the present invention, elements other than those mentioned above can be added to A and B.

【0009】本発明において、中空支持体の内部に超電
導セラミック材料となるべき材料を混合または溶かした
、またはゲル状にした溶液を充填した場合、内壁に第1
の層として超電導セラミック材料がコ−ティングされる
が、さらにその上側にこの第1の層のセラミック材料を
十分固化した後、第2層のセラミック材料をコ−ティン
グすべく、同一工程を繰り返しすることは有効である。 またその場合、AまたはBの種類、X,Y,Z,W の
値の一部を変更してもよい。本発明はかかるセラミック
スを加熱し、伸線(線状に引き伸ばすこと)化するため
、その外径を小さくしつつ一方より他方に伸ばし、細く
かつ長い構成とする。
In the present invention, when the inside of the hollow support is filled with a solution obtained by mixing, melting, or gelling materials to become a superconducting ceramic material, a first layer is formed on the inner wall.
A superconducting ceramic material is coated as a layer of superconducting ceramic material, and after the first layer of ceramic material is sufficiently solidified, the same process is repeated to coat a second layer of ceramic material. That is valid. In that case, the type of A or B and the values of X, Y, Z, and W may be partially changed. In the present invention, such ceramics are heated and wire-drawn (stretched into a linear shape), so that the outer diameter is reduced and the wire is stretched from one side to the other to form a thin and long structure.

【0010】本発明方法において金属またはその化合物
のパイプの内側に形成したセラミックスを十分酸化し、
超電導を呈する(A1−x Bx)yCuzOw の一
般式で示される材料を変成し、かつ最適の結晶化をさせ
るには、このセラミックスに十分酸素が加えられること
が重要である。本発明方法は外側を金属で多い、パイプ
中のセラミックに対しても十分雰囲気を制御を行い得る
In the method of the present invention, the ceramic formed inside the pipe of metal or its compound is sufficiently oxidized,
In order to transform and optimally crystallize a material represented by the general formula (A1-x Bx)yCuzOw that exhibits superconductivity, it is important that sufficient oxygen be added to this ceramic. The method of the present invention can sufficiently control the atmosphere even for ceramic pipes with a large amount of metal on the outside.

【0011】本発明方法によって得られるコイルは、上
記の製法によって得られた超伝導伸線をコイル状に巻く
ことによって得られる。場合によっては、巻いた後に加
熱工程を加えても良い。
The coil obtained by the method of the present invention is obtained by winding the drawn superconducting wire obtained by the above manufacturing method into a coil shape. In some cases, a heating step may be added after winding.

【0012】0012

【作用】本発明により、従来不可能と考えられていた超
電導セラミック伸線を用いた超電導コイルを作製するこ
とが可能となった。このコイルの用途としては、例えば
超電導マグネットを作り得る。またこのコイルの始点と
終点を互いに電気的に抵抗が零であるセラミックスで連
結することにより、エンドレスコイルとし得る。このコ
イルは電流損失のないコイル、即ち電気エネルギの蓄積
用装置として用いることが可能となる。
[Operation] The present invention has made it possible to produce a superconducting coil using superconducting ceramic wire drawing, which was previously thought to be impossible. This coil can be used, for example, to make a superconducting magnet. Furthermore, by connecting the starting point and ending point of this coil to each other with ceramics having zero electrical resistance, an endless coil can be obtained. This coil can be used as a coil without current loss, that is, as a device for storing electrical energy.

【0013】以下図面に従って本発明の実施例を示す。Embodiments of the present invention will be described below with reference to the drawings.

【0014】[0014]

【実施例】【Example】

「実施例1」この実施例では(A1−x Bx)yCu
zOw においてAとしてYを、Y2O3,BとしてB
aをBaCO3 またCuとしてCuO を用いた。そ
れぞれ高純度化学社製の99.95%以上のものを用い
た。これら用いてx,y,z,w を調整し(YBax
)Cu3O6 〜8 となるようにした。これらの元材
料をメノウ乳鉢で混合し、それを一度300Kg/cm
2 の圧力で加圧しタブレットとし700 ℃、3 時
間さらに1000℃10時間で大気中で仮焼成した。さ
らにこれらを再び粉砕した。そしてその平均粒径が10
0 μm以下、例えば10μm程度となるようにした。 この混合物をカプセル内に封入して再びこれを500K
g/cm2の圧力でプレスし、タブレット状とした。そ
してこれを800 〜1000℃、10時間酸化性雰囲
気例えば大気中で本焼成した。
"Example 1" In this example, (A1-x Bx)yCu
In zOw, Y as A, Y2O3, B as B
BaCO3 was used as a, and CuO was used as Cu. Each of 99.95% or more manufactured by Kojundo Kagaku Co., Ltd. was used. Use these to adjust x, y, z, w (YBax
) Cu3O6 ~8. Mix these raw materials in an agate mortar and mix it once at 300 kg/cm.
The mixture was pressurized at a pressure of 2.2°C to form a tablet and pre-calcined in the air at 700°C for 3 hours, and then at 1000°C for 10 hours. Furthermore, these were crushed again. And the average particle size is 10
The thickness was set to 0 μm or less, for example, about 10 μm. This mixture was sealed in a capsule and heated again to 500K.
It was pressed at a pressure of g/cm2 to form a tablet. This was then subjected to main firing at 800 to 1000°C for 10 hours in an oxidizing atmosphere, such as the air.

【0015】次にこの本焼成したTcオンセットが95
K 以上、Tco が77K 以上あることを電圧−電
流−温度特性より確認する。
Next, the Tc onset of this main firing was 95
It is confirmed from the voltage-current-temperature characteristics that Tco is 77K or higher.

【0016】再びこのタブレットを微粉末とした。そし
てこの平均粒径が100 μm以下〜0.05μm例え
ば3μmになるようにした。この工程において、この粉
砕の際、その結晶構造が基本的に破壊しないように努め
た。
This tablet was again made into a fine powder. The average particle diameter was adjusted to be 100 μm or less to 0.05 μm, for example, 3 μm. In this process, efforts were made to basically prevent the crystal structure from being destroyed during this pulverization.

【0017】この粉末を液体、例えばフロン液またはア
ルコ−ル例えばエタノ−ルその他の液体中に混合、また
は溶かした。
This powder is mixed or dissolved in a liquid such as a fluorocarbon solution or an alcohol such as ethanol or other liquid.

【0018】この溶液を中空の支持体である第1図に示
した金属パイプ(2) 、例えば銅または銅の化合物(
例えばNiCu化合物) の内部に他方を塞いで注いだ
。このパイプをセラミック粒子が内壁に均一な厚さに付
着すべく、回転、上下振動をしつつ全体を100 〜4
00 ℃の温度に加熱した。
This solution is transferred to a hollow support, the metal pipe (2) shown in FIG. 1, such as copper or a copper compound (
For example, a NiCu compound) was poured into the interior of the compound, blocking the other side. This pipe is rotated and vibrated up and down to ensure that the ceramic particles adhere to the inner wall with a uniform thickness.
It was heated to a temperature of 0.00°C.

【0019】かくしてこの中空パイプの内部の溶媒を除
去することができ、その内壁にセラミック粒をコ−ティ
ング(3) した。
In this manner, the solvent inside the hollow pipe could be removed, and the inner wall of the hollow pipe was coated with ceramic particles (3).

【0020】この時内壁とより密着させやすくするため
、プロピレングリコ−ル、オクチルアルコ−ル、ペプチ
ルアルコ−ル等と混合し、ペ−スト状としてもよい。
At this time, in order to make it easier to adhere to the inner wall, it may be mixed with propylene glycol, octyl alcohol, peptyl alcohol, etc. to form a paste.

【0021】この後この内壁に付着し乾燥させたセラミ
ックスに対して、その中空部に酸素または酸素とアルゴ
ンの混合気体を導入して、酸化させつつ500〜110
0℃、例えば600 ℃3時間さらに800 ℃15時
間の加熱焼成を行った。
[0021] After that, oxygen or a mixed gas of oxygen and argon is introduced into the hollow part of the ceramic adhered to the inner wall and dried, and the ceramic is oxidized to a temperature of 500 to 110%.
Firing was performed at 0°C, for example, 600°C for 3 hours, and then at 800°C for 15 hours.

【0022】かかる工程をさらに1〜5回繰り返すこと
により、このセラミック材を50μm〜1cm(代表的
には0.5 〜5mm)の平均厚さにパイプ内に付着さ
せることが可能となった。かくして第1図に示す如き中
空支持体(2) の内側に超電導セラミックス(3) 
を中空(4)を有して本発明の超電導セラミックスを用
いたパイプ(1) を作ることができた。
By repeating this process 1 to 5 times, it became possible to deposit this ceramic material inside the pipe to an average thickness of 50 μm to 1 cm (typically 0.5 to 5 mm). Thus, superconducting ceramics (3) are placed inside the hollow support (2) as shown in Figure 1.
It was possible to make a pipe (1) having a hollow part (4) using the superconducting ceramic of the present invention.

【0023】この実施例において、パイプは円環型中空
支持体を用いた。しかしその形状は角型中空支持体を用
いてもよい。また他の形とすることも可能である。
In this example, the pipe used was an annular hollow support. However, the shape may be a square hollow support. Other shapes are also possible.

【0024】かかる超電導セラミックパイプにおいて、
Tcはタブレット等で作られた時のTcよりは5〜20
K 低い値が得らた。しかしこれは初期のタブレットで
のTcを向上させるとともにより改良が可能である。ま
たこの長さは数cm〜数十m にまでその設計により変
形が可能である。また太さも直径数mm〜数cmまで変
形が可能である。
[0024] In such a superconducting ceramic pipe,
Tc is 5 to 20 higher than Tc when made with a tablet etc.
A low value of K was obtained. However, this improves Tc in early tablets and can be further improved. Further, this length can be varied from several cm to several tens of meters depending on the design. Further, the thickness can be varied from several mm to several cm in diameter.

【0025】「実施例2」この実施例は中空ハイプの中
にこの内径より小さい中空の有機材料のハイプを予めい
れておき、そしてその間に実施例1の途中工程で作られ
た焼成後の超電導材料を粉砕した材料を充填する。
``Example 2'' In this example, a hollow organic material hype smaller than the inner diameter of the hollow hype is placed in advance, and during that time, the fired superconducting material made in the intermediate step of Embodiment 1 is heated. Fill with crushed material.

【0026】さらにこの粉末を充填する。これら全体を
この有機材料のパイプの内径に酸素を流しつつ加熱して
いくと、この有機材料は約300 ℃で炭化し、さらに
昇温することにより炭酸ガスとして気化してしまい、完
全に除去した。さらにその後、充填したセラミックスを
酸化し、超電導材料とした。この場合は600 〜11
00℃例えば800 〜1000℃で10〜20時間行
うことにより成就した。
[0026] This powder is then filled. When all of this was heated while oxygen was flowing through the inner diameter of the organic material pipe, the organic material carbonized at about 300 degrees Celsius, and as the temperature rose further, it vaporized as carbon dioxide gas and was completely removed. . Afterwards, the filled ceramics were oxidized to become a superconducting material. In this case 600 to 11
This was accomplished by heating at 00°C, for example 800-1000°C, for 10-20 hours.

【0027】かくして中空を有し、かつ超電導セラミッ
クスを内部に設けた金属パイプを作ることができた。こ
の実施例において、中空支持体として中空補助体との間
に充填する超電導セラミックス材料に粉末または気化し
やすい有機物のペ−ストを流してペ−スト状として充填
することは有効である。その他記載のないことは実施例
1と同じである。
[0027] In this way, it was possible to produce a metal pipe having a hollow space and having superconducting ceramics provided therein. In this embodiment, it is effective to fill the superconducting ceramic material between the hollow supporting body and the hollow auxiliary body by pouring a powder or a paste of easily vaporized organic material into the superconducting ceramic material in the form of a paste. Other items not described are the same as in Example 1.

【0028】「実施例3」この実施例は実施例1または
2で形成された中空のパイプを出発物とした。これを8
00 〜1100℃例えば1000℃とした。パイプの
外側は軟銅を用いた。これは融点が1083℃と低く、
展性延性に富むためである。このため超電導セラミック
材料の熱処理に対して実施同時に残部応力を加えてクラ
ックを発生させないためである。
Example 3 This example started with the hollow pipe formed in Example 1 or 2. This is 8
00 to 1100°C, for example, 1000°C. Annealed copper was used for the outside of the pipe. It has a low melting point of 1083℃,
This is because it is highly malleable and ductile. This is to prevent the generation of cracks by applying residual stress at the same time as the heat treatment of the superconducting ceramic material.

【0029】実際は銅のパイプ直径10mm( 外径)
,8mm φ( 内径) とし、セラミックスは厚さ平
均3mm とし、中空部は約2mm φである。これら
全体を外部より加熱し、全体を伸ばし、長線とするため
、しぼり棒ジグを加熱しつつ通した。するとこのパイプ
の直径は細くなり、中空部を完全になくすことができた
[0029]Actually, the diameter of the copper pipe is 10mm (outer diameter)
, 8 mm φ (inner diameter), the average thickness of the ceramic is 3 mm, and the hollow part is approximately 2 mm φ. The whole was heated from the outside, and in order to stretch the whole and make it into a long wire, a squeeze rod jig was passed through it while heating it. The diameter of this pipe was then reduced, and the hollow part was completely eliminated.

【0030】かくしてかかるパイプをして外径約6mm
 、長さを出発材料の約3倍にまで伸ばすことができた
。技術の発展とともにこの直径を1〜2mmと細くしさ
らに伸線化した後の長さを50〜5000倍にすること
が可能である。
[0030] Thus, the outer diameter of such a pipe is about 6 mm.
, the length could be extended to about three times that of the starting material. With the development of technology, it is possible to reduce this diameter to 1 to 2 mm and further increase the length after drawing by 50 to 5000 times.

【0031】「実施例4」この実施例は(A1−X B
x)yCuzOwにおいて、AとしてYb、BとしてB
aを用いた。また、本実施例においては原料粉末をその
まま使用し、金属パイプの内部に密に充填した。すると
パイプ形状とした後もTco を85K に保つことが
できた。その他は実施例1および実施例2と同様である
"Example 4" This example is (A1-X B
x) In yCuzOw, A is Yb, B is B
A was used. Further, in this example, the raw material powder was used as it was, and was densely packed inside the metal pipe. As a result, even after forming into a pipe shape, Tco could be maintained at 85K. The rest is the same as in Example 1 and Example 2.

【0032】[0032]

【発明の効果】本発明により、従来不可能とされていた
超電導伸線を用いた超電導コイルが作製可能となった。 このコイルは、例えば超電導マグネット等に使用可能で
ある。また、本発明のコイルは、外側が金属または金属
化合物で覆われ、内部が超電導セラミック材料となって
いる。かかる構成により、外部との溶接も可能であり、
例えば電気装置の一部として用いることが可能である。
[Effects of the Invention] According to the present invention, it has become possible to produce a superconducting coil using superconducting wire drawing, which was previously considered impossible. This coil can be used, for example, in a superconducting magnet. Moreover, the coil of the present invention is covered with a metal or a metal compound on the outside, and has a superconducting ceramic material on the inside. With this configuration, welding to the outside is also possible.
For example, it can be used as part of an electrical device.

【0033】上記の例以外にも本発明は応用が可能であ
り、産業の発展に大いに寄与すると考えられる。
[0033] The present invention can be applied in addition to the above examples, and is considered to greatly contribute to the development of industry.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明のコイルの作製に使用した超電導セラミ
ック伸線
[Figure 1] Superconducting ceramic wire drawing used to produce the coil of the present invention

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】金属または金属化合物の支持体の内部に超
電導セラミック材料を充填する工程と、前記充填された
超電導セラミック材料を支持体と共にコイル状に巻く工
程とを有することを特徴とする超電導セラミック伸線を
用いた超電導コイルの作製方法
1. A superconducting ceramic comprising the steps of: filling a superconducting ceramic material inside a metal or metal compound support; and winding the filled superconducting ceramic material together with the support into a coil shape. Method for manufacturing superconducting coils using wire drawing
【請求項2】金属または金属化合物の支持体の内部に超
電導セラミック材料を充填する工程と、外側より加熱す
る工程と、全体を伸ばし伸線とする工程と、前記超電導
セラミック伸線をコイル状に巻く工程とを有することを
特徴とする超電導セラミック伸線を用いた超電導コイル
の作製方法
2. A step of filling a superconducting ceramic material inside a metal or metal compound support, a step of heating from the outside, a step of drawing the entire superconducting ceramic wire, and forming the drawn superconducting ceramic wire into a coil shape. A method for producing a superconducting coil using superconducting ceramic wire drawing, comprising a winding step.
【請求項3】金属または金属化合物の支持体の内部に超
電導セラミック材料を充填する工程と、外側より500
 ℃〜1100℃に加熱する工程と、全体を伸ばし伸線
とする工程と、前記超電導セラミック伸線をコイル状に
巻く工程とを有することを特徴とする超電導セラミック
伸線を用いた超電導コイルの作製方法
3. A step of filling a superconducting ceramic material inside a metal or metal compound support;
Preparation of a superconducting coil using superconducting ceramic wire drawing, characterized by comprising a step of heating the drawn superconducting ceramic wire to 1100° C., a step of stretching the entire wire and drawing the superconducting ceramic wire, and a step of winding the drawn superconducting ceramic wire into a coil shape. Method
JP3094828A 1991-04-01 1987-04-01 Manufacturing method of superconducting coil using superconducting ceramic wire drawing Expired - Fee Related JP2648724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3094828A JP2648724B2 (en) 1991-04-01 1987-04-01 Manufacturing method of superconducting coil using superconducting ceramic wire drawing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3094828A JP2648724B2 (en) 1991-04-01 1987-04-01 Manufacturing method of superconducting coil using superconducting ceramic wire drawing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62081489A Division JP2584993B2 (en) 1987-04-01 1987-04-01 Manufacturing method of superconducting ceramic material

Publications (2)

Publication Number Publication Date
JPH04312901A true JPH04312901A (en) 1992-11-04
JP2648724B2 JP2648724B2 (en) 1997-09-03

Family

ID=14120916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3094828A Expired - Fee Related JP2648724B2 (en) 1991-04-01 1987-04-01 Manufacturing method of superconducting coil using superconducting ceramic wire drawing

Country Status (1)

Country Link
JP (1) JP2648724B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232215A (en) * 1987-03-20 1988-09-28 Fujikura Ltd Manufacture of superconductive wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232215A (en) * 1987-03-20 1988-09-28 Fujikura Ltd Manufacture of superconductive wire

Also Published As

Publication number Publication date
JP2648724B2 (en) 1997-09-03

Similar Documents

Publication Publication Date Title
JPH06500426A (en) Method for forming high temperature oxide superconductor tape
JP2584990B2 (en) Manufacturing method of pipe using superconducting ceramic material
JPH04315707A (en) Manufacture of superconducting ceramic drawn wire
JP2584993B2 (en) Manufacturing method of superconducting ceramic material
US5147847A (en) Method for manufacturing a pipe utilizing a superconducting ceramic material
JP2585880B2 (en) Superconducting device
JP2584989B2 (en) Pipe made of superconducting ceramic material
JPH04312901A (en) Production of superconducting coil using superconductive ceramic wire
US5987731A (en) Elongated superconductive member
JPH04298912A (en) Superconducting ceramic drawn wire
JPH04121912A (en) Manufacture of oxide high temperature superconductive conductor
JP2617306B2 (en) Manufacturing method of superconducting device
JP2532238B2 (en) Pipe manufacturing method using superconducting ceramic material
JPH0574551B2 (en)
JP2585582B2 (en) How to make superconducting material
JPH06243745A (en) Manufacture of high temperature superconducting wire material and high temperature superconducting coil
JPH01176609A (en) Manufacture of oxide superconductive wire material
JP2727565B2 (en) Superconductor manufacturing method
JPH0195409A (en) Superconducting wire
JPH029744A (en) Production of dense oxide superconducting wire rod
JPS63310517A (en) Manufacture of superconductor wire material
JPH0215514A (en) Manufacture of oxide superconductor and superconductive magnet
JPH02217320A (en) Production of bi-based oxide superconductor
Lanagan et al. Production of wires and coils from high-temperature superconducting materials
JPH03129705A (en) Superconducting coil of oxide and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees