JPH03129705A - Superconducting coil of oxide and manufacture thereof - Google Patents

Superconducting coil of oxide and manufacture thereof

Info

Publication number
JPH03129705A
JPH03129705A JP20258989A JP20258989A JPH03129705A JP H03129705 A JPH03129705 A JP H03129705A JP 20258989 A JP20258989 A JP 20258989A JP 20258989 A JP20258989 A JP 20258989A JP H03129705 A JPH03129705 A JP H03129705A
Authority
JP
Japan
Prior art keywords
powder
oxide superconducting
rubber tube
raw material
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20258989A
Other languages
Japanese (ja)
Other versions
JP2617227B2 (en
Inventor
Hisaji Koyama
央二 小山
Toru Shiobara
融 塩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER
Shikoku Electric Power Co Inc
Original Assignee
KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER
Shikoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER, Shikoku Electric Power Co Inc filed Critical KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER
Priority to JP20258989A priority Critical patent/JP2617227B2/en
Publication of JPH03129705A publication Critical patent/JPH03129705A/en
Application granted granted Critical
Publication of JP2617227B2 publication Critical patent/JP2617227B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To form a polycrystalline body homogeneous in composition, high in density, minor in crack and much oriented by a method wherein a flexible pipe filled with an oxide superconducting raw powder is coiled while being exerted with a tensile force in the length direction and a cold isostatic press treatment is applied. CONSTITUTION:As an oxide superconducting raw-material powder, e.g. Bi2O3 (1mol), PbO (0.2mol), SrCO3 (1mol), CaCO3 (1mol) and CuO (2mol) are mixed and baked temporarily and pulverized. A rubber tube 23 is filled homogeneously with the powder; wires 21 for fixation use are attached to both ends of the rubber tube 23; both ends of the rubber tube 23 are fastened by using wires 22 for powder confinement use. The wires 21 for fixation use which are attached to the power-filled rubber tube 20 are passed through holes 11 for rubber-tube fixation use which are formed in a cylindrical metal fitting 12; both ends of the wires 21 for fixation use are connected firmly so as to exert a tensile force on the powder-filled rubber tube 20; the powder- filled rubber tube 20 is fixed to the cylindrical metal fitting 12. Then, a cylindrical metal fitting 10 in which a plurality of powder-filled rubber tubes are fixed to the cylindrical metal fitting 12 and on which the rubber tubes have been wound is put into a liquid-pressure cylinder (e.g. hydraulic cylinder) 31; a CIP treatment under a high pressure is executed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、酸化物超電導コイル及びその作製方法に関し
、特に、高密度で均質なクラックの少ない配向性のある
多結晶体からなる酸化物超電導コイルを得る技術、及び
焼結処理法、一方向凝固法、浮遊帯域溶融法(フローテ
ィングゾーン法)、レーザ照射法、プラズマ照射法等の
超電導特性を向上させる処理の前処理材として使用する
コイル状の高密度で均質な原料材を得る技術に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an oxide superconducting coil and a method for manufacturing the same, and particularly relates to an oxide superconducting coil made of an oriented polycrystalline body that is highly dense, homogeneous, and has few cracks. Coil-shaped coils used as pre-treatment materials for processes to improve superconducting properties, such as technology for obtaining coils, and sintering, unidirectional solidification, floating zone melting, laser irradiation, plasma irradiation, etc. This relates to technology for obtaining high-density and homogeneous raw materials.

〔従来技術〕[Prior art]

従来、高温度で超電導現象を示す酸化物超電導体を得る
ためには、まず、超電導原料粉末をゴム管に充填し、こ
の超電導原料粉末が充填されているゴム管に等方圧力処
理を施す等方圧力(コールド・アイソスタティク・プレ
シャー:CIP)装置により酸化物超電導原料棒を作製
し、この酸化物超電導原料棒に焼結処理法、一方向凝固
法、フローティングゾーン法、レーザ照射法、プラズマ
照射法等により超電導特性を向上させていた。
Conventionally, in order to obtain an oxide superconductor that exhibits a superconducting phenomenon at high temperatures, a rubber tube is first filled with superconducting raw material powder, and the rubber tube filled with this superconducting raw material powder is subjected to isotropic pressure treatment. An oxide superconducting raw material rod is produced using a cold isostatic pressure (CIP) device, and this oxide superconducting raw material rod is subjected to a sintering treatment method, a unidirectional solidification method, a floating zone method, a laser irradiation method, and a plasma irradiation method. Superconducting properties were improved through irradiation methods.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前記従来の酸化物超電導原料棒を作製す
るCIP処理においては、CIP処理中の高圧力により
、ゴム管内の材料がゴム管及び原料粉末の自然な縮みの
形状に依在していたため、均一な太さの直線性の良い原
料材(棒)を得ることができなかった。
However, in the conventional CIP process for producing oxide superconducting raw material rods, due to the high pressure during the CIP process, the material inside the rubber tube was dependent on the natural shrinkage shape of the rubber tube and the raw material powder, so the material was uniform. It was not possible to obtain a raw material (rod) with a certain thickness and good linearity.

また、酸化物超電導原料コイルを作製するCIP処理に
おいては、CIP処理中に高圧力により、ゴム管及びゴ
ム管内酸化物超電導原料が縮み、CIP処理後圧力が下
がった時、元の型にもどるため、ゴム管内の酸化物超電
導原料コイルにクラックが生じる。
In addition, in the CIP process for producing oxide superconducting raw material coils, the rubber tube and the oxide superconducting raw material inside the rubber tube shrink due to high pressure during the CIP process, and return to their original shape when the pressure decreases after the CIP process. , cracks occur in the oxide superconducting raw material coil inside the rubber tube.

このクラックが生じた酸化物超電導原料コイルに焼結処
理法、一方向凝固法、フローティングゾーン法、レーザ
照射法、プラズマ照射法等の処理を施しても、高密度で
均質なクラックの少ない配向性のある多結晶体からなる
酸化物超電導コイルが得られないという問題があった。
Even if this cracked oxide superconducting raw material coil is subjected to treatments such as sintering, unidirectional solidification, floating zone, laser irradiation, and plasma irradiation, it will still maintain a high-density, homogeneous orientation with few cracks. There was a problem in that an oxide superconducting coil made of a certain polycrystalline substance could not be obtained.

本発明は、前記問題点を解決するためになされたもので
ある。
The present invention has been made to solve the above problems.

本発明の目的は、均一な太さの高密度で均質なクラック
の少ないコイル状酸化物超電導原料材を得ることができ
る技術を提供することにある。
An object of the present invention is to provide a technique capable of obtaining a coiled oxide superconducting raw material having uniform thickness, high density, and homogeneity with few cracks.

本発明の他の目的は、高温度で超電導現象を示す酸化物
超電導コイルを提供することにある。
Another object of the present invention is to provide an oxide superconducting coil that exhibits superconducting phenomena at high temperatures.

本発明の前記ならびにその他の目的と新規な特徴は、本
明細書の記述及び添付図面によって明らかになるであろ
う。
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するために、本発明は、高密度で均質な
クラックの少ない配向性の良い多結晶体からなる酸化物
超電導コイルである。
In order to achieve the above object, the present invention provides an oxide superconducting coil made of a highly oriented polycrystalline body that is highly dense, homogeneous, and has few cracks.

また、高密度で均質なクラックの少ない配向性の良い多
結晶体からなるコイル状酸化物超電導体に、銅、銀等の
低抵抗金属を被覆した酸化物超電導コイルである。
Further, it is an oxide superconducting coil in which a coiled oxide superconductor made of a polycrystalline body with high density, homogeneity, and good orientation with few cracks is coated with a low-resistance metal such as copper or silver.

また、コイル状酸化物超電導原料材作製方法において、
酸化物超電導原料粉末を可撓性管に充填する工程と、該
酸化物超電導原料粉末が充填されている可撓性管に長さ
方向に・張力をもたせてコイル状に巻回する工程と、該
酸化物超電導原料粉末が充填されているコイル状可撓性
管に等方圧力処理を施す工程とを備えたことを最も主要
な特徴とする。
In addition, in the method for producing coiled oxide superconducting raw material,
a step of filling a flexible tube with the oxide superconducting raw material powder; a step of winding the flexible tube filled with the oxide superconducting raw material powder into a coil shape while applying tension in the length direction; The most important feature is that the method includes a step of subjecting the coiled flexible tube filled with the oxide superconducting raw material powder to isostatic pressure treatment.

また、前記可撓性管は、ゴム、銅、銀等のうちの一つか
らなることを特徴とする。
Further, the flexible tube is made of one of rubber, copper, silver, etc.

〔作 用〕[For production]

前述した手段によれば、酸化物超電導原料粉末を可撓性
管、例えば、ゴム、銅、銀等のうち一つからなる管に充
填し、この酸化物超電導原料粉末が充填されている可撓
性管に長さ方向に張力をもたせてコイル状に巻回し、こ
の酸化物超電導原料粉末が充填されているコイル状可撓
性管に等方圧力処理を施することにより、均一な太さの
高密度で均質なクラックの少ないコイル状酸化物超電導
原料材を得ることができる。
According to the above-described means, the oxide superconducting raw material powder is filled into a flexible tube, for example, a tube made of one of rubber, copper, silver, etc., and the flexible tube filled with the oxide superconducting raw material powder is By applying tension to the sex tube in the longitudinal direction and winding it into a coil shape, and applying isostatic pressure treatment to the coiled flexible tube filled with this oxide superconducting raw material powder, a uniform thickness can be obtained. A coiled oxide superconducting raw material that is highly dense, homogeneous, and has few cracks can be obtained.

このコイル状酸化物超電導原料材に、焼結処理法、一方
向凝固法、フローティングゾーン法、レーザ照射法、プ
ラズマ照射法等の配向性の良い多結晶体形成処理を施す
ことにより、高密度で均質なクラックの少ない配向性の
良い多結晶体からなる酸化物超電導コイルが得られる。
This coiled oxide superconducting raw material is processed to form a polycrystalline body with good orientation, such as sintering, unidirectional solidification, floating zone, laser irradiation, and plasma irradiation. An oxide superconducting coil made of homogeneous polycrystalline material with few cracks and good orientation can be obtained.

この高密度で均質なクラックの少ない配向性の良い多結
晶体からなる酸化物超電導コイルは、液体窒素の温度の
雰囲気中において超電導現象を示した。
This oxide superconducting coil made of a high-density, homogeneous, well-oriented polycrystal with few cracks exhibited superconductivity in an atmosphere at the temperature of liquid nitrogen.

また、前記可撓性のある管として銅、銀等の低抵抗金属
のうちの一つを用いることにより、従来から知られてい
るように超電導特性を安定にすると共に酸化物超電導コ
イルの超電導状態が破壊された時、酸化物超電導コイル
及び装置の保護回路としての役目をすることができる。
Furthermore, by using one of low-resistance metals such as copper or silver for the flexible tube, the superconducting properties can be stabilized and the superconducting state of the oxide superconducting coil can be stabilized, as is conventionally known. When destroyed, it can serve as a protection circuit for the oxide superconducting coil and device.

〔発明の実施例■〕[Embodiment of the invention■]

第1図乃至第5図は、本発明の実施例■のコイル状酸化
物超電導原料材作製方法を実施するための装置の概略構
成を示す図である。
FIGS. 1 to 5 are diagrams showing a schematic configuration of an apparatus for carrying out the method for producing a coiled oxide superconducting raw material according to Example 2 of the present invention.

博1図(ゴム管固定金具の斜視図)に示すように、本実
施例のゴム管巻き付は円筒金具10は、ゴム管固定穴1
1を有する円筒金具12からなっている。
As shown in Figure 1 (perspective view of the rubber tube fixing fitting), the rubber tube of this embodiment is wrapped around the cylindrical fitting 10 through the rubber tube fixing hole 1.
It consists of a cylindrical metal fitting 12 having a diameter of 1.

また、第2図(超電導原料粉末入りゴム管の概略構成を
示す図)に示すように、超電導原料粉末入りゴム管(パ
イプ) 20は、前記第1図に示す円筒金具12に設け
られているゴム管固定穴11に貫通して固定する固定用
針金21と、粉末綴じ込め用針金22と、ゴム管23と
からなっている。
Further, as shown in FIG. 2 (a diagram showing a schematic configuration of a rubber tube containing superconducting raw material powder), a rubber tube (pipe) 20 containing superconducting raw material powder is provided in the cylindrical metal fitting 12 shown in FIG. It consists of a fixing wire 21 that penetrates and fixes to the rubber tube fixing hole 11, a powder binding wire 22, and a rubber tube 23.

すなわち、ゴム管23に酸化物超電導原料粉末24Aを
挿入し、第3図(超電導原料粉末入りゴム管の端部詳細
な構成を示す図)に示すように、そのゴム管23の両端
部を、固定用針金21を内側にして折り曲げ、固定用針
金21が内に閉じ込められるように粉末綴じ込め用針金
22で縛り付けたものである。
That is, the oxide superconducting raw material powder 24A is inserted into the rubber tube 23, and as shown in FIG. It is bent with the fixing wire 21 facing inside and tied with a powder binding wire 22 so that the fixing wire 21 is trapped inside.

酸化物超電導原料粉末は、例えば、Bi20i(1モル
)、PbO(0,2モル) 、5rCO,(1モル)、
CaC0a (1モル) 、CuO(2モル)を混合し
て、それを800℃で工2〜24時間仮焼したものを粉
末にしたものを用いる。
The oxide superconducting raw material powder is, for example, Bi20i (1 mol), PbO (0.2 mol), 5rCO, (1 mol),
A mixture of CaC0a (1 mol) and CuO (2 mol) is used, which is calcined at 800° C. for 2 to 24 hours to form a powder.

そして、ゴム管23に酸化物超電導原料粉末を均質に充
填し、ゴム管23の両端に固定用針金21を取り付けて
、粉末綴じ込め用針金22でゴム管23の両端を縛る。
Then, the rubber tube 23 is uniformly filled with the oxide superconducting raw material powder, the fixing wires 21 are attached to both ends of the rubber tube 23, and both ends of the rubber tube 23 are tied up with the powder binding wires 22.

この粉末入りゴム管20に取り付けられている固定用針
金21を、第1図に示す円筒金具12に設けられている
ゴム管固定穴11に貫通させて。
The fixing wire 21 attached to this powder-filled rubber tube 20 is passed through the rubber tube fixing hole 11 provided in the cylindrical metal fitting 12 shown in FIG.

第4図(超電導原料粉末入りゴム管をゴム管巻き付は円
筒金具に取り付けた斜視図及び公知のCIP装置の要部
概略構成を示す説明図)に示すように、その固定用針金
21の両端を粉末入りゴム管20に張力が加わるように
しっかりと連結して、粉末入りゴム管20を円筒金具1
2に固定する。
As shown in FIG. 4 (a perspective view showing a rubber tube containing superconducting raw material powder wrapped around a cylindrical metal fitting and an explanatory diagram showing a schematic configuration of main parts of a known CIP device), both ends of the fixing wire 21 are shown. are firmly connected to the powder-filled rubber tube 20 so that tension is applied to the powder-filled rubber tube 20, and the powder-filled rubber tube 20 is attached to the cylindrical metal fitting 1.
Fixed at 2.

次に、複数の粉末入りゴム管20が円筒金具12に固定
されたゴム管巻き付は円筒金具10を、第4図に示すC
IP装置30の液体圧シリンダ−(例えば油圧シリンダ
ー) 31の中に入れ、高圧力によるCIP処理を行う
、CIP処理の圧力は、2000から4000気圧で実
施する。CIP処理後、粉末入りゴム管20の一端を切
断し、コイル状酸化物超電導原料材を取り出す。そのコ
イル状酸化物超電導原料材を第5図(コイル状酸化物超
電導原料材の外観図)に示す。
Next, a plurality of powder-filled rubber tubes 20 are fixed to the cylindrical fitting 12, and the cylindrical fitting 10 is wrapped around the cylindrical fitting 12 as shown in FIG.
It is placed in a liquid pressure cylinder (for example, a hydraulic cylinder) 31 of the IP device 30 and performs CIP treatment under high pressure.The pressure of the CIP treatment is 2000 to 4000 atmospheres. After the CIP treatment, one end of the powder-filled rubber tube 20 is cut and the coiled oxide superconducting raw material is taken out. The coiled oxide superconducting raw material is shown in FIG. 5 (an external view of the coiled oxide superconducting raw material).

このようにすることにより、均一な太さの高密度で均質
なクラックの少ないコイル状酸化物超電導原料材を得る
ことができる。
By doing so, it is possible to obtain a coiled oxide superconducting raw material with uniform thickness, high density, and homogeneity with few cracks.

この均一な太さの高密度で均質なクラックの少ないコイ
ル状酸化物超電導原料材を、焼結処理法、一方向凝固法
、フローティングゾーン法、レーザ照射法、プラズマ照
射法等の配向性の良い多結晶体形成処理を施すことによ
り、高密度で均質なクラックの少ない配向性の良い多結
晶体からなる酸化物超電導コイルが得られる。
This coiled oxide superconducting raw material with uniform thickness, high density, and few cracks can be processed using sintering treatment methods, unidirectional solidification methods, floating zone methods, laser irradiation methods, plasma irradiation methods, etc. with good orientation. By performing the polycrystalline formation treatment, an oxide superconducting coil made of a polycrystalline body with high density, homogeneity, few cracks, and good orientation can be obtained.

前記高密度で均質なクラックの少ない配向性の良い多結
晶体からなる酸化物超電導コイルは、液体窒素の温度の
雰囲気中において超電導現象を示した。
The oxide superconducting coil made of the high-density, homogeneous, well-oriented polycrystalline material with few cracks exhibited a superconducting phenomenon in an atmosphere at the temperature of liquid nitrogen.

〔発明の実施例■〕[Embodiment of the invention■]

第7図は、本発明の実施例■の酸化物超電導コイルの作
製方法を説明するための図である。
FIG. 7 is a diagram for explaining a method for manufacturing an oxide superconducting coil according to Example 2 of the present invention.

本実施例■の酸化物超電導コイルの作製方法は、例えば
、Bi203(1モル) 、PbO(0,2モル)、5
rCO3(1モル) 、CaC0,(1モル)、Cuo
(2モル)を混合して、それを800℃で12〜24時
間仮焼する。
The method for manufacturing the oxide superconducting coil of Example 3 includes, for example, Bi203 (1 mol), PbO (0.2 mol), 5
rCO3 (1 mol), CaC0, (1 mol), Cuo
(2 mol) and calcined it at 800°C for 12-24 hours.

次に、この仮焼された酸化物超電導原料を粉末にして仮
焼超電導原料粉末を作製する。
Next, this calcined oxide superconducting raw material is powdered to produce a calcined superconducting raw material powder.

次に、銅、銀等の低抵抗からなる金属管(パイプ)に前
記仮焼超電導原料粉末を詰め込み、第6図に示すように
、この仮焼超電導粉末詰め込み金属管40を圧延ローラ
41により線引して線材42を形成する。この線材42
の両端部に、第7図(線材を円筒金具に取り付けた斜視
図)に示すように、スプリング43を介して固定用フッ
ク44を設け、第1図に示す円筒金具12に設けられて
いるゴム管固定穴11に引掛け、線材42を円筒金具1
2に張力を加えてコイル状に巻き付け、他の固定用フッ
ク44を円筒金具12に設けられているゴム管固定穴1
1に引掛けて線材42を円筒金具12に固定する。
Next, the calcined superconducting raw material powder is packed into a metal tube (pipe) made of low resistance such as copper or silver, and as shown in FIG. The wire rod 42 is formed by drawing. This wire 42
As shown in FIG. 7 (perspective view of the wire attached to the cylindrical fitting), fixing hooks 44 are provided at both ends of the cylindrical fitting 12 shown in FIG. Hook the wire rod 42 into the tube fixing hole 11 and attach it to the cylindrical fitting 1.
2 is applied tension and wound into a coil shape, and the other fixing hook 44 is attached to the rubber tube fixing hole 1 provided in the cylindrical metal fitting 12.
1 to fix the wire 42 to the cylindrical metal fitting 12.

次に、線材42が巻き付けられた円筒金具10を、前記
第4図に示すCIP装置30の液体圧シリンダ−31の
中に入れ、高圧力を発生するCIP処理を行う。CIP
%理の圧力は、2000から4000気圧で実施する。
Next, the cylindrical metal fitting 10 around which the wire rod 42 is wound is placed into the liquid pressure cylinder 31 of the CIP device 30 shown in FIG. 4, and CIP treatment is performed to generate high pressure. C.I.P.
The pressure of the process is 2,000 to 4,000 atmospheres.

CIP処理後、酸素雰囲気中で、845’Cで12〜2
4時間アニール処理を行う。
After CIP treatment, in oxygen atmosphere at 845'C for 12~2
Annealing is performed for 4 hours.

この時、本発明では、整形時にCIP処理を行うため、
前記仮焼超電導粉末詰め込み金属管40の金属管(パイ
プ)と仮焼超電導粉末との間に隙間ができるので、酸化
物超電導体を完全に生成するための酸素の供給を、従来
のCIP処理を行わないものに比べて良好に行うことが
できる。
At this time, in the present invention, since CIP processing is performed at the time of shaping,
Since a gap is created between the metal tube (pipe) of the calcined superconducting powder-filled metal tube 40 and the calcined superconducting powder, the supply of oxygen to completely generate the oxide superconductor cannot be performed using the conventional CIP process. It can be performed better than those that do not.

このように仮焼超電導粉末詰め込み金属管40にCIP
処理を施すことにより、酸化物超電導原料線に銅、銀等
の低抵抗金属を被覆した均一な太さの高密度で均質なク
ラックの少ないコイル状酸化物超電導原料材を得ること
ができる。
In this way, CIP is applied to the metal tube 40 filled with calcined superconducting powder.
By performing the treatment, it is possible to obtain a coiled oxide superconducting raw material having a uniform thickness, high density, and few cracks, in which the oxide superconducting raw material wire is coated with a low-resistance metal such as copper or silver.

この均一な太さの高密度で均質なクラックの少ないコイ
ル状酸化物超電導原料材を、焼結処理法、一方向凝固法
、フローティングゾーン法、レーザ照射法、プラズマ照
射法等の配向性の良い多結晶体形成処理を施すことによ
り、超電導特性を向上させ、高密度で均質なクラックの
少ない配向性のある多結晶体からなる酸化物超電導体に
、銅、銀等の低抵抗金属を被覆した酸化物超電導コイル
を得ることができる。
This coiled oxide superconducting raw material with uniform thickness, high density, and few cracks can be processed using sintering treatment methods, unidirectional solidification methods, floating zone methods, laser irradiation methods, plasma irradiation methods, etc. with good orientation. Polycrystal formation treatment improves superconducting properties, and the oxide superconductor is made of highly dense, homogeneous, and oriented polycrystals with few cracks, coated with low-resistance metals such as copper and silver. An oxide superconducting coil can be obtained.

この高密度で均質なクラックの少ない配向性の良い多結
晶体からなる酸化物超電導体に、銅、銀等の低抵抗金属
を被覆した酸化物超電導コイルは、液体窒素の温度の雰
囲気中において超電導現象を示した。
Oxide superconducting coils, which are made of high-density, homogeneous, well-oriented polycrystals with few cracks and coated with low-resistance metals such as copper and silver, conduct superconductivity in an atmosphere at the temperature of liquid nitrogen. showed the phenomenon.

また、前記銅、銀等の低抵抗金属は、超電導特性を安定
にすると共に酸化物超電導コイルの超電導状態が破壊さ
れた時、酸化物超電導コイル及び装置の保護回路として
の役目をすることができる。
In addition, the low resistance metals such as copper and silver can stabilize the superconducting properties and serve as a protection circuit for the oxide superconducting coil and the device when the superconducting state of the oxide superconducting coil is destroyed. .

なお、前記実施例I及び■では、CIP処理と熱処理と
を別工程で行う方法で説明したが、本発明は1両者の機
能を持ったホット・アイソスタティク・プレシャー法を
用いて等方圧力処理を行ってもよい。
In Examples I and (2) above, the CIP treatment and the heat treatment are performed in separate steps, but the present invention uses a hot isostatic pressure method that has the functions of both. Processing may be performed.

以上、本発明を実施例にもとづき具体的に説明したが、
本発明は、前記実施例に限定されるものではなく、その
要旨を逸脱しない範囲において種々変更可能であること
は言うまでもない。
The present invention has been specifically explained above based on examples, but
It goes without saying that the present invention is not limited to the embodiments described above, and can be modified in various ways without departing from the spirit thereof.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように、本発明によれば、均一な太さの
高密度で均質なクラックの少ないコイル状酸化物超電導
原料材を得ることができる。
As described above, according to the present invention, a coiled oxide superconducting raw material having a uniform thickness, high density, and homogeneity with few cracks can be obtained.

このコイル状酸化物超電導原料材に、焼結処理法、一方
向凝固法、フローティングゾーン法、レーザ照射法、プ
ラズマ照射法等の配向性の良い多結晶体形成処理を施す
ことにより、高密度で均質なクラックの少ない配向性の
良い多結晶体からなる酸化物超電導コイルが得られる。
This coiled oxide superconducting raw material is processed to form a polycrystalline body with good orientation, such as sintering, unidirectional solidification, floating zone, laser irradiation, and plasma irradiation. An oxide superconducting coil made of homogeneous polycrystalline material with few cracks and good orientation can be obtained.

この高密度で均質なりランクの少ない配向性の良い多結
晶体からなる酸化物超電導コイルは、液体窒素の温度の
雰囲気中において超電導現象を示した。
This oxide superconducting coil made of a high-density, homogeneous, or poorly oriented polycrystalline material exhibited superconductivity in an atmosphere at the temperature of liquid nitrogen.

また、前記可撓性のある管として網、銀等の低抵抗金属
のうちの一つを用いることにより、超電導特性を安定に
すると共に酸化物超電導コイルの超電導状態が破壊され
た時、酸化物超電導コイル及び装置の保護回路としての
役目をすることができる。
In addition, by using one of low resistance metals such as mesh or silver as the flexible tube, the superconducting properties can be stabilized, and when the superconducting state of the oxide superconducting coil is destroyed, the oxide It can serve as a protection circuit for superconducting coils and devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第工図乃至第4図は1本発明の実施例Iのコイル状超電
導原料材作製方法を実施するための装置の概略構成を示
す図、 第5図は、本実施例Iの作製方法で作製されたコイル状
酸化物原料材の外観図、 第6図及び第7図は、本発明の実施例Hの酸化物超電導
コイルの作製方法を説明するための図である。 図中、10・・・ゴム管巻き付は円筒金具、11・・・
ゴム管固定穴、12・・・円筒金具、20・・・超電導
原料粉末入りゴム管、21・・・固定用針金、22・・
・粉末綴じ込め用針金、23・・・ゴム管、30・・・
CIP装置、31・・・液体圧シリンダ−,40・・・
仮焼超電導粉末詰め込み金属管、41・・・圧延ローラ
、42・・・線材、43・・・スプリング、44・・・
固定用フック。
1. Figures 1 to 4 are diagrams showing the schematic configuration of an apparatus for carrying out the method for manufacturing a coiled superconducting raw material according to Example I of the present invention. 6 and 7 are diagrams for explaining the method for manufacturing the oxide superconducting coil of Example H of the present invention. In the figure, 10...The rubber tube is wrapped around a cylindrical metal fitting, 11...
Rubber tube fixing hole, 12... Cylindrical fitting, 20... Rubber tube containing superconducting raw material powder, 21... Fixing wire, 22...
・Wire for powder binding, 23...Rubber tube, 30...
CIP device, 31...Liquid pressure cylinder, 40...
Calcined superconducting powder packed metal tube, 41... Rolling roller, 42... Wire rod, 43... Spring, 44...
Fixing hook.

Claims (4)

【特許請求の範囲】[Claims] (1)高密度で均質なクラックの少ない配向性の良い多
結晶体からなる酸化物超電導コイル。
(1) An oxide superconducting coil made of a high-density, homogeneous polycrystal with few cracks and good orientation.
(2)高密度で均質なクラックの少ない配向性の良い多
結晶体からなるコイル状酸化物超電導体に、銅,銀等の
低抵抗金属を被覆した酸化物超電導コイル。
(2) An oxide superconducting coil in which a coiled oxide superconductor made of a high-density, homogeneous, well-oriented polycrystalline body with few cracks is coated with a low-resistance metal such as copper or silver.
(3)酸化物超電導原料粉末を可撓性管に充填する工程
と、該酸化物超電導原料粉末が充填されている可撓性管
に長さ方向に張力をもたせてコイル状に巻回する工程と
、該酸化物超電導原料粉末が充填されているコイル状可
撓性管に等方圧力処理を施す工程とを備えたことを特徴
とするコイル状超電導原料材作製方法。
(3) A process of filling a flexible tube with the oxide superconducting raw material powder, and a process of applying tension in the length direction to the flexible tube filled with the oxide superconducting raw material powder and winding it into a coil shape. and a step of subjecting a coiled flexible tube filled with the oxide superconducting raw material powder to isotropic pressure treatment.
(4)前記請求項第3項に記載の可撓性管は、ゴム,銅
,銀等のうちの一つからなることを特徴とする超電導原
料材作製方法。
(4) A method for producing a superconducting raw material, wherein the flexible tube according to claim 3 is made of one of rubber, copper, silver, etc.
JP20258989A 1989-08-04 1989-08-04 Method for producing coiled oxide superconducting raw material Expired - Lifetime JP2617227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20258989A JP2617227B2 (en) 1989-08-04 1989-08-04 Method for producing coiled oxide superconducting raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20258989A JP2617227B2 (en) 1989-08-04 1989-08-04 Method for producing coiled oxide superconducting raw material

Publications (2)

Publication Number Publication Date
JPH03129705A true JPH03129705A (en) 1991-06-03
JP2617227B2 JP2617227B2 (en) 1997-06-04

Family

ID=16459987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20258989A Expired - Lifetime JP2617227B2 (en) 1989-08-04 1989-08-04 Method for producing coiled oxide superconducting raw material

Country Status (1)

Country Link
JP (1) JP2617227B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153558A (en) * 1989-11-08 1991-07-01 Kokusai Chiyoudendou Sangyo Gijutsu Kenkyu Center Production of oxide superconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153558A (en) * 1989-11-08 1991-07-01 Kokusai Chiyoudendou Sangyo Gijutsu Kenkyu Center Production of oxide superconductor

Also Published As

Publication number Publication date
JP2617227B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
JPH0494019A (en) Manufacture of bismuth-based oxide superconductor
JPWO2005022563A1 (en) Method for producing oxide superconducting wire, method for modifying oxide superconducting wire, and oxide superconducting wire
JPH03129705A (en) Superconducting coil of oxide and manufacture thereof
JP2620375B2 (en) Superconducting raw material production method
WO2005124793A1 (en) Method for producing superconducting wire
JPS63241814A (en) Manufacture of superconducting wire rod
JP2516642B2 (en) Method for producing multi-core oxide superconducting wire
JP2585882B2 (en) Superconducting ceramic wire drawing method
JPH02276113A (en) Manufacture of ceramics group superconductive wire material
JPH04337213A (en) Manufacture of multi-layer ceramic superconductor
JPS63281318A (en) Manufacture of compound superconductive wire
JPH04269407A (en) Manufacture of ceramic superconductive conductor
JPH02183918A (en) Manufacture of oxide superconductor
JPH01282804A (en) Manufacture of ceramic group superconducting magnet
JPH07141940A (en) Manufacture of superconductive wire of bismuth oxide
JPH03122918A (en) Manufacture of ceramics superconductive conductor
JP2585881B2 (en) Superconducting ceramic wire drawing method.
JPH02278616A (en) Manufacture of multicore-type oxide superconductor
JPH03145103A (en) Manufacture of oxide based superconducting coil
JPS63281319A (en) Manufacture of compound superconductive wire
JPH01251520A (en) Manufacture of ceramic superconductive wire
JPH01241709A (en) Manufacture of oxide superconductor wire
JPH02252210A (en) Manufacture of oxide superconducting coil
JPH04269405A (en) Manufacture of oxide superconductive wire
JPS63318023A (en) Manufacture of compound superconductive wire

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 13