JPH04312724A - Contact material of vacuum valve - Google Patents

Contact material of vacuum valve

Info

Publication number
JPH04312724A
JPH04312724A JP7874491A JP7874491A JPH04312724A JP H04312724 A JPH04312724 A JP H04312724A JP 7874491 A JP7874491 A JP 7874491A JP 7874491 A JP7874491 A JP 7874491A JP H04312724 A JPH04312724 A JP H04312724A
Authority
JP
Japan
Prior art keywords
current
arc
amount
contact material
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7874491A
Other languages
Japanese (ja)
Other versions
JP2904448B2 (en
Inventor
Isao Okutomi
功 奥富
Keisei Seki
経世 関
Atsuhisa Yamamoto
山本 敦央
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7874491A priority Critical patent/JP2904448B2/en
Publication of JPH04312724A publication Critical patent/JPH04312724A/en
Application granted granted Critical
Publication of JP2904448B2 publication Critical patent/JP2904448B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

PURPOSE:To improve the current-chopping characteristic and current-breaking characteristic of the contact material of a vacuum valve by specifying a highly conductive component made of an element selected from Ag or/and Cu and an arc-resisting component made of WC respectively to have xwt.% and ywt.% and having Cr or V carbide of zwt.% against WC contained in the arc-resisting component. CONSTITUTION:The contact material is formed out of 20 to 50wt.% of a highly conductive component selected from Ag or/and Cu, and an arc-resisting component made of 50 to 80wt.% of WC. At this time, at least one of 1 to 10wt.% of Cr or V carbide against WC is contained in the arc-resisting component while also an auxiliary component made of one or more elements selected from Fe, Co and Ni is contained in a contact material. Contacts 13a, 13b worked out of this contact material are soldered to electrodes 7, 8, respectively and then the electrodes 7, 8 are soldered respectively to conductive rods 5, 6. The current-chopping characteristic and current-breaking characteristic of the contact material of the vacuum valve can thus be improved so as to sufficiently lower the high-frequency arc-extinguishing characteristic thereof.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] [Purpose of the invention]

【0001】0001

【産業上の利用分野】本発明は、電流さい断特性および
高周波消弧特性に優れた真空バルブの接点材料に関する
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a contact material for a vacuum valve having excellent current cutting characteristics and high frequency arc extinguishing characteristics.

【0002】0002

【従来の技術】真空中でのアーク拡散性を利用して高真
空中で電流しゃ断を行わせる真空バルブの接点は、対向
する固定、可動の2つの接点から構成されている。この
真空バルブを用いて、電動機負荷などの誘導性回路の電
流をしゃ断するとき、過度の異常サージ電圧が発生し、
負荷機器を破壊させる恐れがある。この異常サージ電圧
の発生原因は、例えば真空中における小電流しゃ断時に
発生するさい断現象(交流電流波形の自然ゼロ点を待た
ずに強制的に電流しゃ断が行われること)、或いは高周
波消弧現象などによるものである。さい断現象による異
常サージ電圧の値Vsは、回路のサージインピーダンス
Zoと、電流さい断値Icの積、即ちVs=Zo・Ic
で表される。従って、異常サージ電圧Vsを低くするた
めには電流さい断値Icを小さくしなくてはならない。
2. Description of the Related Art The contacts of a vacuum valve, which cuts off current in a high vacuum by utilizing arc diffusivity in a vacuum, are composed of two opposing fixed and movable contacts. When this vacuum valve is used to cut off the current in an inductive circuit such as a motor load, an excessive abnormal surge voltage is generated.
There is a risk of damaging the load equipment. The cause of this abnormal surge voltage is, for example, a rupture phenomenon that occurs when a small current is interrupted in a vacuum (current is forcibly interrupted without waiting for the natural zero point of the AC current waveform), or a high-frequency arc extinction phenomenon. etc. The abnormal surge voltage value Vs due to the cutting phenomenon is the product of the circuit surge impedance Zo and the current cutting value Ic, that is, Vs = Zo・Ic
It is expressed as Therefore, in order to lower the abnormal surge voltage Vs, the current cutoff value Ic must be lowered.

【0003】上記の要求に対して、炭化タングステン(
WC)と銀(Ag)とを複合化した合金の接点を用いた
真空開閉器が開発され(特願昭42−68447号、米
国特許第3683138号)、これが実用化されている
。このAg−WC系合金の接点は、次のような特徴があ
る。 (1)WCの介在が電子放射を容易にさせる。 (2)電界放射電子の衝突による電極面の加熱に基づく
接点材料の蒸発を促進させる。 (3)接点材料の炭化物がアークにより分解し、荷電体
を生成してアークを接続する。
In response to the above requirements, tungsten carbide (
A vacuum switch using a contact made of a composite alloy of WC) and silver (Ag) has been developed (Japanese Patent Application No. 42-68447, US Pat. No. 3,683,138), and this has been put into practical use. This Ag-WC alloy contact has the following characteristics. (1) Intervention of WC facilitates electron emission. (2) Promote evaporation of the contact material based on heating of the electrode surface due to collision of field emission electrons. (3) The carbide of the contact material is decomposed by the arc, producing a charged body and connecting the arc.

【0004】また、低さい断電流特性(低チョッピング
特性)を発揮する他の接点材料として、ビスマス(Bi
)と銅(Cu)とを複合化した合金が製造され、この材
料が真空バルブに実用化されている(特公昭35−14
974号公報、米国特許第2975256号、特公昭4
1−12131号公報、米国特許第3246979号)
。この合金のうち、Biを10重量%(以下wt%と記
す。)としたもの(特公昭35−14974号公報)は
、その適度な蒸気圧特性を有するので低いさい断電流特
性を発揮し、またBiを0.5wt%としたもの(特公
昭41−12131号公報)は、結晶粒界に偏析して存
在する結果、合金自体を脆化し低い溶着引外力を実現し
大電流しゃ断性に優れている。低さい断電流特性を得る
他の接点材料として、AgとCuとの比率をほぼ7:3
としたAg−Cu−WC合金が提案されている(特開昭
58−157015号公報)。この合金においては、従
来にない限定をしたAgとCuとの比率を選択するので
、安定したさい断電流特性を発揮すると記載されている
。さらに、特公昭62−077439号公報には、耐弧
性材料の粒径(例えばWCの粒径)を0.2〜1μmと
することにより、低さい断電流特性の改善に有効である
ことが示唆されている。
Bismuth (Bi) is another contact material that exhibits low cutting current characteristics (low chopping characteristics).
) and copper (Cu), and this material has been put to practical use in vacuum valves (Japanese Patent Publication No. 35-14
No. 974, U.S. Patent No. 2975256, Special Publication No. 4
1-12131, US Pat. No. 3,246,979)
. Among these alloys, one containing 10% by weight (hereinafter referred to as wt%) of Bi (Japanese Patent Publication No. 35-14974) exhibits low cutting current characteristics due to its moderate vapor pressure characteristics. In addition, Bi containing 0.5 wt% (Japanese Patent Publication No. 12131/1986) segregates at grain boundaries, embrittles the alloy itself, achieves low welding external force, and has excellent large current interrupting properties. ing. Another contact material that obtains low breaking current characteristics is a Ag:Cu ratio of approximately 7:3.
An Ag-Cu-WC alloy has been proposed (JP-A-58-157015). It is stated that this alloy exhibits stable cutting current characteristics because the ratio of Ag and Cu is selected in an unprecedentedly limited manner. Furthermore, Japanese Patent Publication No. 62-077439 states that setting the grain size of the arc-resistant material (for example, the grain size of WC) to 0.2 to 1 μm is effective in improving low shredding current characteristics. Suggested.

【0005】[0005]

【発明が解決しようとする課題】真空バルブは、近年、
電動機等の誘導性回路に適用されることが増えると共に
、高サージインピーダンス負荷も出現したため、一層安
定した低さい断電流特性を持つことが望まれるのは勿論
のこと、高周波消弧特性(高周波電流しゃ断能力)につ
いても兼備し満足しなくてはならない。これは、電流さ
い断によるサージ以外に繰返し高周波再発弧によるサー
ジが負荷の絶縁にとって脅威となることが判明したから
である。従来の真空バルブの接点材料は、これらの両特
性を同時に満足させる接点材料はなかった。
[Problem to be solved by the invention] In recent years, vacuum valves have
With the increasing number of applications being applied to inductive circuits such as electric motors, and the emergence of high surge impedance loads, it is of course desirable to have even more stable and low breaking current characteristics, as well as high-frequency arc-extinguishing characteristics (high-frequency current It is also necessary to satisfy the requirements (blocking ability). This is because it has been found that in addition to surges caused by current interruption, surges caused by repeated high-frequency re-ignition pose a threat to load insulation. There has been no contact material for conventional vacuum valves that satisfies both of these characteristics at the same time.

【0006】即ち、電流さい断によるサージ(過電圧)
は電流さい断値を小さくすることにより改善できる。し
かし、繰返し高周波再発弧によるサージは、電流さい断
後、電極間で絶縁破壊が発生した時に回路条件により流
れる高周波電流をしゃ断することで回復電圧値が増大し
、さらに電極間での絶縁破壊が発生する過程の繰返しに
よって回復電圧値が増大し、過大なサージ電圧を発生さ
せるものである。この場合では、高周波電流を消弧する
ために発生するものであり、高周波消弧特性をサージ電
圧が小さくなるように改善させることにより、発生サー
ジを低減させることができるため、高周波電流放電の続
弧特性の改良・安定化を計る必要がある。WCとAgと
を複合化した合金の接点(特願昭42−68447号、
米国特許第3683138号)では、さい断電流値自体
が不十分であるのみならず、高周波消弧特性の改善に対
しては何等の配慮もなされていない。
That is, surge (overvoltage) due to current interruption
can be improved by reducing the current cutoff value. However, in surges caused by repeated high-frequency re-ignition, when dielectric breakdown occurs between electrodes after current interruption, the high-frequency current flowing depending on the circuit conditions is interrupted, increasing the recovery voltage value, and further causing dielectric breakdown between the electrodes. By repeating the process that occurs, the recovery voltage value increases and an excessive surge voltage is generated. In this case, the surge is generated to extinguish the high-frequency current, and by improving the high-frequency arc-extinguishing characteristics to reduce the surge voltage, the generated surge can be reduced. It is necessary to improve and stabilize arc characteristics. Alloy contact made of composite of WC and Ag (Japanese Patent Application No. 68447/1989,
In U.S. Pat. No. 3,683,138), not only is the breaking current value itself insufficient, but no consideration is given to improving the high frequency arc extinction characteristics.

【0007】10wt%のBiとCuとを複合化した合
金(特公昭35−14974号公報、米国特許第297
5256号)では、開閉回数の増大と共に電極間空間へ
の金属供給量が減少し、低さい断電流特性の劣化が現れ
、高蒸気圧元素量に依存して耐電圧特性の劣化も指摘さ
れている。しかも、高周波消弧特性を十分に満足してい
ない。0.5wt%のBiとCuとを複合化した合金(
特公昭41−12131号公報、米国特許第32469
79号)では、低さい断電流特性が不十分である。
[0007] An alloy containing 10 wt% of Bi and Cu (Japanese Patent Publication No. 35-14974, US Pat. No. 297
No. 5256), the amount of metal supplied to the interelectrode space decreased as the number of openings and closings increased, deterioration of low cutting current characteristics appeared, and deterioration of withstand voltage characteristics depending on the amount of high vapor pressure elements was also pointed out. There is. Furthermore, the high-frequency arc-extinguishing characteristics are not fully satisfied. An alloy containing 0.5wt% Bi and Cu (
Japanese Patent Publication No. 41-12131, U.S. Patent No. 32469
No. 79) has insufficient low breaking current characteristics.

【0008】また、AgとCuとの重量比率をほぼ7:
3としたAg−Cu−WC合金(特開昭58−1570
15号公報)及び耐弧性材料の粒径を0.2〜1μmと
する合金(特開昭62−077439号公報)では、高
周波消弧特性を十分に満足していない。本発明の目的は
、優れた低さい断電流特性と高周波消弧特性を兼備する
真空バルブの接点材料を提供することにある。 [発明の構成]
[0008] Furthermore, the weight ratio of Ag and Cu is approximately 7:
3 Ag-Cu-WC alloy (JP-A-58-1570
No. 15) and an alloy in which the grain size of the arc-resistant material is 0.2 to 1 μm (Japanese Patent Application Laid-open No. 62-077439) do not fully satisfy high frequency arc extinguishing properties. An object of the present invention is to provide a contact material for a vacuum valve that has both excellent low breaking current characteristics and high frequency arc extinguishing characteristics. [Structure of the invention]

【0009】[0009]

【課題を解決するための手段と作用】上記目的を達成す
るために本発明は、高導電性成分の含有量はAg又は/
及びCuの総計量が20〜50wt%であり、耐弧性成
分の含有量はWeとCr3 C2 又は/及びVcとの
総計量が50〜80wtであり、耐弧性成分のうちのC
r3 C2 又は/及びVcの量はWcの量に対し1〜
10wt%含有したことにより、電流さい断特性および
高周波消弧特性が良好になる。
[Means and effects for solving the problems] In order to achieve the above object, the present invention provides that the content of the highly conductive component is Ag or/
The total content of We and Cr3C2 or/and Vc is 50 to 80wt%, and the content of the arc-resistant components is 50 to 80wt%, and the content of the arc-resistant components is 50 to 80wt%.
The amount of r3 C2 or/and Vc is 1 to 1 to the amount of Wc.
By containing 10 wt%, current cutting characteristics and high frequency arc extinguishing characteristics are improved.

【0010】0010

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は真空バルブの断面図、図2は真空バルブの
電極部の拡大図である。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of a vacuum valve, and FIG. 2 is an enlarged view of an electrode portion of the vacuum valve.

【0011】図1において、しゃ断室1は絶縁材料によ
りほぼ円筒状に形成された絶縁容器2と、この両端に封
止金具3a、3bを介して設けた金属性の蓋体4a、4
bとで真空密に構成されている。
In FIG. 1, a shutoff chamber 1 includes an insulating container 2 formed of an insulating material into a substantially cylindrical shape, and metallic lids 4a and 4 provided at both ends of the container through sealing fittings 3a and 3b.
b and is constructed in a vacuum-tight manner.

【0012】しゃ断室1内には、導電棒5、6の対向す
る端部に取付けられた1対の電極7、8が配設され、上
部の電極7を固定電極、下部の電極8を可動電極として
いる。この電極8の電極棒6には、ベローズ9が取付け
られしゃ断室1内を真空密に保持しながら電極8の軸方
向の移動を可能にしている。このベローズ9上部には金
属性のアークシールド10が設けられ、ベローズ9がア
ーク蒸気で覆われることを防止している、また、前記電
極7、8を覆うようにしゃ断室1内に金属製のアークシ
ールド11が設けられ、これにより絶縁容器2がアーク
蒸気で覆われることを防止している。更に電極8は、図
2に拡大して示す如く導電棒6にろう付部12によって
固定されるか、又はかしめによって圧着接続されている
。接点13aは電極8にろう付14によって取付けられ
る。なお、接点13bは電極7にろう付により取付けら
れる。
A pair of electrodes 7 and 8 attached to opposite ends of conductive rods 5 and 6 are arranged in the breaker chamber 1, with the upper electrode 7 being a fixed electrode and the lower electrode 8 being a movable electrode. It is used as an electrode. A bellows 9 is attached to the electrode rod 6 of the electrode 8 to allow the electrode 8 to move in the axial direction while keeping the interior of the breaker chamber 1 vacuum-tight. A metal arc shield 10 is provided above the bellows 9 to prevent the bellows 9 from being covered with arc vapor. An arc shield 11 is provided to prevent the insulating container 2 from being covered with arc vapors. Further, the electrode 8 is fixed to the conductive rod 6 by a brazing portion 12, as shown in an enlarged view in FIG. 2, or is crimped and connected by caulking. Contact 13a is attached to electrode 8 by brazing 14. Note that the contact 13b is attached to the electrode 7 by brazing.

【0013】一般に電流さい断特性の改善には、電流さ
い断自体をより低い値に維持すること以外に、そのばら
つき幅を縮めることも極めて重要である。前述の電流さ
い断現象は、接点間の蒸気量(材料物性としては蒸気圧
、熱伝導)、接点材料からの放出電子などと関係が深い
とされ、発明者らの実験によれば、前者の方が寄与が大
きいことが判明した。従って、蒸気を供給し易くするか
、あるいは供給し易い材料で接点を作成すれば電流さい
断現象が緩和できることが判明した。前述のCu−Bi
系合金はこうした観点に立つもので、低いさい断値を有
する。しかしながら、致命的な欠点として、Biが持つ
低融点(271℃)のために通常真空バルブで行われる
600℃近傍のベーキング或いは800℃の銀ろう付け
作業時に、Biの溶融による移動・凝集の結果、電流さ
い断特性を維持すべきBiの存在が不均一になってしま
う。このため、電流さい断値のばらつき幅が増大する現
象が見られる。
In general, in order to improve the current cutting characteristics, it is extremely important not only to maintain the current cutting itself at a lower value but also to reduce the width of its dispersion. The above-mentioned current cutting phenomenon is said to be closely related to the amount of vapor between the contacts (material properties include vapor pressure and heat conduction), electrons emitted from the contact material, etc. According to the inventors' experiments, the former It turned out that the contribution was larger. Therefore, it has been found that the current cutting phenomenon can be alleviated by making it easier to supply steam or by making contacts from materials that are easier to supply. The aforementioned Cu-Bi
Based on this point of view, the alloys have low shear values. However, a fatal drawback is that due to the low melting point (271°C) of Bi, during baking at around 600°C or silver brazing at 800°C, which is usually carried out in a vacuum valve, the melting of Bi results in movement and aggregation. , the presence of Bi, which should maintain current cutting characteristics, becomes non-uniform. For this reason, a phenomenon is observed in which the width of variation in the current cutoff value increases.

【0014】一方、Ag−WCで代表されるAg−耐弧
性材料系合金では、耐弧性材料(この場合WC)の沸点
におけるAgの蒸気量に左右されるものの、他方前記C
u−Bi系におけるBiの蒸気圧よりAgの蒸気圧は著
しく低いために接点のどの位置に(Agか耐弧性材料か
)アークの足が固着するかによって、温度不足すなわち
蒸気不足を招くことがある。結果的には、電流さい断値
のばらつき幅があらわれることが確認された。このよう
に電流さい断終期の接点面の急激な温度低下をAgと耐
弧性材料との組合わせのみによる合金によって阻止しア
ークを維持させることは既に限界であると考えられた。 更に、高性能化するためには、何等かの補助技術を付与
する必要があるとの結論に至った。この改良の1つの考
えとして前記特開昭58−157015号公報では、高
導電性成分をAgとCuとの合金にすることによって結
晶粒を細かく分布させる技術を示唆している。この技術
により特性の安定化が図られた。アークが主として固着
する位置が、耐弧性成分の場合とAg−Cu系合金との
場合があり、何れの場合もAg−Cu蒸気の供給による
電流さい断現象の緩和(改良)が行われるが、耐弧性成
分に固着した場合には、若干のばらつきが発生した。
On the other hand, in the Ag-arc-resistant material alloy represented by Ag-WC, although it depends on the amount of Ag vapor at the boiling point of the arc-resistant material (WC in this case), on the other hand, the above-mentioned C
The vapor pressure of Ag is significantly lower than the vapor pressure of Bi in the u-Bi system, so depending on where in the contact point (Ag or arc-resistant material) the arc foot sticks, it can lead to insufficient temperature, ie, insufficient steam. There is. As a result, it was confirmed that there was a wide variation in the current cutoff value. It was thought that it was already possible to prevent the rapid temperature drop of the contact surface at the end of the current rupture using an alloy made only of a combination of Ag and an arc-resistant material and to maintain the arc. Furthermore, in order to improve the performance, we came to the conclusion that it is necessary to add some kind of auxiliary technology. As one idea for this improvement, the above-mentioned Japanese Patent Application Laid-Open No. 58-157015 suggests a technique of finely distributing crystal grains by forming a highly conductive component into an alloy of Ag and Cu. This technology has stabilized the characteristics. The location where the arc mainly sticks may be in the arc-resistant component or in the Ag-Cu alloy, and in both cases, the current cutting phenomenon is alleviated (improved) by supplying Ag-Cu vapor. , some variation occurred when it adhered to the arc-resistant component.

【0015】一方、耐弧性成分をより微細化することで
、ばらつき幅の改善が見られる。従って、耐弧性成分の
粒径が電流さい断現象に重要な役割を果たすことを示唆
すると共に、耐弧性成分が初期粒径のほぼ10〜20倍
程度の大きさに偏析が見られた接点材料では著しいばら
つきを示した観察結果を併せて考慮すると、粒径に特定
の範囲があることを示唆している。
On the other hand, by making the arc-resistant component more fine, the variation width can be improved. Therefore, it is suggested that the particle size of the arc-resistant component plays an important role in the current cutting phenomenon, and segregation of the arc-resistant component was observed at approximately 10 to 20 times the initial particle size. Combined with observations showing significant variation in contact materials, this suggests a specific range of particle sizes.

【0016】しかしながら、特開昭58−157015
号公報のように、AgとCuとの量及びWCの粒径を所
定の値に制御して、さい断電流特性の改善に対しては、
重要な技術的進展が見られたものの、これらの技術から
、より一層の低さい断電流特性の向上及び高周波消弧特
性の確保、特に高周波消弧特性の改善は得られなかった
However, Japanese Patent Application Laid-Open No. 58-157015
As in the publication, in order to improve the cutting current characteristics by controlling the amounts of Ag and Cu and the particle size of WC to predetermined values,
Although important technological advances have been made, these technologies have not been able to achieve even lower breaking current characteristics, ensure high-frequency arc-extinguishing characteristics, and in particular have not improved high-frequency arc-extinguishing characteristics.

【0017】前述の様に、繰返し高周波再発弧によるサ
ージは、電流さい断後、電極間で絶縁破壊が発生した時
に回路条件により流れる高周波電流をしゃ断することで
、回復電圧値が増大し、更に、電極間での絶縁破壊が発
生する過程の繰返しによって回復電圧値が増大し、過大
なサージ電圧を発生させるものである。過大なサージ電
圧を抑制するためには、微小電極間ギャップでの絶縁破
壊時に流れる高周波電流放電を消弧させることなく、商
用周波数の負荷電流が立ち上がってくるまで、続弧させ
るのが望ましい。
As mentioned above, surges caused by repeated high-frequency re-ignition can be caused by cutting off the high-frequency current that flows depending on the circuit conditions when dielectric breakdown occurs between the electrodes after the current is cut off, and the recovery voltage value increases. The recovery voltage value increases due to repetition of the process in which dielectric breakdown occurs between the electrodes, and an excessive surge voltage is generated. In order to suppress excessive surge voltage, it is desirable to allow the high-frequency current discharge that flows at the time of dielectric breakdown in the microelectrode gap to continue arcing until the commercial frequency load current rises, without extinguishing the high-frequency current discharge.

【0018】この商用周波数の負荷電流が立ち上がれば
、次の電流ゼロ点を向える時までには、しゃ断器は充分
な電極異だャップ長に開離しているため、この電流ゼロ
点後に電極間で絶縁破壊を生じることなくまた繰返すこ
となくしゃ断が完了する。このために前述したような過
大なサージ電圧の発生はない。
When this commercial frequency load current rises, by the time it reaches the next current zero point, the breaker has been opened to a sufficient electrode difference length, so after this current zero point there is a gap between the electrodes. The disconnection is completed without any dielectric breakdown or repetition. Therefore, no excessive surge voltage is generated as described above.

【0019】また、続弧には至らなくとも、高周波消弧
能力を小さくすれば、高周波再発弧によるサージが小さ
くなる。即ち、微小電極間ギャップでの高周波電流放電
の続弧特性を改善すればよい。この続弧特性の改善の為
に、各研究者によって多くの施策の検討がなされている
が他の因子との相関の問題もあって未だ施策効果の明確
化には未だ至っていない。この発明では接点合金中に含
有されるガスの量の低減化に注目する。即ちしゃ断時の
アークによって高温に加熱された被アーク部から電極空
間に突発的に放出される多量のガスによって電極間の絶
縁を破壊する。電極表面或いは空間の状態等の条件によ
って再点弧現象を誘発する。この場合のガスの源は接点
合金中に内蔵或いは吸着されているガスである。なおこ
れらのガスの一部には、接点内部或いは表面に存在する
ガスとの化合物(例えば酸化物)のアークによる分解時
に放出されるガスも含まれる如く、接点のガスに対する
多元的な管理、低減化が必要である。一般に、Ag−W
Cのように互いに溶解度がなく、特に一方の材料(この
場合WC)の溶融点が著しく高い場合には両者の融解温
度以上の温度で接点を製造することが出来ず、少なくと
もいずれか一方の溶融温度以下の温度で、即ち焼結法に
よって製造する。これに対し前述したCu−Biなどの
ように両材料の融解温度が低い場合には両者の溶融温度
以上の温度で、即ち溶解法によって製造する。通常では
、焼結法による接点材料のガス量は溶解法によるそれよ
り数倍ないし数100倍多い。焼結法による接点のガス
は、主として原料粉(主としてWC)に起因するガス、
焼結中の雰囲気など焼結技術に起因するガス、等が挙げ
られる。前者の原料粉に関するガスは半分砕過程から保
管工程まで充分管理することで、更に粒径脱ガス工程等
を管理することで安定値とすることが出来る。後者の焼
結技術に関するガスも、焼結炉の管理、使用する持具類
の管理等が有効であるが、特に焼結中又は溶浸中の温度
は重要であり、高い温度の選択の方が低ガス化に有利と
なる傾向である。従って前述した管理できる二三の条件
を管理した上で、焼結又は溶浸温度を許容される範囲内
で高めに選択する。
Furthermore, even if a subsequent arc does not occur, by reducing the high frequency arc extinguishing ability, the surge due to high frequency re-ignition can be reduced. That is, it is only necessary to improve the continuation characteristics of high-frequency current discharge in a small gap between electrodes. In order to improve this continuation arc characteristic, many measures have been considered by various researchers, but the effectiveness of the measures has not yet been clarified due to the problem of correlation with other factors. This invention focuses on reducing the amount of gas contained in the contact alloy. That is, the insulation between the electrodes is destroyed by a large amount of gas suddenly released into the electrode space from the arced part heated to a high temperature by the arc when the arc is cut off. The restriking phenomenon is induced depending on conditions such as the electrode surface or the state of the space. The source of the gas in this case is gas contained or adsorbed in the contact alloy. Some of these gases include gases released when arc-induced decomposition of compounds (e.g. oxides) with gases existing inside or on the surface of the contacts, so multidimensional management and reduction of gases at the contacts is required. It is necessary to Generally, Ag-W
If the melting point of one material (in this case WC) is extremely high, such as C and C, it is impossible to manufacture a contact at a temperature higher than the melting temperature of both materials, and at least one of the materials melts. It is manufactured at a temperature below that temperature, ie by a sintering method. On the other hand, when the melting temperatures of both materials are low, such as the aforementioned Cu-Bi, the material is manufactured at a temperature higher than the melting temperature of both materials, that is, by a melting method. Normally, the amount of gas in a contact material produced by the sintering method is several to several hundred times greater than that produced by the melting method. The gas at the contact point by the sintering method is mainly gas originating from raw material powder (mainly WC),
Examples include gases caused by sintering technology such as the atmosphere during sintering. The gas related to the former raw material powder can be kept at a stable value by sufficiently controlling the process from the half crushing process to the storage process, and further controlling the particle size degassing process. Regarding gases related to the latter sintering technology, it is effective to manage the sintering furnace and the tools used, but the temperature during sintering or infiltration is particularly important, and it is better to select a high temperature. This tends to be advantageous for reducing gas emissions. Therefore, the sintering or infiltration temperature is selected to be high within the allowable range after controlling the above-mentioned conditions that can be controlled.

【0020】しかしAg−EWC製造時に於けるWCス
ケルトンの焼結工程に於いて、焼結温度を高めに設定す
ることは上記した様にWCスケルトンの低ガス化には極
めて有効であるが、WCスケルトン中の必要とする空隙
率を維持することが出来ず、そのため溶浸工程で必要と
するAgの量を確保することが出来なくなり、接点材料
として高導電性成分の不足となり、所期の材料発揮に支
障を来たす。
However, in the sintering process of the WC skeleton during the production of Ag-EWC, setting the sintering temperature to a high level is extremely effective in reducing the gas content of the WC skeleton, as described above. It was not possible to maintain the required porosity in the skeleton, and as a result, it became impossible to secure the amount of Ag required in the infiltration process, resulting in a shortage of highly conductive components as a contact material, and the desired material It interferes with performance.

【0021】溶浸工程での温度が高めだと、Agの蒸発
損失も大となり、やはり接点材料の組成の変動をもたら
すが、WCスケルトンの製造時の焼結温度の選択の方が
、より組成に対して重要である。
[0021] If the temperature in the infiltration process is high, the evaporation loss of Ag will also be large, which will also cause fluctuations in the composition of the contact material, but the selection of the sintering temperature during the production of the WC skeleton will improve the composition. important for

【0022】そこで、この発明では高導電性成分と、耐
弧性成分との比率、すなわち合金中のAg又は/及びC
uの量を20〜50wt%とし、残部がWCとC又は/
及びV炭化物より構成される。この要件によりWCスケ
ルトンの製造時の焼結温度を低ガス化に有利な温度に設
定してもWCスケルトン中の空隙率を所定値以下に低下
させることがなく、従って接点中の含有ガス量を低減化
した上で所期の高導電性成分(Ag又は/及びCu)の
量を確保し得る。結果的に所定量のCv3 C2又は/
及びVcの存在が、焼結中のWCの焼結の過度な進行を
制限し、接点特性として重要な接点中の高導電性成分の
量と、接点中のガス量(の低ガス化)とを制御すること
となり前述した改良を目的とする真空バルブ特性の向上
に寄与する。  次に、この真空バルブの製造方法のう
ち、特に接点材料の製造方法につき説明する。製造に先
立って必要粒径別に耐弧性成分及び補助成分を分類する
。分類作業は例えば篩分けと沈降法とを併用して行うこ
とで容易に所定粒径の粉末を得る。まず所定粒径のWC
,Cr3 C2 ,Vcを所定量及び所定粒径のAg又
は/及びCuを所定量の一部用意し、これらを混合し、
その後加圧成型して粉末成形体を得る。必要によりFe
,Co,Niを混合することもある。次いで、この粉末
成形体を露点がー50℃以下の水素雰囲気或いは真空度
が1.3×10−1Pa以下で、所定温度、例えば11
50℃×1時間にて仮焼結し、仮焼結体を得る次に、こ
の仮焼結体の残存空孔中に所定量及び所定比率のAg又
は/及びCuを1150℃×1時間で溶浸しAg又は/
及びCu−WC−Cr3 C又は/及びVc合金を得る
。溶浸は主として真空中で行うが、水素中でも可能であ
る。なお、合金中の導電性成分の比率(Ag又は/及び
CuとWC−Cr3 C又は/及びVcとの比率の制御
は、次のようにして行った。例えばAg又は/及びCu
を温度1200℃、真空度1.3×10−2Paで真空
溶解を行い、切断し溶浸用素材として用いた。WC焼結
体を作る際、予め、所定量のAg又は/及びCuの一部
をWC中にあらかじめ混合させておき後から残余のAg
又は/及びCu)を溶浸させることでも、所望組成の接
点合金を得ることができる。次に、後述する具体的な実
施例データを得た評価方法、及び評価条件につき述べる
。 (1)電流さい断特性
Therefore, in the present invention, the ratio of the highly conductive component to the arc-resistant component, that is, the Ag or/and C
The amount of u is 20 to 50 wt%, and the remainder is WC and C or/
and V carbide. Due to this requirement, even if the sintering temperature during the manufacture of the WC skeleton is set to a temperature that is advantageous for low gasification, the porosity in the WC skeleton will not be reduced below a predetermined value, and therefore the amount of gas contained in the contact will be reduced. It is possible to secure the desired amount of highly conductive components (Ag and/or Cu) while reducing the amount. As a result, a predetermined amount of Cv3 C2 or/
The presence of V and Vc limits the excessive progress of sintering of WC during sintering, and reduces the amount of highly conductive components in the contact and the amount of gas in the contact, which are important contact characteristics. This contributes to improving the vacuum valve characteristics, which is the objective of the improvement mentioned above. Next, among the methods of manufacturing this vacuum valve, particularly the method of manufacturing the contact material will be described. Prior to manufacturing, arc-resistant components and auxiliary components are classified by required particle size. The classification operation can be carried out using a combination of sieving and sedimentation, for example, to easily obtain powder of a predetermined particle size. First, WC of a predetermined particle size
, Cr3C2, Vc in a predetermined amount and a predetermined amount of Ag or/and Cu with a predetermined particle size are prepared, and these are mixed,
Thereafter, a powder compact is obtained by pressure molding. Fe if necessary
, Co, and Ni may be mixed. Next, this powder compact is heated at a predetermined temperature, e.g.
Temporary sintering is performed at 50°C for 1 hour to obtain a temporary sintered body.Next, a predetermined amount and ratio of Ag or/and Cu is added to the remaining pores of this temporary sintered body at 1150°C for 1 hour. Infiltrated Ag or/
and obtain a Cu-WC-Cr3C or/and Vc alloy. Infiltration is primarily carried out in vacuum, but is also possible in hydrogen. The ratio of conductive components in the alloy (Ratio of Ag or/and Cu to WC-Cr3C or/and Vc was controlled as follows. For example, Ag or/and Cu
was vacuum melted at a temperature of 1200° C. and a degree of vacuum of 1.3×10 −2 Pa, cut, and used as a material for infiltration. When making a WC sintered body, a predetermined amount of Ag or/and a part of Cu is mixed in the WC in advance, and the remaining Ag is added afterwards.
A contact alloy with a desired composition can also be obtained by infiltrating Cu). Next, the evaluation method and evaluation conditions for obtaining specific example data, which will be described later, will be described. (1) Current cutting characteristics

【0023】各接点を取付けて10−3Pa以下に排気
した組立て式真空バルブを製作し、この装置を0.8m
/秒の開極速度で開極させ遅れ小電流をしゃ断した時の
さい断電流を測定した。しゃ断電流は20A(実効値)
、50Hzとした。開極位相はランダムに行い500回
しゃ断されたときのさい断電流を接点数3個につき測定
しその平均値及び最大値を表1に示した。なお、数値は
、同表中の実施例2のさい断電流値の平均値を1.0と
した場合の相対値で示した。 (2)高周波消弧特性
[0023] A prefabricated vacuum valve with each contact attached and evacuated to 10-3 Pa or less was manufactured, and this device was installed at a height of 0.8 m.
The breaker current was measured when the electrode was opened at an opening speed of /second and a small current was cut off with a delay. Breaking current is 20A (effective value)
, 50Hz. The opening phase was randomly determined and the cutting current was measured for three contacts when the contacts were cut off 500 times, and the average and maximum values are shown in Table 1. Note that the numerical values are shown as relative values when the average value of the cutting current values of Example 2 in the same table is set to 1.0. (2) High frequency arc extinction characteristics

【0024】遅れ力率の小電流を開閉したとき、電流さ
い断によって負荷側に過電圧が発生すると、真空バルブ
の極間にはその過電圧と電源電圧の差が加わる。もし極
間の電圧が接点間隔の耐電圧値を超えると絶縁破壊して
放電し、接点には過度的な高周波電流が流れる。この高
周波電流がしゃ断されると再び最初の段階に戻って過電
圧が現われ、それがまた接点間隙の放電を起こさせると
いう繰返しになる。このような繰返しの現象は多重発弧
現象としてよく知られている。真空しゃ断器のように高
周波消弧能力の高いしゃ断器では、回路条件によっては
多重再発弧により大きなサージ電圧が発生し、負荷機器
(電動機や変圧器)の絶縁をおびやかすことがある。一
般に高周波消弧能力が小さいほど、再発弧を繰り返し難
く、発生するサージは小さくなると言われている。
When a small current with a lagging power factor is switched on and off, if an overvoltage is generated on the load side due to current interruption, the difference between the overvoltage and the power supply voltage is applied between the poles of the vacuum valve. If the voltage between the electrodes exceeds the withstand voltage value of the contact spacing, dielectric breakdown occurs and discharge occurs, causing excessive high-frequency current to flow through the contacts. When this high-frequency current is cut off, the process returns to the initial stage and an overvoltage appears, which again causes a discharge in the contact gap, and the process repeats. Such a repeated phenomenon is well known as a multiple firing phenomenon. In circuit breakers with high high-frequency arc extinguishing ability, such as vacuum circuit breakers, large surge voltages can be generated due to multiple re-ignitions depending on the circuit conditions, which can threaten the insulation of load equipment (motors and transformers). Generally, it is said that the smaller the high-frequency arc extinguishing ability, the more difficult it is to repeat the re-ignition and the smaller the generated surge.

【0025】この高周波消弧特性を各接点について調べ
るために、各接点を取付けて10−3Pa以下に排気し
た真空バルブを製作し、この真空バルブを組込んだしゃ
断器で6.6kV、150kVAの単相変圧器の負荷電
流しゃ断試験を行った。しゃ断器と変圧器間は長さ10
0mの6.6kV単心CVケーブル(導体断面積200
mm2 )で接続した。負荷電流は10A(実効値)、
しゃ断器の開極速度は0.8m/秒(平均)とし、しゃ
断器の開極位相を制御し、多重再発弧が発生する位相で
しゃ断させた。多重再発弧時に接点に流れる過渡的な高
周波電流は、しゃ断器廻りのインダクタンスと電源側、
負荷側の浮遊キャパシタンスにより決まる周波数をもち
、今回の試験では過渡的な高周波電流の周波数は約10
0kHzであった。高周波数消弧能力の測定は各接点に
つき20回のしゃ断試験を行い、開極後1ms経過時の
高周波消弧能力の平均値を求めた。表1の値は、実施例
2の高周波消弧能力の平均値を100とした場合の相対
値で示した。 (3)供試接点の内容
In order to examine the high frequency arc extinguishing characteristics of each contact, we manufactured a vacuum valve to which each contact was attached and evacuated to 10-3 Pa or less. A load current interruption test was conducted on a single-phase transformer. The length between the breaker and the transformer is 10
0m 6.6kV single core CV cable (conductor cross section 200
mm2). Load current is 10A (effective value),
The opening speed of the breaker was 0.8 m/sec (average), the opening phase of the breaker was controlled, and the circuit breaker was disconnected at a phase where multiple re-ignition occurred. The transient high-frequency current that flows through the contacts during multiple re-ignitions is caused by the inductance around the breaker, the power supply side,
The frequency of the transient high-frequency current is determined by the stray capacitance on the load side, and in this test, the frequency of the transient high-frequency current was approximately 10
It was 0kHz. To measure the high-frequency arc-extinguishing ability, 20 breaking tests were performed for each contact, and the average value of the high-frequency arc-extinguishing ability after 1 ms had elapsed after the contact was opened was determined. The values in Table 1 are shown as relative values when the average value of the high frequency arc extinguishing ability of Example 2 is set as 100. (3) Contents of the contact under test

【0026】表1に、供試接点の材料内容と、その対応
する特性データを比較例と共に示す。表中に示すように
、Ag又は/及びCu−WC−Cr3 C又は/及びV
c合金中の高導電性成分の量を12.7wt%〜80.
5wt%、WCの量を19.5wt〜87.3wt%、
且つCr3 C2 又は/及びVc量をWCの量に対し
0〜20%の範囲に変化させた。さらに、使用する耐弧
性成分(WC)の粒径を0.1μm〜44μmとした接
点につき評価し、その結果を検討した。表1には、これ
らの条件と対応する結果を示す。
Table 1 shows the material contents of the test contacts and their corresponding characteristic data along with comparative examples. As shown in the table, Ag or/and Cu-WC-Cr3 C or/and V
The amount of highly conductive components in the c alloy is 12.7wt% to 80.
5wt%, the amount of WC is 19.5wt to 87.3wt%,
In addition, the amount of Cr3C2 and/or Vc was varied within a range of 0 to 20% relative to the amount of WC. Furthermore, contacts using arc-resistant components (WC) having particle sizes of 0.1 μm to 44 μm were evaluated, and the results were studied. Table 1 shows these conditions and the corresponding results.

【0027】[0027]

【表1】 実施例1〜4、比較例1〜4[Table 1] Examples 1-4, Comparative Examples 1-4

【0028】平均粒径0.7μmのWC粉末3μのCr
3 C2 ,Vcを用意する。焼結後の残存空隙量を調
整するように成形圧をゼロ〜8トン/cm2 の範囲で
適宜選択しながら成形する。この場合、合金中の高導電
性成分量の多い実施例3(Ag=50wt%)、比較例
2(Ag=72.2wt%)では、成形圧を特に、低く
するか、若しくは予め(Ag又はAg+Cu)の一部を
WCと共に混合した混合粉を得て、これを成形する方法
を採る。これらの混合粉を成形後、実施例1、比較例1
では、例えば、1100〜1300℃で焼結し、Ag−
WC焼結体を得る。実施例2〜3,比較例2ではこれよ
り低い焼結温度で焼結し焼結体を得る。このようにして
空隙量の異なる焼結体の空隙中に、Agを溶浸し最終的
にAg合金中のAg量が12〜72wt%(比較例1〜
2、実施例1〜3)の合金を得る。これらの接点素材を
所定の形状に加工後、前述した評価方法、条件にて、さ
い断特性および高周波消弧特性を評価した。
WC powder with an average particle size of 0.7 μm and 3μ of Cr
3 Prepare C2 and Vc. Molding is performed while appropriately selecting a molding pressure in the range of 0 to 8 tons/cm2 so as to adjust the amount of voids remaining after sintering. In this case, in Example 3 (Ag = 50 wt%) and Comparative Example 2 (Ag = 72.2 wt%), which have a large amount of highly conductive components in the alloy, the molding pressure may be particularly low or the A method is adopted in which a mixed powder is obtained by mixing a part of (Ag+Cu) with WC and this is molded. After molding these mixed powders, Example 1 and Comparative Example 1
For example, Ag-
A WC sintered body is obtained. In Examples 2 to 3 and Comparative Example 2, sintered bodies are obtained by sintering at a lower sintering temperature. In this way, Ag is infiltrated into the voids of the sintered bodies with different void amounts, and the final Ag content in the Ag alloy is 12 to 72 wt% (Comparative Examples 1 to
2. Obtain the alloys of Examples 1 to 3). After processing these contact materials into predetermined shapes, the cutting characteristics and high-frequency arc-extinguishing characteristics were evaluated using the evaluation method and conditions described above.

【0029】前述したように、さい断特性の評価は、5
00回しゃ断させたときの特性で比較した。第1〜2表
の比較例1〜2,実施例1〜3に示すように合金中のA
g量でのさい断値の平均値は実施例2(Ag=36.6
wt%)を1.0とした相対値で比較した場合、2.0
倍以下の上昇(特性の劣化)になっているが、Ag=1
2.7wt%(比較例1)およびAg=72.2wt%
(比較例2)では、最大値が、上昇しているのに対しA
gが20〜50wt%(実施例1〜3)では、比較値が
2.0倍以下に安定(特性良好)している。特にAg=
12.7wt%(比較例1)のようにAg量が少ない接
点のさい断特性は、更に多数回のしゃ断を行うと約20
00回開閉前後より、さい断特性が劣化するのが見られ
る。
As mentioned above, the evaluation of the cutting characteristics was 5.
A comparison was made based on the characteristics when cut off 00 times. As shown in Comparative Examples 1-2 and Examples 1-3 in Tables 1-2, A in the alloy
The average value of the cut value in terms of g amount is that of Example 2 (Ag=36.6
wt%) is 1.0, 2.0
Although the increase is less than double (deterioration of characteristics), Ag=1
2.7wt% (Comparative Example 1) and Ag=72.2wt%
In (Comparative Example 2), the maximum value is increasing, whereas A
When g is 20 to 50 wt% (Examples 1 to 3), the comparative value is stable at 2.0 times or less (good characteristics). Especially Ag=
The breaking characteristics of a contact with a small amount of Ag, such as 12.7wt% (Comparative Example 1), decreases to about 20% by cutting more times.
It can be seen that the cutting characteristics deteriorate from around 00 times of opening and closing.

【0030】一方、高周波消弧特性の評価を行うと、同
様に実施例2の特性を標準とした相対値で検討すると、
Ag量が20〜50wt%(実施例1〜3)では安定し
た特性を示すが、Ag量が12.7wt%(比較例1)
および72.2wt%(比較例2)では、前記相対値が
増加(特性の劣化)の傾向にあり、相対値が200を越
すことが認められる。従ってAg−WC−Cr3 C2
 又は/及びVc合金中のAg量は、さい断特性および
高周波消弧特性の両観点から20〜50wt%の範囲が
好ましい。
On the other hand, when evaluating the high-frequency arc-extinguishing characteristics, when similarly examining the relative values with the characteristics of Example 2 as the standard,
Stable characteristics are shown when the Ag amount is 20 to 50 wt% (Examples 1 to 3), but when the Ag amount is 12.7 wt% (Comparative Example 1)
At 72.2 wt% (Comparative Example 2), the relative value tends to increase (deterioration of characteristics), and it is recognized that the relative value exceeds 200. Therefore Ag-WC-Cr3 C2
Or/and the amount of Ag in the Vc alloy is preferably in the range of 20 to 50 wt% from the viewpoint of both cutting characteristics and high frequency arc extinction characteristics.

【0031】高導電性成分がAgにつき示したが、(A
g+Cu)であってもその量が前記した20〜50wt
%の範囲外である。比較例3(Ag+Cu=13.5w
t%)、比較例4(Ag+Cu=80.5wt%)では
、さい断特性、高周波消弧特性の両特性とも劣るが、上
記範囲内にある実施例4(Ag+Cu=37.5wt%
)では、両特性とも好ましい。 実施例5〜9、比較例5〜8
Although the highly conductive component was shown to be Ag, (A
g+Cu), the amount is 20 to 50 wt as described above.
It is outside the range of %. Comparative example 3 (Ag+Cu=13.5w
Comparative Example 4 (Ag+Cu=80.5wt%) is inferior in both the cutting properties and high frequency arc extinction properties, but Example 4 (Ag+Cu=37.5wt%) which is within the above range
), both characteristics are preferable. Examples 5-9, Comparative Examples 5-8

【0032】前記した実施例1〜4、比較例1〜4では
WC以外の耐弧性成分としてのCr3 C2 、Vcの
量を一定(WCの量に対するCr3 C2 の量を4.
5wt%、WCの量に対するVcの量を2.5wt%)
とした場合の例について示したが、本発明の真空バルブ
に使用する接点としては、WCの量に対するCr3 C
2 の量は1〜10wt%(実施例5〜6)、同じくV
cの量も1〜10wt%(実施例7〜8)の範囲が両特
性とも好ましい範囲にある。これに対してCr3 C2
 の量が20wt%(比較例6)、Vcの量も20wt
%(比較例7)は電流さい断特性は、良好にあるが、特
に高周波消弧特性が著しく低下し、好ましくないことが
判る。更にCr3 C2 とVcとの総計が1wt%以
下である比較例8では前記同様特性の低下が見られるが
Cr3 C2 とVcとの総計が1wt%(実施例9)
の場合には、電流さい断値の最大値が2.0以下、高周
波消弧特性も200以下と安定している。 実施例9〜13,15
In Examples 1 to 4 and Comparative Examples 1 to 4 described above, the amounts of Cr3 C2 and Vc as arc-resistant components other than WC were kept constant (the amount of Cr3 C2 relative to the amount of WC was 4.
5wt%, the amount of Vc relative to the amount of WC is 2.5wt%)
However, the contact used in the vacuum valve of the present invention is based on the amount of WC.
The amount of V2 is 1 to 10 wt% (Examples 5 to 6), and the amount of V
The amount of c in the range of 1 to 10 wt% (Examples 7 to 8) is also within a preferable range for both properties. On the other hand, Cr3 C2
The amount of Vc is 20wt% (Comparative Example 6), and the amount of Vc is also 20wt%.
% (Comparative Example 7), the current cutting characteristics are good, but the high frequency arc extinguishing characteristics in particular are markedly deteriorated, which is not preferable. Furthermore, in Comparative Example 8 where the total amount of Cr3 C2 and Vc is 1 wt% or less, the same deterioration in characteristics as described above is observed, but the total amount of Cr3 C2 and Vc is 1 wt% (Example 9).
In the case of , the maximum current cutoff value is stable at 2.0 or less, and the high frequency arc extinguishing characteristic is also stable at 200 or less. Examples 9-13, 15

【0033】前述した実施例1〜8、比較例1〜8では
高導電性成分としてAg又は/およひCu、耐弧性成分
としてWCとCr3 C2 又は/及びVcが本発明真
空バルブの接点の構成材料であり、他の補助材料は使用
していないが、上述材料系に1wt%以下のFe,Co
,Niの添加(Ag又は/及びCuとWC,Cr3 C
2 又は/及びVcとの合計値で示す)てあっても実施
例10〜12,15に示すように安定した特性を示す。 Fe,Co,Niが1%(実施例13)共存しても安定
した特徴を示した。 実施例14、比較例9
In Examples 1 to 8 and Comparative Examples 1 to 8 described above, Ag and/or Cu were used as highly conductive components, and WC and Cr3 C2 or/and Vc were used as arc-resistant components at the contacts of the vacuum valve of the present invention. Although no other auxiliary materials are used, less than 1 wt% of Fe, Co is added to the above material system.
, Ni addition (Ag or/and Cu and WC, Cr3C
2 or/and Vc), stable characteristics are exhibited as shown in Examples 10 to 12 and 15. Stable characteristics were exhibited even when 1% of Fe, Co, and Ni (Example 13) coexisted. Example 14, Comparative Example 9

【0034】本発明の真空バルブに使用する接点材料の
WC粒子の平均粒径は0.1μm(比較例7)〜3μm
(実施例7)の範囲の場合につき示したが、WCの平均
粒径は6μm(実施例14)てあっても好ましい範囲内
にあったがWCの平均粒子径が44μmの場合には(比
較例9)、電流さい断特性の劣化、特にその最大値は著
しくばらつきが大きい。以上述べた実施例のようにAg
又は/及びCuとからなる高電動材料の総計量を所定値
に制御し、かつWCの平均粒径を6μmより好ましくは
、1μm以下とし、WC量に対しCr3 C2 又は/
及びVcを存在させることによって、電流さい断特性を
低く維持出来かつばらつきも少なく管理することが出来
、さらに高周波消弧特性も同時に充分低く維持すること
ができる。
The average particle diameter of the WC particles of the contact material used in the vacuum valve of the present invention is 0.1 μm (Comparative Example 7) to 3 μm.
(Example 7), the average particle size of WC was within the preferable range even if it was 6 μm (Example 14), but when the average particle size of WC was 44 μm (comparison Example 9) The deterioration of the current cutting characteristics, especially the maximum value, varies considerably. As in the embodiments described above, Ag
or/and Cu, the total amount of the highly electric material consisting of Cu is controlled to a predetermined value, and the average particle size of WC is set to 6 μm or less, preferably 1 μm or less, and Cr3 C2 or/
and Vc, the current cutting characteristics can be maintained low and variations can be managed to be small, and the high frequency arc extinguishing characteristics can also be maintained sufficiently low at the same time.

【0035】[0035]

【発明の効果】以上詳記したように本発明によれば、電
流さい断特性を低く維持出来かつばらつきも少なく管理
することができ、さらに高周波消弧特性も同時に充分低
く維持することができる真空バルブ用接点材料を提供で
きる。したがって、本発明による接点材料を真空バルブ
接点に用いれば、電流さい断特性およびしゃ断特性の良
い真空バルブが得られ、電流さい断特性の安定化をより
一層向上する真空バルブとなる。
Effects of the Invention As described in detail above, according to the present invention, the current cutting characteristics can be maintained low and can be managed with little variation, and the high frequency arc extinguishing characteristics can also be maintained sufficiently low at the same time. We can provide contact materials for valves. Therefore, if the contact material according to the present invention is used for a vacuum valve contact, a vacuum valve with good current cutting characteristics and breaking characteristics can be obtained, resulting in a vacuum valve that further improves the stability of current cutting characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明の実施例を示す真空バルブの断面図
FIG. 1 is a sectional view of a vacuum valve showing an embodiment of the present invention.

【図2】  [図1]の電極部分の拡大断面図。FIG. 2 is an enlarged sectional view of the electrode part in FIG. 1.

【符号の説明】[Explanation of symbols]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  Ag又は/及びCuから選ばれた20
〜50重量%の高導電性成分と、50〜80重量%のW
Cからなる耐弧性成分から成る真空バルブの接点材料に
おいて、前記耐弧性成分はWCに対し1〜10重量%の
Cr又はV炭化物の少なくとも一方を含有したことを特
徴とする真空バルブの接点材料。
[Claim 1] 20 selected from Ag or/and Cu
~50% by weight of highly conductive component and 50-80% by weight of W
A contact material for a vacuum valve comprising an arc-resistant component consisting of carbon, characterized in that the arc-resistant component contains at least one of Cr or V carbide in an amount of 1 to 10% by weight based on WC. material.
【請求項2】  Fe,Co,Niの少なくとも1つよ
り成る補助成分を1重量%以下含有したことを特徴とす
る請求項1記載の真空バルブの接点材料。
2. The contact material for a vacuum valve according to claim 1, further comprising 1% by weight or less of an auxiliary component consisting of at least one of Fe, Co, and Ni.
JP7874491A 1991-04-11 1991-04-11 Contact material for vacuum valve Expired - Fee Related JP2904448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7874491A JP2904448B2 (en) 1991-04-11 1991-04-11 Contact material for vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7874491A JP2904448B2 (en) 1991-04-11 1991-04-11 Contact material for vacuum valve

Publications (2)

Publication Number Publication Date
JPH04312724A true JPH04312724A (en) 1992-11-04
JP2904448B2 JP2904448B2 (en) 1999-06-14

Family

ID=13670398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7874491A Expired - Fee Related JP2904448B2 (en) 1991-04-11 1991-04-11 Contact material for vacuum valve

Country Status (1)

Country Link
JP (1) JP2904448B2 (en)

Also Published As

Publication number Publication date
JP2904448B2 (en) 1999-06-14

Similar Documents

Publication Publication Date Title
JP2653486B2 (en) Contact material for vacuum valve
EP0488083B1 (en) Contact material for a vacuum interrupter
EP0385380B1 (en) Contact forming material for a vacuum interrupter
JPS6277439A (en) Contact point material for vacuum valve
EP0090579A2 (en) Surge-absorberless vacuum circuit interrupter
EP0779636B1 (en) Contact material for vacuum interrupter and method for producing the same
JPH04312724A (en) Contact material of vacuum valve
JP4143308B2 (en) Contact material for vacuum valve, manufacturing method thereof, and vacuum valve
JP2692945B2 (en) Contact material for vacuum valve
JPH03108224A (en) Contact material vacuum valve
JP3068880B2 (en) Contact for vacuum valve
JP2911594B2 (en) Vacuum valve
JPH02288033A (en) Contact material for vacuum bulb
JPH1150177A (en) Contact material for vacuum circuit breaker, its production and vacuum circuit breaker
JPH042737A (en) Contact material for vacuum valve
JPS6359216B2 (en)
JP2004071436A (en) Vacuum circuit breaker
JP2904452B2 (en) Contact material for vacuum valve
JPS6359212B2 (en)
JPS6396243A (en) Contact material for vacuum bulb
JPH04132127A (en) Contact point for vacuum bulb
JPH05101753A (en) Vacuum valve
JPH05101752A (en) Manufacture of contact for vacuum valve
JPH03295118A (en) Contact material for vacuum valve
JPH1116455A (en) Contact material for vacuum valve and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees