JPH04311021A - Electrolyte for driving electrolytic capacitor - Google Patents

Electrolyte for driving electrolytic capacitor

Info

Publication number
JPH04311021A
JPH04311021A JP7615991A JP7615991A JPH04311021A JP H04311021 A JPH04311021 A JP H04311021A JP 7615991 A JP7615991 A JP 7615991A JP 7615991 A JP7615991 A JP 7615991A JP H04311021 A JPH04311021 A JP H04311021A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
driving
electrolytic solution
electrolytic
inorganic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7615991A
Other languages
Japanese (ja)
Inventor
Kenjiro Nakanishi
中西 賢治朗
Hisao Nagara
久雄 長柄
Shigeo Shinpo
成生 新保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7615991A priority Critical patent/JPH04311021A/en
Publication of JPH04311021A publication Critical patent/JPH04311021A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PURPOSE:To provide an electrolytic capacitor driving electrolyte with which spark-generating voltage can be increased sufficiently without lowering conductivity. CONSTITUTION:A superfine particle inorganic compound is dispersed in a solvent which is mainly composed of ethylene glycol, and an electrolytic capacitor driving electrolyte is prepared by adding one of hexitols and boric acid or both of them and dissolving them.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、電解コンデンサ駆動用
電解液に関するものであり、詳しく言えば、アルミ電解
コンデンサ駆動用電解液に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic solution for driving an electrolytic capacitor, and more specifically, to an electrolytic solution for driving an aluminum electrolytic capacitor.

【0002】0002

【従来の技術】従来のアルミ電解コンデンサ用電解液と
しては、火花発生電圧を比較的高くできることから、エ
チレングリコールに電解質としてホウ酸またはホウ酸ア
ンモニウムを溶解した電解液が用いられていた。
BACKGROUND OF THE INVENTION Conventional electrolytic solutions for aluminum electrolytic capacitors include an electrolytic solution prepared by dissolving boric acid or ammonium borate as an electrolyte in ethylene glycol because the spark generation voltage can be made relatively high.

【0003】しかしながら、このような電解液はホウ酸
から直接放出される結晶水と、エチレングリコールとホ
ウ酸との間で起こるエステル化反応によって生じる縮合
水とによって、電解液中に多量の水分が生成されるため
、100℃を越えるアルミ電解コンデンサにこの電解液
を使用すると、電解液中の水分が水蒸気となって蒸発し
、これによりアルミ電解コンデンサのパッケージ内の内
圧が上昇し、これを破壊させてしまうという問題があっ
た。そして、このような問題点を解決するために、電解
質としてエチレングリコールとエステル化反応が非常に
遅いアジピン酸あるいは安息香酸等の有機カルボン酸ま
たはその塩が検討されたが、これにおいては、必要とさ
れる高い定電流化成時における化成・放電特性(以降、
火花発生電圧と言う)を得ることができないという欠点
があった。この欠点を解決するために電解液にポリオキ
シエチレンジカルボン酸を添加し、火花発生電圧を向上
させる例として、特開昭60−176218号公報があ
り、また、セラミック粉末を電解液に含有させたものと
して、特開昭60−12717号公報がある。さらに金
属酸化物であるビスマス酸化物を電解液に含有させた例
として、特公平2−57328号公報がある。
However, in such an electrolytic solution, a large amount of water is contained in the electrolytic solution due to crystallization water directly released from boric acid and condensed water produced by the esterification reaction between ethylene glycol and boric acid. If this electrolyte is used in an aluminum electrolytic capacitor that is heated to over 100℃, the water in the electrolyte will evaporate into water vapor, which will increase the internal pressure inside the aluminum electrolytic capacitor package and destroy it. There was a problem with letting it happen. In order to solve these problems, organic carboxylic acids such as adipic acid or benzoic acid or their salts, which have a very slow esterification reaction with ethylene glycol, were considered as electrolytes, but in this case, the necessary Formation/discharge characteristics during high constant current formation (hereinafter referred to as
The drawback was that it was not possible to obtain a spark generation voltage. In order to solve this drawback, there is an example of adding polyoxyethylene dicarboxylic acid to the electrolytic solution to improve the spark generation voltage, as disclosed in Japanese Patent Application Laid-Open No. 176218/1983. As an example, there is Japanese Patent Application Laid-open No. 12717/1983. Furthermore, Japanese Patent Publication No. 2-57328 discloses an example in which bismuth oxide, which is a metal oxide, is contained in an electrolytic solution.

【0004】0004

【発明が解決しようとする課題】しかしながら、火花発
生電圧を向上させるための添加剤であるポリオキシエチ
レンジカルボン酸は、比電導度を低下させ、電解コンデ
ンサの損失を大きくするという欠点を有するものである
。また、セラミック粉末は、大きさが5μm〜50μm
のものが知られているが、これは分散が困難であり、か
つ火花発生電圧に対する効果も明らかでない。さらに、
特公平2−57328号公報で知られているビスマス酸
化物においては、分散しにくく、すぐに沈殿するという
欠点があり、また、火花発生電圧向上の効果も明らかに
されていない。
[Problems to be Solved by the Invention] However, polyoxyethylene dicarboxylic acid, which is an additive for improving the spark generation voltage, has the disadvantage of lowering the specific conductivity and increasing the loss of electrolytic capacitors. be. In addition, the size of the ceramic powder is 5 μm to 50 μm.
Although some methods are known, they are difficult to disperse, and their effect on spark generation voltage is not clear. moreover,
The bismuth oxide known from Japanese Patent Publication No. 2-57328 has the disadvantage that it is difficult to disperse and readily precipitates, and its effect on improving the spark generation voltage has not been clarified.

【0005】本発明は、上記従来の問題点を解決するも
ので、比電導度を低下させることなく火花発生電圧を十
分に高めることができる電解コンデンサ駆動用電解液を
提供することを目的とするものである。
The present invention solves the above-mentioned conventional problems, and aims to provide an electrolytic solution for driving an electrolytic capacitor that can sufficiently increase the spark generation voltage without reducing the specific conductivity. It is something.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に本発明の電解コンデンサ駆動用電解液は、エチレング
リコールを主体とした溶媒に、超微粒子無機化合物を分
散させ、かつヘキシット類およびホウ酸のいずれか一方
または両方を添加して溶解したものである。
[Means for Solving the Problems] In order to solve the above problems, the electrolytic solution for driving an electrolytic capacitor of the present invention is prepared by dispersing an ultrafine inorganic compound in a solvent mainly composed of ethylene glycol, and containing hexites and boric acid. Either one or both of these are added and dissolved.

【0007】[0007]

【作用】上記した本発明の電解コンデンサ駆動用電解液
は、エチレングリコールを主体とした溶媒に、超微粒子
無機化合物を分散させ、かつヘキシット類およびホウ酸
のいずれか一方または両方を添加して溶解したもので、
超微粒子無機化合物は、電解液中で帯電してコロイド状
になっているため、電解液中に均一に分散させることが
できる。また酸化皮膜の生成時には超微粒子無機化合物
が吸着凝集して酸化皮膜の欠陥部を埋めるため、欠陥の
少ない酸化皮膜を生成することができ、これにより、火
花発生電圧を高くすることができ、かつこれに加えてヘ
キシット類およびホウ酸のいずれか一方または両方を添
加することにより、これが陽極酸化皮膜の表面を覆って
しまうため、さらに火花発生電圧を高めることができる
ものである。
[Operation] The electrolytic solution for driving an electrolytic capacitor of the present invention described above is prepared by dispersing an ultrafine particle inorganic compound in a solvent mainly composed of ethylene glycol, and adding either or both of hexites and boric acid to dissolve it. I did it,
Since the ultrafine inorganic compound is charged in the electrolytic solution and becomes colloidal, it can be uniformly dispersed in the electrolytic solution. In addition, when an oxide film is formed, the ultrafine inorganic compound adsorbs and aggregates to fill in the defective parts of the oxide film, making it possible to produce an oxide film with fewer defects.This makes it possible to increase the spark generation voltage, and In addition to this, by adding one or both of hexites and boric acid, the surface of the anodic oxide film is covered with the hexites, thereby making it possible to further increase the spark generation voltage.

【0008】[0008]

【実施例】以下、本発明の実施例について説明する。[Examples] Examples of the present invention will be described below.

【0009】本発明の電解コンデンサ駆動用電解液の基
本は、エチレングリコールを主体とした溶媒に、超微粒
子無機化合物を分散させ、かつヘキシット類およびホウ
酸のいずれか一方または両方を添加して溶解したもので
、超微粒子無機化合物としては、金属酸化物,金属窒化
物,もしくは金属炭化物が好ましい。
The basic principle of the electrolytic solution for driving an electrolytic capacitor of the present invention is to disperse an ultrafine inorganic compound in a solvent mainly composed of ethylene glycol, and to dissolve it by adding one or both of hexites and boric acid. As the ultrafine inorganic compound, metal oxides, metal nitrides, or metal carbides are preferable.

【0010】通常、超微粒子無機化合物は、電解液中で
帯電しているため、コロイド状になって分散するが、溶
液のpHや無機化合物の種類により分散しにくいものも
ある。その場合、適当な界面活性剤の使用や表面処理を
行えば、分散させることができる。
[0010]Usually, ultrafine inorganic compounds are electrically charged in an electrolytic solution and are dispersed in the form of a colloid, but some particles may be difficult to disperse depending on the pH of the solution or the type of inorganic compound. In that case, dispersion can be achieved by using an appropriate surfactant or performing surface treatment.

【0011】金属酸化物としては、例えば、塩基性酸化
物(SiO2,TiO2,Y2O3,Al2O3,Fe
2O3,HfO2,Ga2O3,In2O3,SnO2
,Bi2O3等);酸性酸化物(Ta2O5,GeO2
,SeO2,Sb2O3,TeO2,WO3,Nb2O
5等);複合酸化物(SiO2−Al2O3,SiO2
−MgO,SiO2−CaO,SiO2−SrO,Si
O2−BaO,SiO2−ZrO2等)が挙げられる。 これらのうちで、好ましいのは、SiO2,TiO2で
ある。
Examples of metal oxides include basic oxides (SiO2, TiO2, Y2O3, Al2O3, Fe
2O3, HfO2, Ga2O3, In2O3, SnO2
, Bi2O3, etc.); acidic oxides (Ta2O5, GeO2
, SeO2, Sb2O3, TeO2, WO3, Nb2O
5 etc.); composite oxides (SiO2-Al2O3, SiO2
-MgO, SiO2-CaO, SiO2-SrO, Si
O2-BaO, SiO2-ZrO2, etc.). Among these, SiO2 and TiO2 are preferred.

【0012】金属窒化物としては、例えば、TiN,S
i3N2,AlN,TaN,Zr3N4,NbN,Zr
Nが挙げられる。これらのうちで、好ましいのは、Ti
N,Si3N2,AlN,Zr3N4の1種類もしくは
2種類以上の混合物である。
Examples of metal nitrides include TiN, S
i3N2, AlN, TaN, Zr3N4, NbN, Zr
An example is N. Among these, preferred is Ti
It is one type or a mixture of two or more types of N, Si3N2, AlN, and Zr3N4.

【0013】金属炭化物としては、SiC,TiC,M
o2C,WCが挙げられる。これらのうちで、好ましい
のは、SiC,TiCの1種類もしくは2種類の混合物
である。
[0013] As the metal carbide, SiC, TiC, M
Examples include o2C and WC. Among these, preferred is one type or a mixture of two types of SiC and TiC.

【0014】また超微粒子無機化合物は、他の溶媒に分
散しても同様の効果が得られ、使用できる溶媒としては
、例えばアルコール類{1価アルコール(メチルアルコ
ール,エチルアルコール,プロピルアルコール,ブチル
アルコール,ジアセトンアルコール,ベンジルアルコー
ル,アミノアルコール等);2価アルコール(エチレン
グリコール,プロピレングリコール,ジエチレングリコ
ール,ヘキシレングリコール等);3価アルコール(グ
リセリン等);ヘキシトール等}、エーテル類{モノエ
ーテル(エチレングリコールモノメチルエーテル,エチ
レングリコールモノエチルエーテル,ジエチレングリコ
ールモノメチルエーテル,ジエチレングリコールモノエ
チルエーテル,エチレングリコールフェニルエーテル等
);ジエーテル(エチレングリコールジメチルエーテル
,ジエチレングリコールジメチルエーテル,ジエチレン
グリコールジエチルエーテル等)}、アミド類{ホルム
アミド類(N−メチルホルムアミド,N,N−ジメチル
ホルムアミド,N−エチルホルムアミド,N,N−ジエ
チルホルムアミド等);アセトアミド類(N−メチルア
セトアミド,N,N−ジメチルアセトアミド,N−エチ
ルアセトアミド,N,N−ジエチルアセトアミド等);
プロピオンアミド類(N,N−ジメチルプロピオンアミ
ド等);ヘキサメチルホスホリルアミド等}、オキサゾ
リジノン類(N−メチル−2−オキサゾリジノン,3,
5−ジメチル−2−オキサソリジノン等)、ラクトン類
(γ−ブチロラクトン,α−アセチル−γ−ブチロラク
トン,β−ブチロラクトン,γ−バレロラクトン,δ−
バレロラクトン等)、ニトリル類(アセトニトリル,ア
クリロニトリル等)、ジメチルスルホキシド、スルホラ
ン、1,3−ジメチル−2−イミダゾリジノン、N−メ
チルピロリドン、芳香族溶剤(トルエン,キシレン等)
、パラフィン系溶剤(ノルマルパラフィン,イソパラフ
ィン等)およびこれらの2種以上の混合物が挙げられる
。これらのうちで、好ましいのはγ−ブチロラクトンと
エチレングリコールを主体とする溶媒である。
[0014] Furthermore, the same effect can be obtained even when the ultrafine particle inorganic compound is dispersed in other solvents. Usable solvents include, for example, alcohols {monohydric alcohols (methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol, , diacetone alcohol, benzyl alcohol, amino alcohol, etc.); dihydric alcohols (ethylene glycol, propylene glycol, diethylene glycol, hexylene glycol, etc.); trihydric alcohols (glycerin, etc.); hexitol, etc.}, ethers {monoether (ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, ethylene glycol phenyl ether, etc.); diethers (ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, etc.)}, amides {formamides (N- Methylformamide, N,N-dimethylformamide, N-ethylformamide, N,N-diethylformamide, etc.); Acetamides (N-methylacetamide, N,N-dimethylacetamide, N-ethylacetamide, N,N-diethylacetamide) etc);
Propionamides (N,N-dimethylpropionamide, etc.); Hexamethylphosphorylamide, etc.}, Oxazolidinones (N-methyl-2-oxazolidinone, 3,
5-dimethyl-2-oxasolidinone, etc.), lactones (γ-butyrolactone, α-acetyl-γ-butyrolactone, β-butyrolactone, γ-valerolactone, δ-
valerolactone, etc.), nitriles (acetonitrile, acrylonitrile, etc.), dimethyl sulfoxide, sulfolane, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone, aromatic solvents (toluene, xylene, etc.)
, paraffinic solvents (normal paraffin, isoparaffin, etc.), and mixtures of two or more thereof. Among these, preferred are solvents mainly containing γ-butyrolactone and ethylene glycol.

【0015】また、溶質としては、無機酸,有機酸また
はその塩であり、例えば、ホウ酸,アゼライン酸,アジ
ピン酸,グルタル酸,フタル酸,マレイン酸,安息香酸
,ブチルオクタン二酸またはその塩の中の1種もしくは
2種以上が主たる溶質として挙げられる。
The solute may be an inorganic acid, an organic acid, or a salt thereof, such as boric acid, azelaic acid, adipic acid, glutaric acid, phthalic acid, maleic acid, benzoic acid, butyloctanedioic acid or a salt thereof. One or more of these may be mentioned as the main solute.

【0016】上記した酸の塩としては、アンモニウム塩
,アミン塩,四級アンモニウム塩が使用できる。
[0016] As the above acid salts, ammonium salts, amine salts, and quaternary ammonium salts can be used.

【0017】分散する超微粒子無機化合物の量は、電解
液に対して、0.1〜30%であり、好ましくは、1〜
20%である。これは、0.1%以下では効果がなく、
かつ30%以上では凝集しやすくなるからである。
The amount of the ultrafine inorganic compound to be dispersed is 0.1 to 30%, preferably 1 to 30%, based on the electrolyte.
It is 20%. This has no effect below 0.1%,
Moreover, if it exceeds 30%, agglomeration tends to occur.

【0018】また、粒子径としては小さい方がよく、1
μm程度から分散できるが、この場合、100nm以下
が望ましい。
[0018] Furthermore, the smaller the particle size, the better;
Although it can be dispersed from about μm, in this case, it is preferable that it is 100 nm or less.

【0019】そしてまた、ヘキシット類とホウ酸は単独
で添加しても良いが、両方添加するほうが溶解性が良く
好ましい。
Although hexites and boric acid may be added alone, it is preferable to add both of them because of better solubility.

【0020】次に本発明の具体的な実施例について説明
する。(表1)は従来例1,2,3,4と本発明の実施
例1,2,3,4,5,6,7,8,9の具体的な電解
液組成と、これらの各例における30℃の比電導度と火
花発生電圧の測定結果を示したものである。
Next, specific embodiments of the present invention will be explained. (Table 1) shows specific electrolyte compositions of conventional examples 1, 2, 3, and 4 and examples 1, 2, 3, 4, 5, 6, 7, 8, and 9 of the present invention, and each of these examples. This figure shows the measurement results of specific conductivity and spark generation voltage at 30°C.

【0021】本発明の実施例1,3,4,8,9で使用
した超微粒子無機化合物を構成する金属酸化物である超
微粒子状無水シリカは、フェロシリコンを塩素化して四
塩化硅素とした後、精製し酸素と水素の炎中で加水分解
することによって得られたものを、機械的に撹拌して分
散させた。
The ultrafine anhydrous silica, which is a metal oxide constituting the ultrafine inorganic compound used in Examples 1, 3, 4, 8, and 9 of the present invention, was obtained by chlorinating ferrosilicon to form silicon tetrachloride. Thereafter, the product obtained by purification and hydrolysis in an oxygen and hydrogen flame was mechanically stirred and dispersed.

【0022】また本発明の実施例2,5,6,7で使用
した超微粒子無機化合物を構成する金属酸化物である超
微粒子酸化チタンは四塩化チタニウムの蒸気を気相中で
酸素酸化することによって得られたものを、機械的に撹
拌して分散させた。
[0022] Further, ultrafine titanium oxide, which is a metal oxide constituting the ultrafine inorganic compound used in Examples 2, 5, 6, and 7 of the present invention, is obtained by oxidizing titanium tetrachloride vapor with oxygen in the gas phase. The resulting mixture was mechanically stirred and dispersed.

【0023】[0023]

【表1】[Table 1]

【0024】[0024]

【表2】[Table 2]

【0025】この(表1),(表2)から明らかなよう
に、超微粒子無機化合物を構成する金属酸化物である酸
化硅素を分散させた本発明の実施例1,3,4,8,9
および酸化チタンを分散させた本発明の実施例2,5,
6,7の電解液は、従来例1,2,3,4の電解液に比
較して比電導度を低下させることなく、火花発生電圧を
高くすることができるものである。
As is clear from these (Tables 1) and (Table 2), Examples 1, 3, 4, 8, 9
and Examples 2 and 5 of the present invention in which titanium oxide was dispersed,
The electrolytic solutions No. 6 and 7 can increase the spark generation voltage without lowering the specific conductivity compared to the electrolytic solutions of Conventional Examples 1, 2, 3, and 4.

【0026】(表3)は(表1),(表2)に示した電
解液のうち、従来例1,3および本発明の実施例1,4
,5の電解液を使用した電解コンデンサの各20個につ
いて温度105℃で高温リプル試験を1000時間実施
した結果を示したものである。これらの電解コンデンサ
のうち、従来例1と本発明の実施例1の電解液を使用し
た電解コンデンサの定格は330V1500μFで、そ
の製品のエージングは380Vの電圧を4時間印加して
行い、そしてリプル試験条件は4.23Aである。また
従来例3と本発明の実施例4,5の電解液を使用した電
解コンデンサの定格は400V270μFで、その製品
のエージングは450Vの電圧を4時間印加して行い、
そしてリプル試験条件は1.1Aである。
(Table 3) shows the conventional examples 1 and 3 and the embodiments 1 and 4 of the present invention among the electrolytes shown in (Table 1) and (Table 2).
This figure shows the results of a high-temperature ripple test conducted at a temperature of 105° C. for 1000 hours on 20 electrolytic capacitors each using electrolytes of No. 5 and No. 5. Among these electrolytic capacitors, the electrolytic capacitors using the electrolytes of Conventional Example 1 and Example 1 of the present invention have a rating of 330V1500μF, and the aging of the products was performed by applying a voltage of 380V for 4 hours, and a ripple test was performed. The condition is 4.23A. Further, the rating of the electrolytic capacitors using the electrolytes of Conventional Example 3 and Examples 4 and 5 of the present invention is 400V270μF, and the aging of the product was performed by applying a voltage of 450V for 4 hours.
And the ripple test condition is 1.1A.

【0027】[0027]

【表3】[Table 3]

【0028】この(表3)から明らかなように、本発明
の実施例1,4,5の電解液を使用した電解コンデンサ
は、従来例1,3の電解液を使用した電解コンデンサと
比較して、温度105℃で高温リプル試験を1000時
間実施した後の容量変化が少ないもので、これにより、
信頼性の高い電解コンデンサを得ることができるもので
ある。
As is clear from this (Table 3), the electrolytic capacitors using the electrolytes of Examples 1, 4, and 5 of the present invention have higher performance than the electrolytic capacitors using the electrolytes of Conventional Examples 1 and 3. Therefore, the capacitance change is small after conducting a high temperature ripple test for 1000 hours at a temperature of 105°C.
A highly reliable electrolytic capacitor can be obtained.

【0029】(表4)は(表3)に示した従来例1,3
の電解液を使用した電解コンデンサおよび本発明の実施
例1,4,5の電解液を使用した電解コンデンサについ
て、温度105℃で高温リプル重畳試験を1000時間
実施した時の製品のショート発生率を示したものである
(Table 4) shows the conventional examples 1 and 3 shown in (Table 3).
For electrolytic capacitors using the electrolytic solution of Example 1, 4, and 5 of the present invention, the short circuit occurrence rate of the product was determined when a high-temperature ripple superimposition test was conducted at a temperature of 105°C for 1000 hours. This is what is shown.

【0030】[0030]

【表4】[Table 4]

【0031】この(表4)から明らかなように、本発明
の実施例1〜9の電解液は従来例1〜4の電解液に比べ
ていずれも火花発生電圧が高いという特徴を有すること
から、従来例1,3の電解液を使用した電解コンデンサ
が高温リプル重畳試験中にショート発生を起こしている
のに対し、本発明の実施例1,4,5の電解液を使用し
た電解コンデンサは、高温リプル重畳試験中にショート
が発生することもなく、非常にショート性に優れた電解
コンデンサ駆動用電解液を得ることができる。
As is clear from this (Table 4), the electrolytic solutions of Examples 1 to 9 of the present invention are all characterized by a higher spark generation voltage than the electrolytic solutions of conventional examples 1 to 4. While the electrolytic capacitors using the electrolytes of Conventional Examples 1 and 3 caused a short circuit during the high-temperature ripple superposition test, the electrolytic capacitors using the electrolytes of Examples 1, 4, and 5 of the present invention Therefore, it is possible to obtain an electrolytic solution for driving an electrolytic capacitor that has excellent short-circuit properties without causing short-circuits during the high-temperature ripple superposition test.

【0032】図1は本発明の実施例4における電解コン
デンサ駆動用電解液と従来例2における電解コンデンサ
駆動用電解液の定電流化成時における化成・放電特性の
比較を示したもので、この図1からも明らかなように本
発明の実施例4が従来例2に比べてその特性は著しく優
れているものである。
FIG. 1 shows a comparison of the formation and discharge characteristics during constant current formation between the electrolytic solution for driving an electrolytic capacitor in Example 4 of the present invention and the electrolytic solution for driving an electrolytic capacitor in Conventional Example 2. As is clear from Example 1, the characteristics of Example 4 of the present invention are significantly superior to those of Conventional Example 2.

【0033】[0033]

【発明の効果】以上のように本発明の電解コンデンサ駆
動用電解液は、エチレングリコールを主体とした溶媒に
、超微粒子無機化合物を分散させ、かつヘキシット類お
よびホウ酸のいずれか一方または両方を添加して溶解し
たもので、超微粒子無機化合物は、電解液中で帯電して
コロイド状になっているため、電解液中に均一に分散さ
せることができる。また酸化皮膜の生成時には超微粒子
無機化合物が吸着凝集して酸化皮膜の欠陥部を埋めるた
め、欠陥の少ない酸化皮膜を生成することができ、これ
により、火花発生電圧を高くすることができ、かつこれ
に加えてヘキシット類およびホウ酸のいずれか一方また
は両方を添加することにより、これが陽極酸化皮膜の表
面を覆ってしまうため、さらに火花発生電圧を高めるこ
とができるものである。
Effects of the Invention As described above, the electrolytic solution for driving an electrolytic capacitor of the present invention has an ultrafine particle inorganic compound dispersed in a solvent mainly composed of ethylene glycol, and one or both of hexites and boric acid. When added and dissolved, the ultrafine inorganic compound is charged in the electrolytic solution and becomes colloidal, so it can be uniformly dispersed in the electrolytic solution. In addition, when an oxide film is formed, the ultrafine inorganic compound adsorbs and aggregates to fill in the defective parts of the oxide film, making it possible to produce an oxide film with fewer defects.This makes it possible to increase the spark generation voltage, and In addition to this, by adding one or both of hexites and boric acid, the surface of the anodic oxide film is covered with the hexites, thereby making it possible to further increase the spark generation voltage.

【0034】従って、従来の電解液と比較して比電導度
を低下させることなく火花発生電圧を高くすることがで
き、高電導度の電解液を高い電圧範囲に使用することが
できるため、非常に低損失の電解コンデンサを提供する
ことができるものである。
Therefore, compared to conventional electrolytes, the spark generation voltage can be increased without lowering the specific conductivity, and high conductivity electrolytes can be used in a high voltage range. This makes it possible to provide low-loss electrolytic capacitors.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例4における電解コンデンサ駆動
用電解液と従来例2における電解コンデンサ駆動用電解
液の定電流化成時における化成・放電特性の比較を示す
特性図
FIG. 1 is a characteristic diagram showing a comparison of the formation and discharge characteristics during constant current formation of the electrolytic solution for driving an electrolytic capacitor in Example 4 of the present invention and the electrolytic solution for driving an electrolytic capacitor in Conventional Example 2.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】エチレングリコールを主体とした溶媒に、
超微粒子無機化合物を分散させ、かつヘキシット類およ
びホウ酸のいずれか一方または両方を添加して溶解した
電解コンデンサ駆動用電解液。
Claim 1: A solvent mainly composed of ethylene glycol,
An electrolytic solution for driving an electrolytic capacitor in which an ultrafine inorganic compound is dispersed and one or both of hexites and boric acid is added and dissolved.
【請求項2】超微粒子無機化合物が金属酸化物である請
求項1記載の電解コンデンサ駆動用電解液。
2. The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the ultrafine inorganic compound is a metal oxide.
【請求項3】超微粒子無機化合物が金属窒化物である請
求項1記載の電解コンデンサ駆動用電解液。
3. The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the ultrafine inorganic compound is a metal nitride.
【請求項4】超微粒子無機化合物が金属炭化物である請
求項1記載の電解コンデンサ駆動用電解液。
4. The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the ultrafine inorganic compound is a metal carbide.
【請求項5】金属酸化物がSiO2およびTiO2単独
もしくは混合物である請求項2記載の電解コンデンサ駆
動用電解液。
5. The electrolytic solution for driving an electrolytic capacitor according to claim 2, wherein the metal oxide is SiO2 and TiO2 alone or in a mixture.
【請求項6】金属窒化物がTiN,Si3N2,AIN
,TaN,NbNおよびZr3N4から選ばれる1種類
もしくは2種類以上の混合物である請求項3記載の電解
コンデンサ駆動用電解液。
[Claim 6] The metal nitride is TiN, Si3N2, AIN.
4. The electrolytic solution for driving an electrolytic capacitor according to claim 3, which is one type or a mixture of two or more types selected from , TaN, NbN, and Zr3N4.
【請求項7】金属炭化物がSiCおよびTiCの単独も
しくは混合物である請求項4記載の電解コンデンサ駆動
用電解液。
7. The electrolytic solution for driving an electrolytic capacitor according to claim 4, wherein the metal carbide is SiC and TiC alone or in a mixture.
【請求項8】超微粒子無機化合物の大きさが100nm
以下である請求項4記載の電解コンデンサ駆動用電解液
Claim 8: The size of the ultrafine inorganic compound is 100 nm.
The electrolytic solution for driving an electrolytic capacitor according to claim 4, which is as follows.
【請求項9】ヘキシット類がマンニット,ソルビット,
ズルシット,キシリット,ペンタエリトリットである請
求項1記載の電解コンデンサ駆動用電解液。
[Claim 9] Hexites include mannitol, sorbitol,
The electrolytic solution for driving an electrolytic capacitor according to claim 1, which is dulcit, xylitol, or pentaerythritol.
JP7615991A 1991-04-09 1991-04-09 Electrolyte for driving electrolytic capacitor Pending JPH04311021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7615991A JPH04311021A (en) 1991-04-09 1991-04-09 Electrolyte for driving electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7615991A JPH04311021A (en) 1991-04-09 1991-04-09 Electrolyte for driving electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH04311021A true JPH04311021A (en) 1992-11-02

Family

ID=13597277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7615991A Pending JPH04311021A (en) 1991-04-09 1991-04-09 Electrolyte for driving electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH04311021A (en)

Similar Documents

Publication Publication Date Title
JP3387144B2 (en) Electrolyte for electrolytic capacitors
JP2702726B2 (en) Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same
JPH04311021A (en) Electrolyte for driving electrolytic capacitor
JPH04313210A (en) Electrolytic solution for electrolytic-capacitor driving use
JPH04311020A (en) Electrolyte for driving electrolytic capacitor
WO2014051129A1 (en) Electrolytic solution for electrolytic capacitor, and electrolytic capacitor
JP3175330B2 (en) Electrolyte for driving electrolytic capacitors
JPH03126210A (en) Electrolyte for electrolytic capacitor
JPH06151250A (en) Electrolyte for electrolytic capacitor
JP4672307B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor using the same
JP3394068B2 (en) Electrolyte for electrolytic capacitors
JP4612241B2 (en) Electrolytic solution for electrolytic capacitor drive
JPH09275039A (en) Electrolyte for electrolytic capacitor
JPH06310378A (en) Electrolytic capacitor driving electrolyte and electrolytic capacitor loaded therewith
JP3315812B2 (en) Electrolyte for driving electrolytic capacitors
JP2002270472A (en) Electrolytic capacitor and electrolytic solution therefor
JP4430217B2 (en) Electrolytic solution for driving aluminum electrolytic capacitors
JP3666478B2 (en) Electrolytic solution for electrolytic capacitors
JPH08264388A (en) Electrolyte for driving electrolytic capacitor
JPH07120615B2 (en) Electrolytic solution for driving electrolytic capacitors
JP2003338431A (en) Electrolyte for driving of electrolytic capacitor
JPH08293440A (en) Electrolyte for driving electrolytic capacitor and electrolytic capacitor using it
JPH03120807A (en) Electrolyte for electrolytic capacitor
JPH05144673A (en) Electrolytic solution for electrolytic capacitor
JPH08293439A (en) Electrolyte for driving electrolytic capacitor