JPH04311020A - Electrolyte for driving electrolytic capacitor - Google Patents

Electrolyte for driving electrolytic capacitor

Info

Publication number
JPH04311020A
JPH04311020A JP7615591A JP7615591A JPH04311020A JP H04311020 A JPH04311020 A JP H04311020A JP 7615591 A JP7615591 A JP 7615591A JP 7615591 A JP7615591 A JP 7615591A JP H04311020 A JPH04311020 A JP H04311020A
Authority
JP
Japan
Prior art keywords
electrolyte
inorganic compound
acid
electrolytic capacitor
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7615591A
Other languages
Japanese (ja)
Inventor
Naoko Sakaguchi
阪口 尚子
Yoshinori Katsuki
香月 美紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7615591A priority Critical patent/JPH04311020A/en
Publication of JPH04311020A publication Critical patent/JPH04311020A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to use the title electrolyte in a wide range of voltage by growing a few-defect oxide film, by increasing spark-generating voltage by dispersing an ultrafine particle inorganic compound into an electrolyte. CONSTITUTION:Alcohols and the like are used for the electrolyte with which a superfine particle inorganic compound is dispersed. Inorganic acid, organic acid or its salt, and borasic acid, azelaic acid and the like are used for the solute. Ammonium salt and the like are used for the salt of acid. The quantity of the superfine particle inorganic compound to be dispersed should be 0.1 to 30wt.% for the electrolyte. The diameter of particles should be 100nm or smaller. The superfine particle inorganic compound is turned into a coroidal form by electrostatical charging on the electrolyte, and it is dispersed in the electrolyte uniformly. When an oxide film is grown, the superfine particle inorganic compound is absorbed and flocculated, and the defects of the oxide film are filled up. As a result, an oxide film having few defects can be formed, and spark generating voltage can be increased.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、電解コンデンサ駆動用
電解液に関するものであり、詳しく言えば、アルミ電解
コンデンサ駆動用電解液に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic solution for driving an electrolytic capacitor, and more specifically, to an electrolytic solution for driving an aluminum electrolytic capacitor.

【0002】0002

【従来の技術】従来のアルミ電解コンデンサ駆動用電解
液としては、火花発生電圧を比較的高くできることから
、エチレングリコールに電解質としてホウ酸またはホウ
酸アンモニウムを溶解した電解液が用いられていた。
BACKGROUND OF THE INVENTION Conventional electrolytic solutions for driving aluminum electrolytic capacitors have been prepared by dissolving boric acid or ammonium borate as an electrolyte in ethylene glycol because the spark generation voltage can be made relatively high.

【0003】しかしながら、このような電解液はホウ酸
から直接放出される結晶水と、エチレングリコールとホ
ウ酸との間で起こるエステル化反応で生じる縮合水によ
って、電解液中に多量の水分が生成されるため、100
℃を越えるアルミ電解コンデンサにこの電解液を使用す
ると、電解液中の水分が水蒸気となって蒸発し、これに
より、アルミ電解コンデンサのパッケージ内の内圧が上
昇し、これを破壊させてしまうという問題があった。そ
して、このような問題点を解決するために、電解質とし
てエチレングリコールとエステル化反応が非常に遅いア
ジピン酸あるいは安息香酸等の有機カルボン酸またはそ
の塩が検討されたが、これにおいては、必要とされる高
い火花発生電圧を得ることができないという欠点があっ
た。またこの欠点を解決するために、電解液にポリオキ
シエチレンジカルボン酸を添加し、火花発生電圧を向上
させた例がある(特開昭60−176218号公報)。
However, in such an electrolytic solution, a large amount of water is generated in the electrolytic solution due to crystallization water directly released from boric acid and condensed water generated by the esterification reaction between ethylene glycol and boric acid. 100
If this electrolyte is used in an aluminum electrolytic capacitor with a temperature exceeding ℃, the water in the electrolyte will evaporate into water vapor, which will increase the internal pressure inside the aluminum electrolytic capacitor's package and cause it to break down. was there. In order to solve these problems, organic carboxylic acids such as adipic acid or benzoic acid or their salts, which have a very slow esterification reaction with ethylene glycol, were considered as electrolytes, but in this case, the necessary The drawback is that it is not possible to obtain a high spark generation voltage. In order to solve this drawback, there is an example in which polyoxyethylene dicarboxylic acid is added to the electrolytic solution to improve the spark generation voltage (Japanese Patent Application Laid-open No. 176218/1983).

【0004】また、セラミック粉末を電解液に含有させ
たものとして、特開昭60−12717号公報がある。
[0004] Furthermore, Japanese Patent Application Laid-Open No. 12717/1983 discloses a method in which ceramic powder is contained in an electrolytic solution.

【0005】さらに、金属酸化物を電解液に含有させた
例として、ビスマス酸化物の例がある(特公平2−57
328号公報参照)。
Furthermore, as an example of a metal oxide contained in an electrolyte, there is an example of bismuth oxide (Japanese Patent Publication No. 2-57).
(See Publication No. 328).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、火花発
生電圧を向上させるための添加剤であるポリオキシエチ
レンジカルボン酸は、比電導度を低下させ、電解コンデ
ンサの損失を大きくするという欠点を有するものである
。また、セラミック粉末は、大きさが5μm〜50μm
のものが知らされているが、これは分散が困難であり、
かつ火花発生電圧に対する効果も明らかでない。さらに
、特公平2−57328号公報で知られているビスマス
酸化物においては、分散しにくく、すぐに沈殿するとい
う欠点があり、また、火花発生電圧向上の効果も明らか
にされていない。
[Problems to be Solved by the Invention] However, polyoxyethylene dicarboxylic acid, which is an additive for improving the spark generation voltage, has the disadvantage of lowering the specific conductivity and increasing the loss of electrolytic capacitors. be. In addition, the size of the ceramic powder is 5 μm to 50 μm.
is known, but this is difficult to disperse,
Moreover, the effect on the spark generation voltage is also not clear. Furthermore, the bismuth oxide known from Japanese Patent Publication No. 2-57328 has the disadvantage that it is difficult to disperse and readily precipitates, and its effect on improving the spark generation voltage has not been clarified.

【0007】本発明は、上記従来の問題点を解決するも
ので、比電導度を低下させずに高い火花発生電圧を有す
る電解コンデンサ駆動用電解液を提供することを目的と
する。
The present invention solves the above-mentioned conventional problems, and aims to provide an electrolytic solution for driving an electrolytic capacitor that has a high spark generation voltage without reducing specific conductivity.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に本発明は、超微粒子無機化合物を電解液に分散させた
ことを特徴とするものである。
[Means for Solving the Problems] In order to solve the above problems, the present invention is characterized in that an ultrafine inorganic compound is dispersed in an electrolytic solution.

【0009】[0009]

【作用】上記した本発明の電解コンデンサ駆動用電解液
は、超微粒子無機化合物を分散させているもので、この
超微粒子無機化合物は、電解液中で帯電してコロイド状
になっているため、電解液中に均一に分散させることが
できる。また酸化皮膜の生成時には超微粒子無機化合物
が吸着凝集して酸化皮膜の欠陥部を埋めるため、欠陥の
少ない酸化皮膜を生成することができ、これにより、火
花発生電圧も高くすることができるものである。
[Function] The electrolytic solution for driving an electrolytic capacitor of the present invention described above has an ultrafine particle inorganic compound dispersed therein, and since this ultrafine particle inorganic compound is charged in the electrolytic solution and becomes colloidal, It can be uniformly dispersed in the electrolyte. In addition, when an oxide film is formed, the ultrafine inorganic compounds are adsorbed and aggregated to fill in the defective parts of the oxide film, making it possible to produce an oxide film with fewer defects, thereby increasing the spark generation voltage. be.

【0010】0010

【実施例】以下、本発明の実施例について説明する。[Examples] Examples of the present invention will be described below.

【0011】本発明の電解コンデンサ駆動用電解液の基
本は、超微粒子無機化合物を分散させたことを特徴とす
るもので、超微粒子無機化合物としては、金属酸化物,
金属窒化物、もしくは金属炭化物が好ましい。通常、超
微粒子は、電解液中で帯電しているため、コロイド状に
なって分散するが、溶液のpHや無機化合物の種類によ
り分散しにくいものもある。その場合、適当な界面活性
剤の使用や表面処理を行えば、分散させることができる
The electrolytic solution for driving an electrolytic capacitor of the present invention is basically characterized by dispersing an ultrafine inorganic compound, and the ultrafine inorganic compound includes metal oxides, metal oxides,
Metal nitrides or metal carbides are preferred. Usually, ultrafine particles are electrically charged in an electrolytic solution, so they become colloidal and disperse, but some particles are difficult to disperse depending on the pH of the solution and the type of inorganic compound. In that case, dispersion can be achieved by using an appropriate surfactant or performing surface treatment.

【0012】金属酸化物としては、例えば、塩基性酸化
物(TiO2,ZrO2,Fe2O3,HfO2,Y2
O3,Al2O3,Ga2O3,In2O3,SnO2
,Bi2O3等)、酸性酸化物(Nb2O5,Ta2O
5,WO3,GeO2,SeO2,Sb2O3,TeO
2等)、複合酸化物(SiO2−Al2O3,SiO2
−MgO,SiO2−CaO,SiO2−SrO,Si
O2−BaO,SiO2−ZrO2等)が挙げられる。 これらのうちで好ましいのはTiO2である。
Examples of metal oxides include basic oxides (TiO2, ZrO2, Fe2O3, HfO2, Y2
O3, Al2O3, Ga2O3, In2O3, SnO2
, Bi2O3, etc.), acidic oxides (Nb2O5, Ta2O
5, WO3, GeO2, SeO2, Sb2O3, TeO
2 etc.), composite oxides (SiO2-Al2O3, SiO2
-MgO, SiO2-CaO, SiO2-SrO, Si
O2-BaO, SiO2-ZrO2, etc.). Among these, TiO2 is preferred.

【0013】金属窒化物としては、例えば、TiN,S
i3N2,AlN,TaN,Zr3N4,NbN,Zr
Nが挙げられる。これらのうちで、好ましいのは、Ti
N,Si3N2,AlN,Zr3N4の1種類もしくは
2種類以上の混合物である。
Examples of metal nitrides include TiN, S
i3N2, AlN, TaN, Zr3N4, NbN, Zr
An example is N. Among these, preferred is Ti
It is one type or a mixture of two or more types of N, Si3N2, AlN, and Zr3N4.

【0014】金属炭化物としては、SiC,TiC,M
o2C,WCが挙げられる。これらのうちで好ましいの
は、SiC,TiCの1種類もしくは2種類の混合物で
ある。
[0014] As the metal carbide, SiC, TiC, M
Examples include o2C and WC. Among these, preferred is one type or a mixture of two types of SiC and TiC.

【0015】また超微粒子無機化合物を分散させる電解
液に使用できる溶媒としては、例えばアルコール類{1
価アルコール(メチルアルコール,エチルアルコール,
プロピルアルコール,ブチルアルコール,ジアセトンア
ルコール,ベンジルアルコール,アミノアルコール等)
、2価アルコール(エチレングリコール,プロピレング
リコール,ジエチレングリコール,ヘキシレングリコー
ル等)、3価アルコール(グリセリン等)、ヘキシトー
ル等}、エーテル類{モノエーテル(エチレングリコー
ルモノメチルエーテル,エチレングリコールモノエチル
エーテル,ジエチレングリコールモノメチルエーテル,
ジエチレングリコールモノエチルエーテル,エチレング
リコールフェニルエーテル等)、ジエーテル(エチレン
グリコールジメルエーテル,ジエチレングリコールジメ
チルエーテル,ジエチレングリコールジエチルエーテル
等)}、アミド類{ホルムアミド類(N−メチルホルム
アミド、N,N−ジメチルホルムアミド、N−エチルホ
ルムアミド、N,N−ジエチルホルムアミド等)、アセ
トアミド類(N−メチルアセトアミド、N,N−ジメチ
ルアセトアミド,N−エチルアセトアミド、N,N−ジ
エチルアセトアミド等)、プロピオンアミド類(N,N
−ジメチルプロピオンアミド等)、ヘキサメチルホスホ
リルアミド等}、オキサゾリジノン類(N−メチル−2
−オキサゾリジノン,3.5−ジメチル−2−オキゾリ
ジノン等)、ラクトン類(γ−ブチロラクトン,α−ア
セチル−γ−ブチロラクトン,β−ブチロンラクトン,
γ−バレロラクトン,δ−バレロラクトン等)、ニトリ
ル類(アセトニトリル,アクリロニトリル等)、ジメチ
ルスルホキシド,スルホラン,1.3−ジメチル−2−
イミダゾリジノン,N−メチルピロリドン,芳香族溶剤
(トルエン,キシレン等)、パラフィン系溶剤(ノルマ
ルパラフィン,イソパラフィン等)およびこれらの2種
以上の混合物が挙げられる。これらのうちで好ましいの
はγ−ブチロラクトンまたはエチレングリコールを主体
とする溶媒である。
Further, examples of solvents that can be used in the electrolytic solution in which the ultrafine inorganic compound is dispersed include alcohols {1
Alcohols (methyl alcohol, ethyl alcohol,
propyl alcohol, butyl alcohol, diacetone alcohol, benzyl alcohol, amino alcohol, etc.)
, dihydric alcohols (ethylene glycol, propylene glycol, diethylene glycol, hexylene glycol, etc.), trihydric alcohols (glycerin, etc.), hexitol, etc.}, ethers {monoethers (ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl) ether,
diethylene glycol monoethyl ether, ethylene glycol phenyl ether, etc.), diethers (ethylene glycol dimel ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, etc.)}, amides {formamides (N-methylformamide, N,N-dimethylformamide, N-ethyl Formamide, N,N-diethylformamide, etc.), acetamides (N-methylacetamide, N,N-dimethylacetamide, N-ethylacetamide, N,N-diethylacetamide, etc.), propionamides (N,N-diethylacetamide, etc.)
-dimethylpropionamide, etc.), hexamethylphosphorylamide, etc.}, oxazolidinones (N-methyl-2
-oxazolidinone, 3,5-dimethyl-2-oxazolidinone, etc.), lactones (γ-butyrolactone, α-acetyl-γ-butyrolactone, β-butyron lactone,
γ-valerolactone, δ-valerolactone, etc.), nitriles (acetonitrile, acrylonitrile, etc.), dimethyl sulfoxide, sulfolane, 1,3-dimethyl-2-
Examples include imidazolidinone, N-methylpyrrolidone, aromatic solvents (toluene, xylene, etc.), paraffinic solvents (normal paraffin, isoparaffin, etc.), and mixtures of two or more of these. Among these, preferred are γ-butyrolactone or ethylene glycol-based solvents.

【0016】また、溶質としては、無機酸,有機酸また
はその塩であり、例えば、ホウ酸,アゼライン酸,アジ
ピン酸,グルタル酸,フタル酸,マレイン酸,安息香酸
、またはその塩等が挙げられる。
[0016] The solute is an inorganic acid, an organic acid, or a salt thereof, such as boric acid, azelaic acid, adipic acid, glutaric acid, phthalic acid, maleic acid, benzoic acid, or a salt thereof. .

【0017】上記した酸の塩としては、アンモニウム塩
,アミン塩,四級アンモニウム塩等が使用できる。
[0017] As the above acid salts, ammonium salts, amine salts, quaternary ammonium salts, etc. can be used.

【0018】また、分散する超微粒子無機化合物の量は
電解液に対して、0.1〜30wt%であり、好ましく
は、1〜20wt%である。これらは、0.1wt%以
下では効果がなく、かつ30wt%以上では凝集しやす
くなるからである。
[0018] The amount of the ultrafine inorganic compound to be dispersed is 0.1 to 30 wt%, preferably 1 to 20 wt%, based on the electrolytic solution. This is because they have no effect at 0.1 wt% or less, and tend to aggregate at 30 wt% or more.

【0019】また、粒子径としては小さい方がよく、1
μm程度から分散できるが、この場合、100nm以下
が望ましい。
[0019] Also, the smaller the particle size, the better;
Although it can be dispersed from about μm, in this case, it is preferable that it is 100 nm or less.

【0020】次に本発明の具体的な実施例について説明
する。(表1)は従来例1,2,3と本発明の実施例1
,2,3,4,5の具体的な電解液組成を示すとともに
、これらの各例における30℃の比電導度と火花発生電
圧の測定結果を示したものである。
Next, specific embodiments of the present invention will be explained. (Table 1) shows conventional examples 1, 2, and 3 and embodiment 1 of the present invention.
, 2, 3, 4, and 5, as well as the measurement results of specific conductivity at 30° C. and spark generation voltage in each of these examples.

【0021】本発明の実施例1,5で使用した超微粒子
無機化合物を構成する金属酸化物である酸化チタンは四
塩化チタニウムの蒸気を気相中で酸素酸化することによ
って得られたものを、機械的に攪拌して電解液中に分散
させた。
Titanium oxide, which is a metal oxide constituting the ultrafine inorganic compound used in Examples 1 and 5 of the present invention, was obtained by oxidizing titanium tetrachloride vapor in the gas phase with oxygen. It was mechanically stirred and dispersed in the electrolyte.

【0022】[0022]

【表1】[Table 1]

【0023】この(表1)から明らかなように、超微粒
子無機化合物を構成する金属酸化物である酸化チタンを
分散させた本発明の実施例1,5と、超微粒子無機化合
物を構成する金属窒化物である窒化チタン,窒化タンタ
ルを分散させた本発明の実施例2,3および超微粒子無
機化合物を構成する金属炭化物である炭化硅素を分散さ
せた本発明の実施例4の電解液は、従来例1,2,3の
電解液に比較して比電導度を低下させることなく、火花
発生電圧を高くすることができるものである。
As is clear from this (Table 1), Examples 1 and 5 of the present invention in which titanium oxide, which is a metal oxide constituting an ultrafine particle inorganic compound, is dispersed, and the metal oxide constituting an ultrafine particle inorganic compound. The electrolytes of Examples 2 and 3 of the present invention in which titanium nitride and tantalum nitride, which are nitrides, are dispersed, and Example 4 of the present invention, in which silicon carbide, which is a metal carbide constituting an ultrafine particle inorganic compound, are dispersed are as follows: Compared to the electrolytic solutions of Conventional Examples 1, 2, and 3, the spark generation voltage can be increased without reducing the specific conductivity.

【0024】(表2)は(表1)に示した従来例1,2
,3と、本発明の実施例1,2,3,4,5における電
解液を用いた電解コンデンサの諸特性の試験結果を示し
たものである。これらの電解コンデンサの定格は、本発
明の実施例1,2,3,4,および従来例1,2が40
0V1500μF、本発明の実施例5および従来例3が
100V47μFである。
(Table 2) shows the conventional examples 1 and 2 shown in (Table 1).
, 3, and the test results of various characteristics of electrolytic capacitors using electrolytic solutions in Examples 1, 2, 3, 4, and 5 of the present invention. The ratings of these electrolytic capacitors are 40 for Examples 1, 2, 3, and 4 of the present invention and conventional examples 1 and 2.
0V is 1500μF, and Example 5 of the present invention and Conventional Example 3 are 100V and 47μF.

【0025】なお、エージングは、本発明の実施例1,
2,3,4および従来例1,2は450Vの電圧を印加
し、また本発明の実施例5および従来例3は120Vの
電圧を印加して行った。この場合、従来例1および3は
電圧印加時において全数がショートした。
[0025] Note that aging is performed in Example 1 of the present invention,
In Examples 2, 3, and 4 and Conventional Examples 1 and 2, a voltage of 450V was applied, and in Example 5 of the present invention and Conventional Example 3, a voltage of 120V was applied. In this case, all of the conventional examples 1 and 3 were short-circuited when voltage was applied.

【0026】[0026]

【表2】[Table 2]

【0027】この(表2)から明らかなように、本発明
の各実施例における電解液を使用した電解コンデンサは
、従来例と比較してtanδを低くすることができ、ま
た広い電圧範囲で使用することができるものである。
As is clear from this (Table 2), the electrolytic capacitors using the electrolyte in each example of the present invention can lower tan δ compared to the conventional example, and can be used in a wide voltage range. It is something that can be done.

【0028】[0028]

【発明の効果】以上のように本発明の電解コンデンサ駆
動用電解液は、超微粒子無機化合物を分散させているも
ので、この超微粒子無機化合物は、電解液中で帯電して
コロイド状になっているため、電解液中に均一に分散さ
せることができる。また酸化皮膜の生成時には超微粒子
無機化合物が吸着凝集して酸化皮膜の欠陥部を埋めるた
め、欠陥の少ない酸化皮膜を生成することができ、これ
により、火花発生電圧も高くすることができ、しかも電
解液を用いた電解コンデンサはtanδも低くすること
ができ、かつ広い電圧範囲で使用することができるもの
である。
[Effects of the Invention] As described above, the electrolytic solution for driving an electrolytic capacitor of the present invention has an ultrafine particle inorganic compound dispersed therein. Therefore, it can be uniformly dispersed in the electrolyte. In addition, when an oxide film is formed, the ultrafine inorganic compounds are adsorbed and aggregated to fill in the defective parts of the oxide film, making it possible to produce an oxide film with fewer defects.This also makes it possible to increase the spark generation voltage. An electrolytic capacitor using an electrolytic solution can have a low tan δ and can be used in a wide voltage range.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】超微粒子無機化合物を分散させたことを特
徴とする電解コンデンサ駆動用電解液。
1. An electrolytic solution for driving an electrolytic capacitor, characterized in that an ultrafine inorganic compound is dispersed therein.
【請求項2】超微粒子無機化合物が金属酸化物である請
求項1記載の電解コンデンサ駆動用電解液。
2. The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the ultrafine inorganic compound is a metal oxide.
【請求項3】超微粒子無機化合物が金属窒化物である請
求項1記載の電解コンデンサ駆動用電解液。
3. The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the ultrafine inorganic compound is a metal nitride.
【請求項4】超微粒子無機化合物が金属炭化物である請
求項1記載の電解コンデンサ駆動用電解液。
4. The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the ultrafine inorganic compound is a metal carbide.
【請求項5】金属酸化物がTiO2である請求項2記載
の電解コンデンサ駆動用電解液。
5. The electrolytic solution for driving an electrolytic capacitor according to claim 2, wherein the metal oxide is TiO2.
【請求項6】金属窒化物がTiN,Si3N2,AlN
,TaNおよびZr3N4から選ばれる1種類もしくは
2種類以上混合物である請求項3記載の電解コンデンサ
駆動用電解液。
[Claim 6] The metal nitride is TiN, Si3N2, AlN.
4. The electrolytic solution for driving an electrolytic capacitor according to claim 3, which is one type or a mixture of two or more types selected from , TaN, and Zr3N4.
【請求項7】金属炭化物がSiCおよびTiCの単独も
しくは混合物である請求項4記載の電解コンデンサ駆動
用電解液。
7. The electrolytic solution for driving an electrolytic capacitor according to claim 4, wherein the metal carbide is SiC and TiC alone or in a mixture.
【請求項8】超微粒子無機化合物の大きさが100nm
以下である請求項1記載の電解コンデンサ駆動用電解液
Claim 8: The size of the ultrafine inorganic compound is 100 nm.
The electrolytic solution for driving an electrolytic capacitor according to claim 1, which is as follows.
JP7615591A 1991-04-09 1991-04-09 Electrolyte for driving electrolytic capacitor Pending JPH04311020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7615591A JPH04311020A (en) 1991-04-09 1991-04-09 Electrolyte for driving electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7615591A JPH04311020A (en) 1991-04-09 1991-04-09 Electrolyte for driving electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH04311020A true JPH04311020A (en) 1992-11-02

Family

ID=13597149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7615591A Pending JPH04311020A (en) 1991-04-09 1991-04-09 Electrolyte for driving electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH04311020A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150187506A1 (en) * 2012-09-26 2015-07-02 Panasonic Intellectual Property Management Co., Ltd. Solid electrolytic capacitor and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150187506A1 (en) * 2012-09-26 2015-07-02 Panasonic Intellectual Property Management Co., Ltd. Solid electrolytic capacitor and method for manufacturing same

Similar Documents

Publication Publication Date Title
WO2010009680A1 (en) Li-la-ti-o composite solid electrolyte material containing silicon and synthesizing method thereof
Xie et al. Large energy-storage density with good dielectric property in bismuth sodium titanate-based thin films
KR910003216B1 (en) Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor prepared by using it
KR100243847B1 (en) Electrolyte solution for electrolytic capacitor and using the same
JPH04311020A (en) Electrolyte for driving electrolytic capacitor
JPH04311021A (en) Electrolyte for driving electrolytic capacitor
JPH04313210A (en) Electrolytic solution for electrolytic-capacitor driving use
Feng et al. Significantly enhanced energy density of amorphous alumina thin films via silicon and magnesium co-doping
JP3334192B2 (en) Electrolyte for electrolytic capacitors
JP3175330B2 (en) Electrolyte for driving electrolytic capacitors
JPH09275039A (en) Electrolyte for electrolytic capacitor
JP4672307B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor using the same
WO2014103002A1 (en) Electrolytic solution for electrolytic capacitors, and electrolytic capacitor
Deligne et al. An Easy Route to Pure and Luminescent Eu‐Doped YVO4 Polycrystalline Films Based on Molecular or Hybrid Precursors
Wang et al. A stable fullerene complex: crystal and molecular structure of (BDMT-TTeF)(C60)· Cs2
JPH02264414A (en) Electrolyte for drying electrolytic capacitor
JP4612241B2 (en) Electrolytic solution for electrolytic capacitor drive
JPH08264388A (en) Electrolyte for driving electrolytic capacitor
JP3976587B2 (en) Electrolytic solution for electrolytic capacitor drive
Lowry et al. The mechanism of chemical change. Part II.—Catalysis of the mutarotation of beryllium benzoylcamphor
JP2000306913A (en) Manufacture of metallic wiring
JPH07120615B2 (en) Electrolytic solution for driving electrolytic capacitors
JPH05322452A (en) Coating material for cold crucible furnace and its manufacturing method
JPH05144673A (en) Electrolytic solution for electrolytic capacitor
JPH06310378A (en) Electrolytic capacitor driving electrolyte and electrolytic capacitor loaded therewith