JP3666478B2 - Electrolytic solution for electrolytic capacitors - Google Patents

Electrolytic solution for electrolytic capacitors Download PDF

Info

Publication number
JP3666478B2
JP3666478B2 JP2002258844A JP2002258844A JP3666478B2 JP 3666478 B2 JP3666478 B2 JP 3666478B2 JP 2002258844 A JP2002258844 A JP 2002258844A JP 2002258844 A JP2002258844 A JP 2002258844A JP 3666478 B2 JP3666478 B2 JP 3666478B2
Authority
JP
Japan
Prior art keywords
acid
electrolytic
electrolytic solution
aluminosilicate
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002258844A
Other languages
Japanese (ja)
Other versions
JP2003109857A (en
Inventor
誠 宇恵
智洋 佐藤
政幸 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2002258844A priority Critical patent/JP3666478B2/en
Publication of JP2003109857A publication Critical patent/JP2003109857A/en
Application granted granted Critical
Publication of JP3666478B2 publication Critical patent/JP3666478B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電解コンデンサ用電解液の改良に関し、特定のアルミノシリケート微粒子を添加した高い電導度と高い耐電圧を高温で長時間維持できる電解コンデンサ用電解液に関する。
【0002】
【従来の技術】
電解コンデンサは、アルミニウム、タンタルなどの絶縁性酸化被膜を誘電体層として形成したものを陽極側電極に使用し、この陽極側電極に対向させて陰極側電極を配置、両電極間にセパレータを介在させ、このセパレータに電解液を保持させて電解コンデンサが形成される。
【0003】
陽極側電極は、通常、表面積拡大のためエッチング処理がなされており、電解液はこの凹凸面に密接して、実質的な陰極としての機能を有する。このため電解液の電導度、温度特性などが電解コンデンサの電気的特性を決定する要因となる。又、電解液は絶縁性の酸化薄膜の劣化や損傷を修復し、漏れ電流や寿命特性へ影響を及ぼす。
【0004】
コンデンサへの負荷電圧が上昇して、絶縁性の酸化薄膜が破壊する電圧を火花電圧と言い、コンデンサの耐電圧性の尺度とすることができ、火花電圧が高い程コンデンサの耐電圧性が大きいことを示す。火花電圧は使用する電解液組成によって決定される。このように、電解液は電解コンデンサの特性を左右する重要な構成要素である。
【0005】
電解液の電導度の低下を押えつつ火花電圧を上昇させる試みとして、従来の一般的な電解コンデンサ用電解液に対して、金属酸化物微粒子を添加した系、例えば、シリカ微粒子を添加した系(特開平4−12512号公報)、アルミナ、ジルコニア、酸化アンチモン、酸化タンタル、チタニアを添加した系(特開平4−145612〜6号公報)などが提案されている。
【0006】
しかしながら、上記のような微粒子を添加した電解液系では、105℃のような高い温度ではコロイドが不安定なため高い耐電圧を維持できず、寿命が短いという欠点があった。また電解液中に存在する水分により、電解液のゲル化が促進され、耐圧向上効果が減少するという欠点もあった。
【0007】
【発明が解決しようとする課題】
本発明は、上記、従来技術の問題点を解決した、電導度の低下を押え、耐電圧を顕著に向上させ、さらに高温でも高い耐電圧を長時間維持する電解コンデンサ用の電解液を提供することを目的としている。
【0008】
【課題を解決するための手段】
本発明は、有機極性溶媒と、酸またはその塩を含んでなる電解コンデンサ用電解液において、下記組成式で示されるアルミノシリケート微粒子を含有することを特徴とする、高い耐電圧を高温で長時間維持できる電解コンデンサ用電解液を提供するものである。
【化2】
MAlO2 (Al2 3 )x(SiO2 )y
〔式中、Mは1価カチオンを表し、xは0〜25の、yは1〜200の数を示す。また、Al/Si比は0.02〜1である。〕
【0009】
本発明の電解液に用いられる溶媒としては、有機極性溶媒、例えば、N−メチルホルムアミド、N−エチルホルムアミド、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N−エチルアセトアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン等のアミド溶媒;γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン等のラクトン溶媒;エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等のカーボネート溶媒;エチレングリコール、グリセリン、メチルセロソルブ等のアルコール溶媒;3−メトキシプロピオニトリル、グルタロニトリル等のニトリル溶媒、トリメチルホスフェート、トリエチルホスフェート等のリン酸エステル溶媒等を挙げることができる。これらは、単独または組み合わせて使用することができる。これらの中でも、エチレングリコールやγ−ブチロラクトンを主体とする溶媒が、通常、使用される。
【0010】
本発明の電解液に電解質として使用される酸及びその塩としては、例えば、ホウ酸、リン酸、ケイ酸、HBF4 等の無機酸;蟻酸、酢酸、プロピオン酸、エナント酸等の脂肪族モノカルボン酸;マロン酸、コハク酸、グルタル酸、アジピン酸、メチルマロン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、マレイン酸、シトラコン酸等の脂肪族ジカルボン酸;安息香酸、フタル酸、サリチル酸、トルイル酸、ピロメリット酸等の芳香族カルボン酸等の無機酸あるいは有機酸及びそれらの塩が挙げられる。
【0011】
上記有機酸および無機酸の塩としては、例えば、アンモニウム塩;メチルアンモニウム、エチルアンモニウム、プロピルアンモニウム等のモノアルキルアンモニウム塩;ジメチルアンモニウム、ジエチルアンモニウム、エチルメチルアンモニウム、ジブチルアンモニウム等のジアルキルアンモニウム塩;トリメチルアンモニウム、トリエチルアンモニウム、トリブチルアンモニウム等のトリアルキルアンモニウム塩;テトラメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウム、テトラブチルアンモニウム、N,N−ジメチルピロリジニウム等の第4級アンモニウム塩;ホスホニウム塩、アルソニウム塩、スルホニウム塩等が挙げられる。
上記の酸及び塩は単独又は組み合わせて使用することができる。
電解質として使用される酸及びその塩の量は、要求される性能によって異なるが、一般に、電解液中、1〜25重量%である。
【0012】
本発明の電解液に使用されるアルミノシリケートは、前記組成式で示されるものであるが、一価カチオン(M)としては、例えば、ナトリウムイオン等のアルカリ金属カチオン、アンモニウム、第二級アンモニウム、第三級アンモニウム、第四級アンモニウム等のオニウムカチオン、プロトン等の一価のカチオンが挙げられる。一般的には、ナトリウムイオンのものが用いられる。
【0013】
また、アルミノシリケート中のAl/Si比は0.02〜1であり、好ましくは0.02〜0.4である。粒子のコロイド状態を安定に維持するために、粒子表面にアルミノシリケート構造による強い負電荷点を作ることが必要であるが、Siに対してAl量が少なすぎると強い負電荷点が少なくなり好ましくない。またAl量が多すぎるとアルミノシリケート構造をとることができなくなり、好ましくない。
【0014】
本発明に使用して好適なアルミノシリケートゾルは、例えば、米国特許第2974108号に記載されているように、希水酸化ナトリウム水溶液中に、ケイ酸水溶液とアルミン酸ナトリウム水溶液を同時に、且つ徐々に加えながら攪拌してコロイド粒子のビルドアップを図り、次に陽イオン交換樹脂でナトリウム分を除去し、しかる後適当な溶媒で置換し濃縮することによって容易に作成することができる。
【0015】
アルミノシリケート微粒子は、粒径が3〜150nmのものが好ましく、粒径が10〜50nmのものが特に好ましい。粒径が小さすぎると、高温に於て電解液中でアルミノシリケート粒子の会合が急速に進行し、高い耐電圧を維持することができず、また、粒径が大きすぎると、電解液中に粒子をコロイド状に分散させることが困難となり、高い耐電圧向上効果を得ることができないので、好ましくない。
【0016】
アルミノシリケート微粒子の添加量は、電解液100重量部に対し、0.1〜20重量部であることが好ましく、1〜10重量部であることがさらに好ましい。添加量が少なすぎると十分な耐圧向上効果が得られず、また、添加量が多すぎると電導度の低下が大きくなり好ましくない。
【0017】
本発明で用いるアルミノシリケート微粒子は、適当な溶媒に分散したアルミノシリケートゾルとして添加することが望ましい。アルミノシリケートゾルとして添加する方法が、アルミノシリケート微粒子を会合させることなく、電解液中に安定にコロイド状に分散させることが容易であり、耐圧向上効果及び電解液の安定性が大きいからである。
アルミノシリケートゾル中のアルミノシリケート濃度は1〜50重量%が好ましいが、高すぎるとゲル化に対して不安定であり、低すぎると電解液の濃度調整の自由度がなくなるので10〜40重量%がより好ましい。アルミノシリケートゾルに使用される溶媒としては、水、及び、前記した電解液に用いられる有機極性溶媒等を挙げることができる。
【0018】
【作用】
アルミノシリケート微粒子はその表面にアルミノシリケート構造による強い負電荷点を持っており、電解液中では電解質カチオンに取り囲まれ、コロイドとしては全体として、正電荷を帯びており、正電荷同志の反発により安定なコロイド状態を保っている。またアルミノシリケート構造とすることで、電解液中水分によるゲル化等の変質に対する安定性が著しく増加する。
【0019】
【実施例】
以下に実施例、比較例を挙げて本発明を具体的に説明する。
実施例1〜6及び比較例1〜6
表1に示す組成の電解コンデンサ用電解液を調製し、電解液の電導度及び火花電圧を測定した結果を表1に示す。尚、用いたアルミノシリケート微粒子の組成は、NaAlO2 (Al2 3 0.59(SiO2 6.25であり、平均粒径は30nmで、各電解質を溶解した電解液にエチレングリコールゾルとしてコロイド状に分散させて電解液を調製した。
【0020】
電導度は25℃での測定値、火花電圧は電極にアルミニウム箔を用いて25℃で電流密度5mA/cm2 で定電流陽極酸化を行った時にはじめて絶縁破壊が観測される電圧とした。
【0021】
【表1】

Figure 0003666478
【0022】
実施例7及び比較例7、8
実施例5の電解液を110℃、500時間放置したときの電解液の電導度および火花電圧の変化を測定した。結果を、比較例としてアルミノシリケートの代りにシリカおよびアルミナを用いた場合とともに表1に示す。尚、用いたシリカおよびアルミナの平均粒径は30nmであり、他は実施例5と同様にして電解液を調製した。
【0023】
【表2】
Figure 0003666478
【0024】
【発明の効果】
以上のように、本発明によれば、電解液の高温でのゲル化等の変質を抑制し、長期にわたって耐電圧向上効果を維持することできる、電導度の低下を押え、火花電圧を高くした電解コンデンサ用電解液を提供することができ、これを使用することにより、耐電圧の高い長寿命の電解コンデンサが得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement of an electrolytic solution for an electrolytic capacitor, and relates to an electrolytic solution for an electrolytic capacitor that can maintain a high conductivity and a high withstand voltage for a long time at a high temperature to which specific aluminosilicate fine particles are added.
[0002]
[Prior art]
The electrolytic capacitor uses an insulating oxide film such as aluminum or tantalum formed as a dielectric layer for the anode side electrode, the cathode side electrode is placed opposite the anode side electrode, and a separator is interposed between both electrodes. An electrolytic capacitor is formed by holding the electrolytic solution in the separator.
[0003]
The anode-side electrode is usually subjected to an etching process for expanding the surface area, and the electrolyte has a function as a substantial cathode in close contact with the uneven surface. For this reason, the electrical conductivity and temperature characteristics of the electrolytic solution are factors that determine the electrical characteristics of the electrolytic capacitor. In addition, the electrolytic solution repairs deterioration and damage of the insulating oxide thin film, and affects leakage current and life characteristics.
[0004]
The voltage at which the load voltage on the capacitor rises and the insulating oxide thin film breaks down is called the spark voltage, and can be used as a measure of the withstand voltage of the capacitor. The higher the spark voltage, the greater the withstand voltage of the capacitor. It shows that. The spark voltage is determined by the electrolyte composition used. Thus, the electrolytic solution is an important component that affects the characteristics of the electrolytic capacitor.
[0005]
As an attempt to increase the spark voltage while suppressing the decrease in conductivity of the electrolytic solution, a system in which metal oxide fine particles are added to a conventional electrolytic solution for general electrolytic capacitors, for example, a system in which silica fine particles are added ( JP-A-4-12512), a system to which alumina, zirconia, antimony oxide, tantalum oxide and titania are added (JP-A-4-145612-6) and the like have been proposed.
[0006]
However, the electrolyte system to which fine particles as described above are added has the disadvantage that the colloid is unstable at a high temperature such as 105 ° C., so that a high withstand voltage cannot be maintained and the life is short. In addition, the moisture present in the electrolytic solution promotes gelation of the electrolytic solution, resulting in a decrease in pressure resistance improvement effect.
[0007]
[Problems to be solved by the invention]
The present invention provides an electrolytic solution for an electrolytic capacitor that solves the above-described problems of the prior art, suppresses the decrease in conductivity, significantly improves the withstand voltage, and further maintains a high withstand voltage at high temperatures for a long time. The purpose is that.
[0008]
[Means for Solving the Problems]
The present invention provides an electrolytic solution for an electrolytic capacitor comprising an organic polar solvent and an acid or a salt thereof, comprising aluminosilicate fine particles represented by the following composition formula: An electrolytic solution for electrolytic capacitors that can be maintained is provided.
[Chemical formula 2]
MAlO 2 (Al 2 O 3 ) x (SiO 2 ) y
[Wherein, M represents a monovalent cation, x represents a number from 0 to 25, and y represents a number from 1 to 200. The Al / Si ratio is 0.02-1. ]
[0009]
As the solvent used in the electrolytic solution of the present invention, organic polar solvents such as N-methylformamide, N-ethylformamide, N, N-dimethylformamide, N, N-diethylformamide, N-ethylacetamide, N, N Amide solvents such as dimethylacetamide and N-methylpyrrolidone; Lactone solvents such as γ-butyrolactone, γ-valerolactone and δ-valerolactone; Carbonate solvents such as ethylene carbonate, propylene carbonate and butylene carbonate; Ethylene glycol, glycerin and methyl Examples thereof include alcohol solvents such as cellosolve; nitrile solvents such as 3-methoxypropionitrile and glutaronitrile, and phosphate ester solvents such as trimethyl phosphate and triethyl phosphate. These can be used alone or in combination. Among these, a solvent mainly composed of ethylene glycol or γ-butyrolactone is usually used.
[0010]
Examples of acids and salts thereof used as the electrolyte in the electrolytic solution of the present invention include inorganic acids such as boric acid, phosphoric acid, silicic acid, and HBF 4 ; and aliphatic monoacids such as formic acid, acetic acid, propionic acid, and enanthic acid. Carboxylic acid; aliphatic dicarboxylic acid such as malonic acid, succinic acid, glutaric acid, adipic acid, methylmalonic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, maleic acid, citraconic acid; benzoic acid, Examples thereof include inorganic acids or organic acids such as aromatic carboxylic acids such as phthalic acid, salicylic acid, toluic acid, pyromellitic acid, and salts thereof.
[0011]
Examples of the organic acid and inorganic acid salts include ammonium salts; monoalkylammonium salts such as methylammonium, ethylammonium, and propylammonium; dialkylammonium salts such as dimethylammonium, diethylammonium, ethylmethylammonium, and dibutylammonium; Trialkylammonium salts such as ammonium, triethylammonium, tributylammonium; quaternary ammonium salts such as tetramethylammonium, triethylmethylammonium, tetraethylammonium, tetrabutylammonium, N, N-dimethylpyrrolidinium; phosphonium salts, arsonium salts And sulfonium salts.
The above acids and salts can be used alone or in combination.
The amount of acid and its salt used as the electrolyte varies depending on the required performance, but is generally 1 to 25% by weight in the electrolyte.
[0012]
The aluminosilicate used in the electrolytic solution of the present invention is represented by the above composition formula, and examples of the monovalent cation (M) include alkali metal cations such as sodium ion, ammonium, secondary ammonium, Examples thereof include onium cations such as tertiary ammonium and quaternary ammonium, and monovalent cations such as protons. In general, sodium ions are used.
[0013]
Further, the Al / Si ratio in the aluminosilicate is 0.02-1, and preferably 0.02-0.4. In order to stably maintain the colloidal state of the particle, it is necessary to create a strong negative charge point due to the aluminosilicate structure on the particle surface. However, if the amount of Al is too small relative to Si, the strong negative charge point is preferably reduced. Absent. Moreover, when there is too much Al amount, it becomes impossible to take an aluminosilicate structure, and it is not preferable.
[0014]
An aluminosilicate sol suitable for use in the present invention is, for example, as described in U.S. Pat. No. 2,974,108, in a dilute sodium hydroxide aqueous solution simultaneously and gradually with an aqueous silicic acid solution and an aqueous sodium aluminate solution. The colloidal particles can be built up by stirring while being added, and then the sodium content is removed with a cation exchange resin, followed by substitution with a suitable solvent and concentration.
[0015]
The aluminosilicate fine particles preferably have a particle size of 3 to 150 nm, particularly preferably 10 to 50 nm. If the particle size is too small, the association of the aluminosilicate particles proceeds rapidly in the electrolyte at a high temperature, and a high withstand voltage cannot be maintained, and if the particle size is too large, Since it becomes difficult to disperse the particles in a colloidal state and a high voltage withstanding improvement effect cannot be obtained, it is not preferable.
[0016]
The addition amount of the aluminosilicate fine particles is preferably 0.1 to 20 parts by weight, more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the electrolytic solution. If the addition amount is too small, a sufficient pressure resistance improving effect cannot be obtained, and if the addition amount is too large, the decrease in conductivity is undesirably large.
[0017]
The aluminosilicate fine particles used in the present invention are preferably added as an aluminosilicate sol dispersed in a suitable solvent. This is because the method of adding the aluminosilicate sol is easy to stably colloidally disperse in the electrolytic solution without associating the aluminosilicate fine particles, and the effect of improving the pressure resistance and the stability of the electrolytic solution are large.
The aluminosilicate concentration in the aluminosilicate sol is preferably 1 to 50% by weight, but if it is too high, it is unstable with respect to gelation, and if it is too low, the degree of freedom in adjusting the concentration of the electrolyte is lost, so 10 to 40% by weight. Is more preferable. Examples of the solvent used in the aluminosilicate sol include water and an organic polar solvent used in the above-described electrolytic solution.
[0018]
[Action]
The aluminosilicate fine particles have a strong negative charge point due to the aluminosilicate structure on the surface, and are surrounded by electrolyte cations in the electrolyte, and as a whole as a colloid, they are positively charged and stable due to repulsion between positive charges. Maintains a colloidal state. In addition, the aluminosilicate structure significantly increases the stability against alteration such as gelation due to moisture in the electrolyte.
[0019]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
Examples 1-6 and Comparative Examples 1-6
Table 1 shows the results of preparing an electrolytic solution for an electrolytic capacitor having the composition shown in Table 1 and measuring the conductivity and spark voltage of the electrolytic solution. The composition of the aluminosilicate fine particles used was NaAlO 2 (Al 2 O 3 ) 0.59 (SiO 2 ) 6.25 , the average particle size was 30 nm, and colloidal as ethylene glycol sol in the electrolyte solution in which each electrolyte was dissolved. An electrolyte solution was prepared by dispersing.
[0020]
The conductivity was a measured value at 25 ° C., and the spark voltage was a voltage at which dielectric breakdown was observed only when constant current anodization was performed at 25 ° C. and a current density of 5 mA / cm 2 using an aluminum foil as an electrode.
[0021]
[Table 1]
Figure 0003666478
[0022]
Example 7 and Comparative Examples 7 and 8
When the electrolytic solution of Example 5 was allowed to stand at 110 ° C. for 500 hours, changes in the electrical conductivity and spark voltage of the electrolytic solution were measured. A result is shown in Table 1 with the case where a silica and an alumina are used instead of an aluminosilicate as a comparative example. The silica and alumina used had an average particle size of 30 nm, and the others were prepared in the same manner as in Example 5.
[0023]
[Table 2]
Figure 0003666478
[0024]
【The invention's effect】
As described above, according to the present invention, it is possible to suppress deterioration of the electrolyte solution such as gelation at a high temperature and maintain the withstand voltage improvement effect over a long period of time. An electrolytic solution for an electrolytic capacitor can be provided, and by using this, an electrolytic capacitor having a high withstand voltage and a long life can be obtained.

Claims (3)

有機極性溶媒と、酸及び/又はその塩を含んでなる電解コンデンサ用電解液において、下記組成式で示されるアルミノシリケート微粒子を含有することを特徴とする電解コンデンサ用電解液。
Figure 0003666478
〔式中、Mは1価カチオンを表し、xは0〜25の、yは1〜200の数を示す。また、Al/Si比は0.02〜1である。〕
An electrolytic solution for an electrolytic capacitor comprising an organic polar solvent, an acid and / or a salt thereof, and aluminosilicate fine particles represented by the following composition formula:
Figure 0003666478
[Wherein, M represents a monovalent cation, x represents a number from 0 to 25, and y represents a number from 1 to 200. The Al / Si ratio is 0.02-1. ]
アルミノシリケート微粒子中のAl/Si比が0.02〜0.4であることを特徴とする請求項1記載の電解コンデンサ用電解液。2. The electrolytic solution for an electrolytic capacitor according to claim 1, wherein the Al / Si ratio in the aluminosilicate fine particles is 0.02 to 0.4. アルミノシリケート微粒子の粒径が10〜50nmであることを特徴とする請求項1又は2記載の電解コンデンサ用電解液。The electrolytic solution for electrolytic capacitors according to claim 1 or 2, wherein the particle size of the aluminosilicate fine particles is 10 to 50 nm.
JP2002258844A 2002-09-04 2002-09-04 Electrolytic solution for electrolytic capacitors Expired - Fee Related JP3666478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002258844A JP3666478B2 (en) 2002-09-04 2002-09-04 Electrolytic solution for electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002258844A JP3666478B2 (en) 2002-09-04 2002-09-04 Electrolytic solution for electrolytic capacitors

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP07180893A Division JP3387144B2 (en) 1993-03-30 1993-03-30 Electrolyte for electrolytic capacitors

Publications (2)

Publication Number Publication Date
JP2003109857A JP2003109857A (en) 2003-04-11
JP3666478B2 true JP3666478B2 (en) 2005-06-29

Family

ID=19196707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002258844A Expired - Fee Related JP3666478B2 (en) 2002-09-04 2002-09-04 Electrolytic solution for electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP3666478B2 (en)

Also Published As

Publication number Publication date
JP2003109857A (en) 2003-04-11

Similar Documents

Publication Publication Date Title
JP3387144B2 (en) Electrolyte for electrolytic capacitors
KR102206425B1 (en) Electrolysis solution for electrolytic capacitor, and electrolytic capacitor
JP3669804B2 (en) Electrolytic solution for electrolytic capacitors
TW201840540A (en) Electrolyte solution for electrolytic capacitors, electrolytic capacitor, and method for producing electrolytic capacitor
JP3666478B2 (en) Electrolytic solution for electrolytic capacitors
JP4925219B2 (en) Electrolytic solution for electrolytic capacitor drive
JP3334192B2 (en) Electrolyte for electrolytic capacitors
JP3176611B2 (en) Electrolyte for electrolytic capacitors
JP4128465B2 (en) Electrolytic solution for electrolytic capacitors
JP3394068B2 (en) Electrolyte for electrolytic capacitors
JPH056839A (en) Electrolytic solution for electrolytic capacitor use
JPH04145616A (en) Electrolytic solution for electrolytic capacitor
JPH06196367A (en) Electrolyte for electrolytic capacitor
JPH04145615A (en) Electrolytic solution for electrolytic capacitor
JPH06104144A (en) Electrolyte for electrolytic capacitor
JPH0661100A (en) Electrolyte for electrolytic capacitor
JPH06196368A (en) Electrolyte for electrolytic capacitor
JPH1140464A (en) Electrolyte for electrolytic capacitor
JPH0722287A (en) Electrolyte for electrolytic capacitor
JPH06196366A (en) Electrolyte for electrolytic capacitor
JPH10135081A (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor using it
JPH04145613A (en) Electrolytic solution for electrolytic capacitor
JP2022053328A (en) Electrolytic capacitor
JP2013187515A (en) Electrolyte for electrolytic capacitor and electrolytic capacitor
JP2013219298A (en) Electrolyte for electrolytic capacitor and electrolytic capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050328

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees