JP4925219B2 - Electrolytic solution for electrolytic capacitor drive - Google Patents
Electrolytic solution for electrolytic capacitor drive Download PDFInfo
- Publication number
- JP4925219B2 JP4925219B2 JP2008132638A JP2008132638A JP4925219B2 JP 4925219 B2 JP4925219 B2 JP 4925219B2 JP 2008132638 A JP2008132638 A JP 2008132638A JP 2008132638 A JP2008132638 A JP 2008132638A JP 4925219 B2 JP4925219 B2 JP 4925219B2
- Authority
- JP
- Japan
- Prior art keywords
- acid
- fine particles
- electrolytic solution
- electrolytic
- porous polyimide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、電解コンデンサの駆動用電解液(以下、電解液と称す)の改良に関するものであり、特にエンジニアリングプラスチックである多孔性ポリイミドを電解液に混合分散することにより、他の諸特性に悪影響を及ぼさずに耐電圧を顕著に向上させる電解コンデンサの駆動用電解液に関するものである。 The present invention relates to an improvement of an electrolytic solution for driving an electrolytic capacitor (hereinafter referred to as an electrolytic solution), and in particular, by mixing and dispersing porous polyimide, which is an engineering plastic, in the electrolytic solution, other characteristics are adversely affected. It is related with the electrolyte solution for the drive of the electrolytic capacitor which improves a withstand voltage remarkably.
電解コンデンサは一般的な電子部品の1つであり、様々な電子部品、電気製品において、主として電源回路用やデジタル回路のノイズフィルタ用として、広く使用されている。 An electrolytic capacitor is one of general electronic components, and is widely used in various electronic components and electrical products mainly for power supply circuit noise filters and digital circuit noise filters.
一般に、アルミニウム電解コンデンサは、高純度のアルミニウム箔を電気化学的にエッチング処理して表面積を拡大させた後、その表面を陽極酸化して酸化皮膜を形成した陽極箔と、高純度のアルミニウム箔を電気化学的にエッチング処理した陰極箔との間にセパレータを挿入し巻回して得られたコンデンサ素子に電解液を含浸し、アルミニウム等の外装ケースに収納した後、該ケースの開口部を弾性ゴムにより封口し、封口部位を絞り加工することにより構成される。 In general, an aluminum electrolytic capacitor is obtained by electrochemically etching a high-purity aluminum foil to increase the surface area, and then anodizing the surface to form an oxide film and a high-purity aluminum foil. A capacitor element obtained by inserting and winding a separator between the electrochemically etched cathode foil is impregnated with an electrolytic solution and stored in an exterior case such as aluminum, and then the opening of the case is elastic rubber It seals by, and it is comprised by drawing-processing the sealing part.
このような電解コンデンサにおいては、電解液はこの陽極箔表面に接し、陰極箔からの電子を伝達する実質的な陰極として機能する。このため電解液の比抵抗が、電解コンデンサとしての電気特性[インピーダンス、誘電損失(tanδ)、等価直列抵抗(ESR)]を決定する要因となっている。
また、電解液には絶縁性の酸化皮膜の劣化や損傷を修復する機能(化成性)も要求され、これが電解コンデンサの漏れ電流、寿命特性に影響を及ぼす。
このように、電解液は電解コンデンサの特性を左右する重要な構成要素である。
In such an electrolytic capacitor, the electrolytic solution is in contact with the surface of the anode foil and functions as a substantial cathode that transmits electrons from the cathode foil. Therefore, the specific resistance of the electrolytic solution is a factor that determines the electrical characteristics [impedance, dielectric loss (tan δ), equivalent series resistance (ESR)] as an electrolytic capacitor.
In addition, the electrolytic solution is also required to have a function (chemical conversion) for repairing deterioration and damage of the insulating oxide film, which affects the leakage current and life characteristics of the electrolytic capacitor.
Thus, the electrolytic solution is an important component that affects the characteristics of the electrolytic capacitor.
電解液の比抵抗は、電解コンデンサの前記の電気特性に直接関わることから、比抵抗の低い電解液が好ましい。一方、安全性に対する要求の高まりから、電解コンデンサに対して定格電圧を越える電圧が印加されるような過酷な条件下においても、ショートや発火を起こさないように高耐電圧を有する電解コンデンサが求められている。
しかしながら、一般に、使用する電解液の比抵抗が低くなると電解コンデンサの耐電圧が低下する傾向にあり、電解コンデンサの開発を困難なものにしている。
そこで、低比抵抗の電解液を使用しながら、高い耐電圧を有する電解コンデンサを得る方策として、電解液に種々の微粒子を混合して耐電圧を向上させることが検討されている。
Since the specific resistance of the electrolytic solution is directly related to the electric characteristics of the electrolytic capacitor, an electrolytic solution having a low specific resistance is preferable. On the other hand, due to the increasing demand for safety, electrolytic capacitors with a high withstand voltage are required so as not to cause a short circuit or ignition even under severe conditions where a voltage exceeding the rated voltage is applied to the electrolytic capacitor. It has been.
However, generally, when the specific resistance of the electrolytic solution to be used is lowered, the withstand voltage of the electrolytic capacitor tends to be lowered, making the development of the electrolytic capacitor difficult.
Therefore, as a measure for obtaining an electrolytic capacitor having a high withstand voltage while using an electrolyte with a low specific resistance, it has been studied to improve the withstand voltage by mixing various fine particles into the electrolyte.
例えば、電解液にシリカコロイド粒子を添加することにより、電解液の高い電気伝導率を維持しつつ耐電圧を上昇させることが提案されている(例えば、特許文献1参照)。また、シリカ以外にもアルミナ(例えば、特許文献2参照)、ジルコニア(例えば、特許文献3参照)、チタニア(例えば、特許文献4参照)、アルミノシリケート(例えば、特許文献5参照)、アルミノシリケート被覆シリカ(例えば、特許文献6参照)などを添加することも提案されている。 For example, it has been proposed to increase the withstand voltage while maintaining high electrical conductivity of the electrolytic solution by adding silica colloidal particles to the electrolytic solution (see, for example, Patent Document 1). In addition to silica, alumina (for example, see Patent Document 2), zirconia (for example, see Patent Document 3), titania (for example, see Patent Document 4), aluminosilicate (for example, see Patent Document 5), aluminosilicate coating It has also been proposed to add silica (for example, see Patent Document 6).
しかしながら、これらの無機酸化物コロイド粒子を含有した電解液では初期の耐電圧は高いものの、製品信頼性試験中に電解液のゲル化や無機酸化物の沈殿生成が起こりやすく、寿命試験中に耐電圧が低下し、ショートが発生するという問題があった。
また、この耐電圧の低下は、特に有機カルボン酸等を溶質として用いた電解液の場合に顕著であった。
上記の問題に鑑みて、本発明は、電解液のゲル化や無機酸化物の沈殿生成が起こりにくく、耐電圧が高く、かつ、高い耐電圧を長期間維持できる電解コンデンサの駆動用電解液を提供することを課題とする。
However, although the initial withstand voltage of the electrolyte containing these inorganic oxide colloidal particles is high, gelling of the electrolyte and precipitation of inorganic oxide are likely to occur during product reliability tests, and the withstand voltage during the life test is likely to occur. There was a problem that the voltage dropped and a short circuit occurred.
Further, this reduction in withstand voltage was particularly remarkable in the case of an electrolytic solution using an organic carboxylic acid or the like as a solute.
In view of the above-mentioned problems, the present invention provides an electrolytic solution for driving an electrolytic capacitor that is unlikely to cause gelation of the electrolytic solution or precipitation of inorganic oxide, has a high withstand voltage, and can maintain a high withstand voltage for a long period of time. The issue is to provide.
本発明者は、前記課題を解決するために検討した結果、オニウム塩を溶質として含む有機溶媒からなる電解液に、多孔性ポリイミド微粒子を添加することにより、比抵抗値が低く、耐電圧特性に優れた電解液を得ることに成功し、本発明を完成した。
すなわち本発明は、1種以上の有機溶媒と、有機酸および/または無機酸のオニウム塩とを含んでなる電解液に、多孔性ポリイミド微粒子を混合したことを特徴とする電解コンデンサの駆動用電解液である。
As a result of studies to solve the above problems, the present inventor has added a porous polyimide fine particle to an electrolytic solution composed of an organic solvent containing an onium salt as a solute, thereby reducing the specific resistance value and withstanding voltage characteristics. The present invention was completed by successfully obtaining an excellent electrolytic solution.
That is, the present invention provides an electrolytic capacitor for driving an electrolytic capacitor, characterized in that porous polyimide fine particles are mixed in an electrolytic solution containing one or more organic solvents and an onium salt of an organic acid and / or an inorganic acid. It is a liquid.
溶質として有機酸および/または無機酸のオニウム塩を含み、有機溶媒を主溶媒とする電解液中に、多孔性ポリイミド微粒子を添加することにより、低比抵抗の電解液を使用しながら、耐電圧を向上させることができる。
また、多孔性ポリイミドの微粒子は、電解液中でゲル化や沈殿を起こしにくく安定な微粒子状態を保つことができるため、高い耐電圧を長期間維持することができる。
By using porous electrolyte fine particles in an electrolyte containing an organic acid and / or inorganic acid onium salt as a solute, and using an organic solvent as a main solvent, withstand voltage while using a low specific resistance electrolyte Can be improved.
In addition, the porous polyimide fine particles are less likely to cause gelation or precipitation in the electrolytic solution and can maintain a stable fine particle state, and thus can maintain a high withstand voltage for a long period of time.
好ましくは、前記多孔性ポリイミド微粒子の平均粒径は、5〜100nmであり、多孔性ポリイミド微粒子の添加量は、0.5〜18.0重量%である。また、好ましくは、前記有機溶媒は、エチレングリコールまたはγ−ブチロラクトンを主体とする有機溶媒である。 Preferably, the average particle size of the porous polyimide fine particles is 5 to 100 nm, and the addition amount of the porous polyimide fine particles is 0.5 to 18.0% by weight. Preferably, the organic solvent is an organic solvent mainly composed of ethylene glycol or γ-butyrolactone.
有機酸および/または無機酸のオニウム塩を含み、有機溶媒を主溶媒とする電解液に、多孔性ポリイミド微粒子を含有させることにより、比抵抗が低く、かつ高い耐電圧を長期間維持できる電解コンデンサの駆動用電解液を得ることができる。 An electrolytic capacitor that has a low specific resistance and can maintain a high withstand voltage for a long period of time by containing porous polyimide fine particles in an electrolytic solution containing an organic acid and / or inorganic acid onium salt and containing an organic solvent as a main solvent. The driving electrolyte can be obtained.
多孔性ポリイミド微粒子の平均粒径は、好ましくは5〜100nmの範囲であり、さらに好ましくは10〜50nmの範囲である。ここで平均粒径とは、粉体比表面積測定装置を使用した場合の粉末1g当たりの表面積(比表面積)より、下記一般式に基づき算出した粉末の平均粒径を意味し、平均粒径={6/(比重×比表面積)}×10000[μm]となる。
多孔性ポリイミド微粒子の粒径が小さすぎると電解液のゲル化が起こりやすく、また大きすぎると沈殿を生じやすく、安定なコロイドとなりにくい。本発明にかかる多孔性ポリイミド微粒子は、多孔度(微粒子中の孔の全容積/微粒子の全容積×100)が、85〜95%のものが好ましく、90〜92%程度のものが特に好ましい。微粒子中の孔の全容積および微粒子の全容積は、水銀圧入法により測定することができる。
また、本発明にかかるポリイミドは、酸イミド構造をもつ重合体であれば特に限定されないが、芳香族ポリイミドが好ましい。好適なポリイミドとして、以下に示す基本単位の重合体からなるポリイミドが挙げられる。
When the particle size of the porous polyimide fine particles is too small, gelling of the electrolytic solution is liable to occur, and when it is too large, precipitation is likely to occur and it is difficult to form a stable colloid. The porous polyimide fine particles according to the present invention preferably have a porosity (total volume of pores in fine particles / total volume of fine particles × 100) of 85 to 95%, particularly preferably about 90 to 92%. The total volume of the pores in the fine particles and the total volume of the fine particles can be measured by a mercury intrusion method.
In addition, the polyimide according to the present invention is not particularly limited as long as it is a polymer having an acid imide structure, but an aromatic polyimide is preferable. Suitable polyimides include polyimides composed of the following basic unit polymers.
多孔性ポリイミド微粒子は溶媒に殆ど溶けないため、適当な分散媒に分散させたコロイド溶液として電解液に添加する方法が好ましい。分散媒としては、前記の有機溶媒と同じものを用いれば、基本電解液への特性上の影響も少なく、電解液中への拡散も容易である。
多孔性ポリイミド微粒子の添加量は、電解液の0.5〜18.0重量%とするのが好適である。
Since porous polyimide fine particles are hardly soluble in a solvent, a method of adding a colloidal solution dispersed in an appropriate dispersion medium to an electrolytic solution is preferable. If the same organic solvent as the above-mentioned organic solvent is used as the dispersion medium, the influence on the characteristics of the basic electrolyte solution is small, and diffusion into the electrolyte solution is easy.
The addition amount of the porous polyimide fine particles is preferably 0.5 to 18.0% by weight of the electrolytic solution.
本発明で用いる有機溶媒としては、有機酸および/または無機酸のオニウム塩に対して大きな溶解力を有し、また温度特性に優れた電解液が得られる溶媒であるエチレングリコールおよびγ−ブチロラクトンが特に好ましい。
その他、使用可能な溶媒として、グリセリン、メチルセロソルブなどのアルコール溶媒;
γ−バレロラクトン、δ−バレロラクトンなどのラクトン溶媒;
N−メチルホルムアミド、N−エチルホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリジノンなどのアミド溶媒;
エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどのカーボネート溶媒;
3−メトキシプロピオニトリル、グルタロニトリルなどのニトリル溶媒;
リン酸トリメチル、リン酸トリエチルなどのリン酸エステル溶媒等またはこれらの混合物が挙げられる。
Examples of the organic solvent used in the present invention include ethylene glycol and γ-butyrolactone, which are solvents that have a large dissolving power with respect to an onium salt of an organic acid and / or an inorganic acid, and that provide an electrolyte solution having excellent temperature characteristics. Particularly preferred.
Other usable solvents include alcohol solvents such as glycerin and methyl cellosolve;
lactone solvents such as γ-valerolactone and δ-valerolactone;
Amide solvents such as N-methylformamide, N-ethylformamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidinone;
Carbonate solvents such as ethylene carbonate, propylene carbonate, butylene carbonate;
Nitrile solvents such as 3-methoxypropionitrile, glutaronitrile;
Examples include phosphate ester solvents such as trimethyl phosphate and triethyl phosphate, and mixtures thereof.
本発明で溶質として用いる有機酸および/または無機酸のオニウム塩における有機酸成分の具体例としては、安息香酸、トルイル酸、クミン酸、t−ブチル安息香酸、サリチル酸、アニス酸などの芳香族モノカルボン酸類;
ギ酸、酢酸、プロピオン酸、7−フェニル−7−メトキシ−1−オクタンカルボン酸、6−フェニル−6−メトキシ−1−ヘプタンカルボン酸などの脂肪族モノカルボン酸類;
フタル酸、4−メチルフタル酸、4−ニトロフタル酸など芳香族ジカルボン酸類;
マレイン酸、シトラコン酸、ジメチルマレイン酸、1,2−シクロヘキセンジカルボン酸などの不飽和脂肪族ジカルボン酸類;
シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸などの直鎖状飽和脂肪族ジカルボン酸類;
ジメチルマロン酸、ジエチルマロン酸、ジプロピルマロン酸、2−メチルグルタル酸、3−メチルグルタル酸、3,3−ジメチルグルタル酸、3−メチルアジピン酸、2,2,4−トリメチルアジピン酸、2,4,4−トリメチルアジピン酸、1,6−デカンジカルボン酸、5,6−デカンジカルボン酸、1,7−オクタンジカルボン酸、7−メチル−7−カルボメトキシ−1,9−デカンジカルボン酸、2,8−ノナンジカルボン酸、7,8,11,12−テトラメチル−1,18−オクタデカンジカルボン酸、1−メチル−3−エチル−1,7−ヘプタンジカルボン酸、1,3−ジメチル−1,7−ヘプタンジカルボン酸、5−メチル−1,7−オクタンジカルボン酸、7,12−ジメチル−1,18−オクタデカンジカルボン酸、7−エチル−1,16−ヘキサデカンジカルボン酸、7,8−ジメチル−1,14−テトラデカンジカルボン酸、1,6−ヘプタンジカルボン酸、6−メチル−6−カルボメトキシ−1,8−ノナンジカルボン酸、1,8−ノナンジカルボン酸、8−メチル−8−カルボメトキシ−1,10−ウンデカンジカルボン酸、6−エチル−1,4−テトラデカンジカルボン酸、シクロヘキサンジカルボン酸などの分岐鎖を有する飽和脂肪族ジカルボン酸類;
7−メチル−1,7,9−デカントリカルボン酸、6−メチル−1,6,8−ノナントリカルボン酸、8−メチル−1,8,10−ウンデカントリカルボン酸などのトリカルボン酸類等またはこれらの混合物が挙げられる。
また、無機酸成分の具体例としては、ホウ酸、リン酸などが挙げられる。
Specific examples of the organic acid component in the onium salt of the organic acid and / or inorganic acid used as the solute in the present invention include aromatic monoesters such as benzoic acid, toluic acid, cumic acid, t-butylbenzoic acid, salicylic acid, and anisic acid. Carboxylic acids;
Aliphatic monocarboxylic acids such as formic acid, acetic acid, propionic acid, 7-phenyl-7-methoxy-1-octanecarboxylic acid, 6-phenyl-6-methoxy-1-heptanecarboxylic acid;
Aromatic dicarboxylic acids such as phthalic acid, 4-methylphthalic acid, 4-nitrophthalic acid;
Unsaturated aliphatic dicarboxylic acids such as maleic acid, citraconic acid, dimethylmaleic acid, 1,2-cyclohexene dicarboxylic acid;
Linear saturated aliphatic dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid;
Dimethylmalonic acid, diethylmalonic acid, dipropylmalonic acid, 2-methylglutaric acid, 3-methylglutaric acid, 3,3-dimethylglutaric acid, 3-methyladipic acid, 2,2,4-trimethyladipic acid, 2 , 4,4-trimethyladipic acid, 1,6-decanedicarboxylic acid, 5,6-decanedicarboxylic acid, 1,7-octanedicarboxylic acid, 7-methyl-7-carbomethoxy-1,9-decanedicarboxylic acid, 2,8-nonanedicarboxylic acid, 7,8,11,12-tetramethyl-1,18-octadecanedicarboxylic acid, 1-methyl-3-ethyl-1,7-heptanedicarboxylic acid, 1,3-dimethyl-1 , 7-heptanedicarboxylic acid, 5-methyl-1,7-octanedicarboxylic acid, 7,12-dimethyl-1,18-octadecanedicarboxylic acid, 7- Til-1,16-hexadecanedicarboxylic acid, 7,8-dimethyl-1,14-tetradecanedicarboxylic acid, 1,6-heptanedicarboxylic acid, 6-methyl-6-carbomethoxy-1,8-nonanedicarboxylic acid, 1 , 8-nonanedicarboxylic acid, 8-methyl-8-carbomethoxy-1,10-undecanedicarboxylic acid, 6-ethyl-1,4-tetradecanedicarboxylic acid, cyclohexanedicarboxylic acid and the like saturated aliphatic dicarboxylic acids having a branched chain ;
Tricarboxylic acids such as 7-methyl-1,7,9-decanetricarboxylic acid, 6-methyl-1,6,8-nonanetricarboxylic acid, 8-methyl-1,8,10-undecanetricarboxylic acid, etc., or a mixture thereof Is mentioned.
Specific examples of the inorganic acid component include boric acid and phosphoric acid.
上記した有機酸成分および無機酸成分のうちでも定格電圧100V以下の低圧用コンデンサ向けには電気伝導率の高い電解液が得られるフタル酸、マレイン酸、安息香酸、アジピン酸が好ましい。
定格電圧100Vを超え、300V未満の中圧用コンデンサ向けには適度の電気伝導率と耐電圧を有する電解液が得られる安息香酸、アジピン酸、アゼライン酸が好ましい。
定格電圧300V以上の高圧用コンデンサ向けには耐電圧の高い電解液が得られるアゼライン酸、セバシン酸、1,6−デカンジカルボン酸、1,7−オクタンジカルボン酸、ホウ酸が好ましい。
Of the organic acid components and inorganic acid components described above, phthalic acid, maleic acid, benzoic acid, and adipic acid are preferred for low voltage capacitors having a rated voltage of 100 V or less, which can provide an electrolytic solution with high electrical conductivity.
Benzoic acid, adipic acid, and azelaic acid are preferable for medium-pressure capacitors with a rated voltage of more than 100V and less than 300V, from which an electrolytic solution having appropriate electrical conductivity and withstand voltage can be obtained.
For high voltage capacitors having a rated voltage of 300 V or more, azelaic acid, sebacic acid, 1,6-decanedicarboxylic acid, 1,7-octanedicarboxylic acid, and boric acid are preferred because an electrolytic solution having a high withstand voltage can be obtained.
オニウム塩の具体例としては、
アンモニウム;メチルアンモニウム;ジメチルアンモニウム;
トリメチルアンモニウム、エチルジメチルアンモニウム、ジエチルメチルアンモニウム、トリエチルアンモニウムなどの三級アンモニウム類;
テトラメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウムなどの四級アンモニウム類;
1,2,3,4−テトラメチルイミダゾリニウム、1−エチル−2,3−ジメチルイミダゾリニウムなどのアミジニウム類等またはこれらの混合物が挙げられる。
As a specific example of the onium salt,
Ammonium; methylammonium; dimethylammonium;
Tertiary ammonium such as trimethylammonium, ethyldimethylammonium, diethylmethylammonium, triethylammonium;
Quaternary ammoniums such as tetramethylammonium, triethylmethylammonium, tetraethylammonium;
Examples thereof include 1,2,3,4-tetramethylimidazolinium, amidinium such as 1-ethyl-2,3-dimethylimidazolinium, and the like, or a mixture thereof.
中高圧用コンデンサにはエチレングリコール溶媒と1,6−デカンジカルボン酸などのジカルボン酸類との組み合わせにおいて高い耐電圧を有する電解液が得られるアンモニアが好ましい。
低圧用コンデンサにはγ−ブチロラクトン溶媒とフタル酸などの組み合わせにおいて高い電気伝導率を有する電解液が得られる1,2,3,4−テトラメチルイミダゾリニウム、1−エチル−2,3−ジメチルイミダゾリニウム、テトラメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウムが好ましい。
溶質の使用量は溶媒と溶質との合計重量に対して5.0〜30.0重量%の範囲で含有させるのが好ましい。
For the medium- and high-pressure capacitors, ammonia that can provide an electrolytic solution having a high withstand voltage in a combination of an ethylene glycol solvent and a dicarboxylic acid such as 1,6-decanedicarboxylic acid is preferable.
For low-voltage capacitors, 1,2,3,4-tetramethylimidazolinium, 1-ethyl-2,3-dimethyl, which can obtain an electrolytic solution having high electrical conductivity in a combination of γ-butyrolactone solvent and phthalic acid, etc. Preference is given to imidazolinium, tetramethylammonium, triethylmethylammonium and tetraethylammonium.
The amount of solute used is preferably 5.0 to 30.0% by weight based on the total weight of the solvent and solute.
また、本発明においては、化成性の向上などの目的で電解液に水を含有させることもできる。この水の含有量は、好ましくは0.01〜30.0重量%の範囲であり、更に好ましくは0.01〜10.0重量%の範囲である。
また、必要に応じて電解液にさらに他の添加剤を含有させることもできる。その他の添加剤としては、ホウ酸、ホウ酸と多価アルコール類(エチレングリコール、マンニトール、ソルビトールなど)との錯化合物などのホウ素化合物類;
リン酸、酸性リン酸エステル類〔リン酸ジブチル、リン酸ビス(2−エチルヘキシル)〕、酸性ホスホン酸エステル類〔2−エチルヘキシルホスホン酸(2−エチルヘキシル)など〕のリン化合物類;
p−ニトロ安息香酸、m−ニトロアセトフェノンなどのニトロ化合物類などが挙げられる。
本発明の電解液は、例えば巻回型のアルミニウム電解コンデンサに用いることができ、該電解液は、セパレータに含浸される。該セパレータは、クラフト紙、マニラ紙などが一般に使用される。
Moreover, in this invention, water can also be contained in electrolyte solution for the purpose of improving chemical conversion. The water content is preferably in the range of 0.01 to 30.0% by weight, more preferably in the range of 0.01 to 10.0% by weight.
Moreover, another additive can also be contained in electrolyte solution as needed. Other additives include boron compounds such as boric acid, complex compounds of boric acid and polyhydric alcohols (ethylene glycol, mannitol, sorbitol, etc.);
Phosphorus compounds such as phosphoric acid, acidic phosphoric acid esters [dibutyl phosphate, bis (2-ethylhexyl) phosphate], acidic phosphonic acid esters [such as 2-ethylhexylphosphonic acid (2-ethylhexyl)];
Examples thereof include nitro compounds such as p-nitrobenzoic acid and m-nitroacetophenone.
The electrolytic solution of the present invention can be used, for example, in a wound aluminum electrolytic capacitor, and the electrolytic solution is impregnated in a separator. As the separator, kraft paper, manila paper or the like is generally used.
以下、実施例に基づいて本発明を具体的に説明するが、本発明はこれら実施例により何ら限定されるものではない。表1に多孔性ポリイミド微粒子を用いた本発明の実施例による電解液、シリカコロイド微粒子を用いた比較例による電解液組成、添加剤の添加量(溶媒と溶質の合計を100としたときの重量%)、および比抵抗と耐電圧を示した。 EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by these Examples. Table 1 shows electrolytic solutions according to examples of the present invention using porous polyimide fine particles, electrolytic solution compositions according to comparative examples using colloidal silica fine particles, and amounts of additives added (weight when the total of solvent and solute is 100) %), Specific resistance and withstand voltage.
ここで、実施例の多孔性ポリイミド微粒子としては、下記式で表される芳香族ポリイミド微粒子(平均粒径20nm、多孔度90%)を用いた。
比較例のシリカコロイド粒子は、平均粒径が約12nmのシリカ微粒子を用いた。各微粒子の分散媒としてはエチレングリコールを用い、コロイドを基本電解液(溶質および溶媒)に添加して所定の組成の電解液を調製した。
As the silica colloid particles of the comparative example, silica fine particles having an average particle diameter of about 12 nm were used. As a dispersion medium for each fine particle, ethylene glycol was used, and a colloid was added to the basic electrolyte (solute and solvent) to prepare an electrolyte having a predetermined composition.
ここで、実施例、比較例の電解液組成は表1のとおりとし、以下の条件にて耐電圧を測定した。
[実施例1−1〜1−7、2−1〜2−7]多孔性ポリイミド微粒子の添加量比較、シリカ微粒子との比較
・電解液(高圧用)
溶質:1,6−デカンジカルボン酸アンモニウム、1,7−オクタンジカルボン酸ア
ンモニウム
溶媒:エチレングリコール、水
添加剤:多孔性ポリイミド微粒子0.3〜20.0重量%
・電解コンデンサ素子:定格電圧450V、静電容量10μF
上記電解液を上記電解コンデンサ素子に含浸し、これに3mAの定電流を印加したときの電圧−時間の上昇カーブで、初めにスパイクまたはシンチレーションが観測された電圧値を耐電圧として測定した。
(比較例1、2)
多孔性ポリイミド微粒子の代わりにシリカ微粒子6.0重量%を添加した以外は、上記と同様の条件で耐電圧を測定した。
Here, the electrolyte compositions of Examples and Comparative Examples were as shown in Table 1, and the withstand voltage was measured under the following conditions.
[Examples 1-1 to 1-7, 2-1 to 2-7] Comparison of addition amount of porous polyimide fine particles, comparison with silica fine particles / Electrolytic solution (for high pressure)
Solute: ammonium 1,6-decanedicarboxylate, 1,7-octanedicarboxylic acid
Numonium Solvent: Ethylene glycol, water Additive: Porous polyimide fine particles 0.3-20.0 wt%
Electrolytic capacitor element: Rated voltage 450V, electrostatic capacity 10μF
The electrolytic solution was impregnated in the electrolytic capacitor element, and a voltage value at which spike or scintillation was first observed was measured as a withstand voltage in a voltage-time rising curve when a constant current of 3 mA was applied thereto.
(Comparative Examples 1 and 2)
The withstand voltage was measured under the same conditions as above except that 6.0% by weight of silica fine particles were added instead of the porous polyimide fine particles.
[実施例3、4]溶質を無機酸、または無機酸と有機酸との混合とした場合の比較(多孔性ポリイミド微粒子添加量固定)
・電解液(高圧用)
溶質:ホウ酸アンモニウム、または、ホウ酸アンモニウムおよび1,6−デカンジカ
ルボン酸アンモニウム
溶媒:エチレングリコール、水
添加剤:多孔性ポリイミド微粒子6.0重量%
・電解コンデンサ素子:定格電圧200V、静電容量68μF
上記電解液を上記電解コンデンサ素子に含浸し、これに10mAの定電流を印加した以外は、上記と同様の条件で耐電圧を測定した。
(比較例3、4)
多孔性ポリイミド微粒子の代わりにシリカ微粒子6.0重量%を添加した以外は、上記と同様の条件で耐電圧を測定した。
[Examples 3 and 4] Comparison when the solute is an inorganic acid or a mixture of an inorganic acid and an organic acid (fixed amount of porous polyimide fine particles added)
・ Electrolyte (for high pressure)
Solute: ammonium borate or ammonium borate and 1,6-decandica
Ammonium rubonate Solvent: ethylene glycol, water Additive: 6.0% by weight of porous polyimide fine particles
Electrolytic capacitor element: Rated voltage 200V, capacitance 68μF
The withstand voltage was measured under the same conditions as above except that the electrolytic capacitor element was impregnated with the electrolytic solution and a constant current of 10 mA was applied thereto.
(Comparative Examples 3 and 4)
The withstand voltage was measured under the same conditions as above except that 6.0% by weight of silica fine particles were added instead of the porous polyimide fine particles.
[実施例5〜10、13]溶質、溶媒による比較(多孔性ポリイミド微粒子添加量固定)
・電解液(中・低圧用)
溶質:アジピン酸アンモニウム、安息香酸アンモニウム、フタル酸水素1−エチル−
2,3−ジメチルイミダゾリニウム、フタル酸水素テトラメチルアンモニウム
、マレイン酸水素エチルメチルアンモニウム、安息香酸トリエチルメチルアン
モニウム、マレイン酸トリエチルアンモニウム
溶媒:エチレングリコール、水(実施例5、6)
エチレングリコール、γ−ブチロラクトン(実施例7〜10、13)
添加剤:多孔性ポリイミド微粒子6.0重量%
・電解コンデンサ素子:定格電圧200V、静電容量68μF
上記電解液を上記電解コンデンサ素子に含浸し、これに10mAの定電流を印加した以外は上記実施例と同様にして、耐電圧を測定した。
(比較例5〜10、13)
多孔性ポリイミド微粒子の代わりにシリカ微粒子6.0重量%を添加した以外は、上記と同様の条件で耐電圧を測定した。
[Examples 5 to 10, 13] Comparison by solute and solvent (fixed amount of porous polyimide fine particles added)
・ Electrolyte (for medium / low pressure)
Solute: ammonium adipate, ammonium benzoate, 1-ethyl hydrogen phthalate
2,3-dimethylimidazolinium, tetramethylammonium hydrogen phthalate
, Ethylmethylammonium hydrogen maleate, triethylmethylan benzoate
Monium, triethylammonium maleate Solvent: ethylene glycol, water (Examples 5 and 6)
Ethylene glycol, γ-butyrolactone (Examples 7 to 10, 13)
Additive: 6.0% by weight of porous polyimide fine particles
Electrolytic capacitor element: Rated voltage 200V, capacitance 68μF
The withstand voltage was measured in the same manner as in the above example except that the electrolytic capacitor element was impregnated with the electrolytic solution and a constant current of 10 mA was applied thereto.
(Comparative Examples 5 to 10, 13)
The withstand voltage was measured under the same conditions as above except that 6.0% by weight of silica fine particles were added instead of the porous polyimide fine particles.
[実施例11、12]多孔性ポリイミド微粒子にリン酸ブチルを追加した場合の比較
・電解液(中・低圧用)
溶質:安息香酸トリエチルメチルアンモニウム、安息香酸1−エチル−2,3−ジ
メチルイミダゾリニウム
溶媒:エチレングリコール、γ−ブチロラクトン混合
添加剤:多孔性ポリイミド微粒子6.0重量%、およびリン酸ブチル2.0重量%
・電解コンデンサ素子:定格電圧200V、静電容量68μF
上記電解液を上記電解コンデンサ素子に含浸し、これに10mAの定電流を印加した以外は、上記と同様の条件で耐電圧を測定した。
(比較例11、12)
多孔性ポリイミド微粒子の代わりにシリカ微粒子6.0重量%を添加した以外は、上記と同様の条件で耐電圧を測定した。
[Examples 11 and 12] Comparison when butyl phosphate is added to porous polyimide fine particles. Electrolytic solution (for medium and low pressure)
Solute: Triethylmethylammonium benzoate, 1-ethyl-2,3-dibenzoate
Methylimidazolinium Solvent: Ethylene glycol and γ-butyrolactone mixed Additive: 6.0% by weight of porous polyimide fine particles and 2.0% by weight of butyl phosphate
Electrolytic capacitor element: Rated voltage 200V, capacitance 68μF
The withstand voltage was measured under the same conditions as above except that the electrolytic capacitor element was impregnated with the electrolytic solution and a constant current of 10 mA was applied thereto.
(Comparative Examples 11 and 12)
The withstand voltage was measured under the same conditions as above except that 6.0% by weight of silica fine particles were added instead of the porous polyimide fine particles.
上記の条件にて測定した耐電圧値を表1に示す。 The withstand voltage values measured under the above conditions are shown in Table 1.
表1の実験結果から、本発明の電解液は従来の電解液と同等以下の比抵抗で、より高い耐電圧を有することが分かる。 From the experimental results in Table 1, it can be seen that the electrolytic solution of the present invention has a specific resistance equal to or lower than that of the conventional electrolytic solution and has a higher withstand voltage.
次に、実施例1−1〜1−7、2−1〜2−7、および比較例1、2の電解液を使用して、定格電圧450V、静電容量10μFの電解コンデンサを作製し、105℃にて3000時間の定格電圧450Vを印加する高温負荷試験を行った。その結果を表2に示す。 Next, using the electrolytic solutions of Examples 1-1 to 1-7, 2-1 to 2-7, and Comparative Examples 1 and 2, an electrolytic capacitor having a rated voltage of 450 V and a capacitance of 10 μF was prepared. A high temperature load test was performed by applying a rated voltage of 450 V for 3000 hours at 105 ° C. The results are shown in Table 2.
[実施例1−1〜1−7、2−1〜2−7、比較例1、2]多孔性ポリイミド微粒子/シリカ微粒子比較
表1、2の結果から分かるように、1,6−デカンジカルボン酸アンモニウムを溶質に用い、多孔性ポリイミド微粒子を0.3〜20.0重量%添加した実施例1−1〜1−7は、静電容量、tanδともに安定した特性を示しており、比抵抗、耐電圧の面も合わせると、多孔性ポリイミド微粒子を0.5〜18.0重量%添加した実施例1−2〜1−6が優れた特性を示している。
しかしながら、多孔性ポリイミド微粒子の代わりにシリカ微粒子を添加した比較例1は、ショート品が多発した。これに対し、実施例1−1〜1−7は、初期の耐電圧だけでなく、3000時間にわたる高温負荷試験中においても、高い耐電圧を維持し、ショートが発生しなかった。
また、1,7−オクタンジカルボン酸アンモニウムを溶質に用い、多孔性ポリイミド微粒子を0.3〜20.0重量%添加した実施例2−1〜2−7は、静電容量、tanδともに安定した特性を示し、比抵抗、耐電圧の面も合わせると、多孔性ポリイミド微粒子を0.5〜18.0重量%添加した実施例2−2〜2−6が優れた特性を示している。
しかしながら、多孔性ポリイミド微粒子の代わりにシリカ微粒子を添加した比較例2は、ショート品が多発した。これに対し、実施例2−1〜2−7は、初期の耐電圧だけでなく、3000時間にわたる高温負荷試験中においても、高い耐電圧を維持し、ショートが発生しなかった。
[Examples 1-1 to 1-7, 2-1 to 2-7, Comparative Examples 1 and 2] Comparison of porous polyimide fine particles / silica fine particles As can be seen from the results of Tables 1 and 2, 1,6-decanedicarboxylic acid Examples 1-1 to 1-7 in which ammonium acid acid was used as a solute and 0.3 to 20.0 wt% of porous polyimide fine particles were added showed stable characteristics in both capacitance and tan δ. When combined with the withstand voltage, Examples 1-2 to 1-6 to which 0.5 to 18.0% by weight of porous polyimide fine particles were added showed excellent characteristics.
However, in Comparative Example 1 in which silica fine particles were added instead of porous polyimide fine particles, short products frequently occurred. On the other hand, in Examples 1-1 to 1-7, not only the initial withstand voltage but also a high withstand voltage was maintained during the high temperature load test over 3000 hours, and no short circuit occurred.
In addition, Examples 2-1 to 2-7 using ammonium 1,7-octanedicarboxylate as a solute and adding 0.3 to 20.0% by weight of porous polyimide fine particles were stable in both capacitance and tan δ. When the characteristics are shown and the specific resistance and withstand voltage are taken into consideration, Examples 2-2 to 2-6 to which 0.5 to 18.0% by weight of porous polyimide fine particles are added show excellent characteristics.
However, in Comparative Example 2 in which silica fine particles were added instead of porous polyimide fine particles, short products frequently occurred. On the other hand, in Examples 2-1 to 2-7, not only the initial withstand voltage but also a high withstand voltage was maintained during the high temperature load test over 3000 hours, and no short circuit occurred.
また、表1から分かるように、[実施例5〜10、13]溶質の有機酸の種類を変えた場合、[実施例3、4]溶質を無機酸、または無機酸と有機酸との混合とした場合も、上記と同様、対応する比較例と比べて、多孔性ポリイミド微粒子による耐電圧向上効果が得られた。
そして、[実施例11、12]多孔性ポリイミド微粒子とリン酸ブチル混合使用による場合も、上記と同様、対応する比較例と比べて、多孔性ポリイミド微粒子による耐電圧向上効果が得られた。
As can be seen from Table 1, [Examples 5 to 10, 13] When the type of organic acid in the solute was changed, [Examples 3 and 4] the solute was an inorganic acid, or a mixture of an inorganic acid and an organic acid. Also in the case described above, as with the above, the withstand voltage improvement effect by the porous polyimide fine particles was obtained as compared with the corresponding comparative example.
[Examples 11 and 12] In the case of using the porous polyimide fine particles and butyl phosphate mixed, the withstand voltage improvement effect by the porous polyimide fine particles was obtained as compared with the corresponding comparative example as described above.
なお、本発明は、上記実施例に限られるものではなく、上記の溶媒、溶質を単独または複数使用した場合、および上述のその他の添加剤を混合した場合にも、上記同様に耐電圧向上効果が得られた。 In addition, the present invention is not limited to the above-described examples, and the withstand voltage improvement effect is similar to the above even when the above-mentioned solvents and solutes are used alone or in combination, and when the above-mentioned other additives are mixed. was gotten.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008132638A JP4925219B2 (en) | 2008-05-21 | 2008-05-21 | Electrolytic solution for electrolytic capacitor drive |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008132638A JP4925219B2 (en) | 2008-05-21 | 2008-05-21 | Electrolytic solution for electrolytic capacitor drive |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009283581A JP2009283581A (en) | 2009-12-03 |
JP4925219B2 true JP4925219B2 (en) | 2012-04-25 |
Family
ID=41453758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008132638A Expired - Fee Related JP4925219B2 (en) | 2008-05-21 | 2008-05-21 | Electrolytic solution for electrolytic capacitor drive |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4925219B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5143053B2 (en) * | 2009-02-25 | 2013-02-13 | 株式会社日立製作所 | Lithium ion secondary battery |
US9281130B2 (en) * | 2011-10-14 | 2016-03-08 | Sanyo Chemical Industries, Ltd. | Electrolytic solution for aluminum electrolyte capacitor, and aluminum electrolyte capacitor using the same |
US9536674B2 (en) * | 2012-09-29 | 2017-01-03 | Nippon Chemi-Con Corporation | Electrolytic solution for electrolytic capacitor, and electrolytic capacitor |
JP6414985B2 (en) | 2013-06-28 | 2018-10-31 | カーリットホールディングス株式会社 | Electrolytic solution for electrolytic capacitor and electrolytic capacitor |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3062203B2 (en) * | 1988-08-09 | 2000-07-10 | 株式会社リコー | Electrochemical element |
JPH1012276A (en) * | 1996-06-26 | 1998-01-16 | Sanyo Electric Co Ltd | Nonaqueous electrolyte battery |
JPH10208774A (en) * | 1997-01-22 | 1998-08-07 | Toshiba Battery Co Ltd | Polymer electrolyte secondary battery |
JP2002008948A (en) * | 2000-06-19 | 2002-01-11 | Matsushita Electric Ind Co Ltd | Electric double-layer capacitor |
JP2002075794A (en) * | 2000-08-31 | 2002-03-15 | Nichicon Corp | Electrolyte for driving aluminum electrolytic capacitor |
JP2005310951A (en) * | 2004-04-20 | 2005-11-04 | Sanyo Chem Ind Ltd | Electrolytic solution for electrolytic capacitors and capacitor |
JP2008066502A (en) * | 2006-09-07 | 2008-03-21 | Matsushita Electric Ind Co Ltd | Electrolytic capacitor |
-
2008
- 2008-05-21 JP JP2008132638A patent/JP4925219B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009283581A (en) | 2009-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2019080076A (en) | Solid electrolytic capacitor and method for manufacturing the same | |
KR102206425B1 (en) | Electrolysis solution for electrolytic capacitor, and electrolytic capacitor | |
WO2014098006A1 (en) | Electrolytic capacitor and method for manufacturing same | |
JP2018110232A (en) | Solid electrolytic capacitor and method for manufacturing the same | |
JP4925219B2 (en) | Electrolytic solution for electrolytic capacitor drive | |
JP3669804B2 (en) | Electrolytic solution for electrolytic capacitors | |
KR102165432B1 (en) | Electrolytic solution for electrolytic capacitor, and electrolytic capacitor | |
JP2015026764A (en) | Electrolyte for electrolytic capacitor and electrolytic capacitor | |
JP4128465B2 (en) | Electrolytic solution for electrolytic capacitors | |
JP2009182275A (en) | Electrolytic solution for driving electrolytic capacitor, and electrolytic capacitor | |
JP6247077B2 (en) | Electrolytic solution for electrolytic capacitor and electrolytic capacitor | |
JP3176611B2 (en) | Electrolyte for electrolytic capacitors | |
JP5279687B2 (en) | Electrolytic solution for electrolytic capacitor and electrolytic capacitor | |
JP5387279B2 (en) | Electrolytic solution for electrolytic capacitors | |
JP6399466B2 (en) | Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same | |
JP2016192465A (en) | Electrolyte for driving electrolytic capacitor, and electrolytic capacitor employing the same | |
JP2022053328A (en) | Electrolytic capacitor | |
WO2019049848A1 (en) | Solid electrolytic capacitor | |
JP2010171305A (en) | Electrolytic solution for driving electrolytic capacitor, and electrolytic capacitor using the same | |
JPH1140464A (en) | Electrolyte for electrolytic capacitor | |
JP2018056398A (en) | Electrolyte for electrolytic capacitor and electrolytic capacitor | |
JP6201172B2 (en) | Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same | |
JP2017034203A (en) | Electrolyte for electrolytic capacitor and electrolytic capacitor | |
CN113539688A (en) | Electrolyte for aluminum electrolytic capacitor with working voltage of 300-500V and aluminum electrolytic capacitor | |
JP2014041896A (en) | Electrolyte for electrolytic capacitor and electrolytic capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101124 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120110 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120201 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120202 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150217 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4925219 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |