JP3394068B2 - Electrolyte for electrolytic capacitors - Google Patents

Electrolyte for electrolytic capacitors

Info

Publication number
JP3394068B2
JP3394068B2 JP13444793A JP13444793A JP3394068B2 JP 3394068 B2 JP3394068 B2 JP 3394068B2 JP 13444793 A JP13444793 A JP 13444793A JP 13444793 A JP13444793 A JP 13444793A JP 3394068 B2 JP3394068 B2 JP 3394068B2
Authority
JP
Japan
Prior art keywords
electrolytic solution
aluminosilicate
fine particles
acid
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13444793A
Other languages
Japanese (ja)
Other versions
JPH06349684A (en
Inventor
誠 宇恵
智洋 佐藤
政幸 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP13444793A priority Critical patent/JP3394068B2/en
Publication of JPH06349684A publication Critical patent/JPH06349684A/en
Application granted granted Critical
Publication of JP3394068B2 publication Critical patent/JP3394068B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電解コンデンサ用電解液
の改良に関し、特定の表面構造を有する金属酸化物微粒
子を添加した、高い電導度と高い耐電圧を高温で長時間
維持できる電解コンデンサ用電解液に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in an electrolytic solution for an electrolytic capacitor, which contains metal oxide fine particles having a specific surface structure and is capable of maintaining high conductivity and high withstand voltage at high temperature for a long time. Regarding electrolyte solution.

【0002】[0002]

【従来の技術】一般に、電解コンデンサは、例えばアル
ミニウム、タンタルなどの絶縁性酸化被膜を誘電体層と
して形成したものを陽極側電極として備え、この陽極側
電極に対向するように陰極側電極を備え、両電極間に
は、電解液を保持したセパレータを介在している。
2. Description of the Related Art Generally, an electrolytic capacitor has, as an anode side electrode, an insulating oxide film such as aluminum or tantalum formed as a dielectric layer, and a cathode side electrode facing the anode side electrode. A separator holding an electrolytic solution is interposed between both electrodes.

【0003】該陽極側電極は、通常、その表面積を拡大
させるため、エッチング処理がなされており、電解液は
この凹凸面に密接して、実質的な陰極としての機能を有
する。このため電解液の電導度、温度特性等が電解コン
デンサの電気的特性を決定する要因となる。また、電解
液は絶縁性の酸化薄膜の劣化や損傷を修復し、漏れ電流
や寿命特性へ影響を及ぼす。
The anode electrode is usually subjected to an etching treatment in order to increase its surface area, and the electrolytic solution is brought into close contact with this uneven surface and has a substantial function as a cathode. Therefore, the electric conductivity, temperature characteristics, etc. of the electrolytic solution are factors that determine the electrical characteristics of the electrolytic capacitor. In addition, the electrolytic solution repairs the deterioration and damage of the insulating oxide thin film, and affects the leakage current and life characteristics.

【0004】また一般に、コンデンサへの負荷電圧が上
昇し、絶縁性の酸化薄膜が破壊する、いわゆる火花電圧
は、高い程コンデンサの耐電圧性が大きいことを示し、
火花電圧は使用する電解液組成によって決定される。し
たがって電解液は電解コンデンサの特性を左右する重要
な構成要素となる。
Generally, the higher the so-called spark voltage that the load voltage to the capacitor rises and the insulating oxide thin film is destroyed, the higher the withstand voltage of the capacitor is.
The spark voltage is determined by the electrolyte composition used. Therefore, the electrolytic solution is an important component that influences the characteristics of the electrolytic capacitor.

【0005】従来、電解液の電導度の低下を押えつつ火
花電圧を上昇させることを目的とする電解液としては、
一般的な電解コンデンサ用電解液に、金属酸化物微粒子
を添加した電解液が知られており、例えば、シリカ微粒
子を添加した電解液(特開平4−12512号公報)、
アルミナ、ジルコニア、酸化アンチモン、酸化タンタ
ル、チタニア等を添加した電解液(特開平4−1456
12〜6号公報)などが挙げられる。
Conventionally, as an electrolytic solution for increasing the spark voltage while suppressing the decrease in the electric conductivity of the electrolytic solution,
An electrolytic solution in which metal oxide fine particles are added to a general electrolytic capacitor electrolytic solution is known, and for example, an electrolytic solution in which silica fine particles are added (Japanese Patent Laid-Open No. 4-12512),
Electrolyte solution containing alumina, zirconia, antimony oxide, tantalum oxide, titania, etc. (JP-A-4-1456)
Nos. 12 to 6) and the like.

【0006】しかしながら、このような微粒子を添加し
た系からなる電解液では、105℃のような高温ではコ
ロイドが不安定になるため、高い耐電圧が維持できず、
寿命が短いという欠点があった。また電解液中に存在す
る水分によって、電解液のゲル化が促進し、耐圧性が低
下するという欠点があった。
[0006] However, in an electrolytic solution containing such a system in which fine particles are added, the colloid becomes unstable at a high temperature such as 105 ° C, so that a high withstand voltage cannot be maintained.
It had the drawback of having a short life. Further, there is a drawback that the gelation of the electrolytic solution is promoted by the water present in the electrolytic solution and the pressure resistance is lowered.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、電導
度の低下を抑え、耐電圧を顕著に向上させ、さらに高温
でも高い耐電圧を長時間維持することができる電解コン
デンサ用電解液を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electrolytic solution for an electrolytic capacitor, which is capable of suppressing a decrease in electric conductivity, remarkably improving a withstand voltage, and maintaining a high withstand voltage for a long time even at a high temperature. To provide.

【0008】[0008]

【課題を解決するための手段】本発明は、有機極性溶
媒、イオン性溶質、及びアルミノシリケート被覆金属酸
化物微粒子を含有する電解コンデンサ用電解液である。
The present invention is an electrolytic solution for an electrolytic capacitor containing an organic polar solvent, an ionic solute, and aluminosilicate-coated metal oxide fine particles.

【0009】以下、本発明を詳細に説明する。本発明に
用いる有機極性溶媒としては、例えば、N−メチルホル
ムアミド、N−エチルホルムアミド、N,N−ジメチル
ホルムアミド、N,N−ジエチルホルムアミド、N−エ
チルアセトアミド、N,N−ジメチルアセトアミド、N
−メチルピロリドン等のアミド溶媒;γ−ブチロラクト
ン、γ−バレロラクトン、δ−バレロラクトン等のラク
トン溶媒;エチレンカーボネート、プロピレンカーボネ
ート、ブチレンカーボネート等のカーボネート溶媒;エ
チレングリコール、グリセリン、メチルセロソルブ等の
アルコール溶媒;3−メトキシプロピオニトリル、グル
タロニトリル等のニトリル溶媒、トリメチルホスフェー
ト、トリエチルホスフェート等のリン酸エステル溶媒;
これらの2種以上を組み合わせた溶媒等を挙げることが
できる。中でも好ましいのは、エチレングリコールやγ
−ブチロラクトンを主体とする溶媒である。
The present invention will be described in detail below. Examples of the organic polar solvent used in the present invention include N-methylformamide, N-ethylformamide, N, N-dimethylformamide, N, N-diethylformamide, N-ethylacetamide, N, N-dimethylacetamide, N.
An amide solvent such as methylpyrrolidone; a lactone solvent such as γ-butyrolactone, γ-valerolactone, δ-valerolactone; a carbonate solvent such as ethylene carbonate, propylene carbonate, butylene carbonate; an alcohol solvent such as ethylene glycol, glycerin, methylcellosolve Nitrile solvents such as 3-methoxypropionitrile and glutaronitrile, and phosphate ester solvents such as trimethyl phosphate and triethyl phosphate;
The solvent etc. which combined these 2 or more types can be mentioned. Of these, ethylene glycol and γ are preferable.
A solvent consisting mainly of butyrolactone.

【0010】本発明に用いるイオン性溶質としては、一
般の電解液に溶質として使用できる公知の酸及びその塩
を使用することができる。このような酸としては、例え
ば、ホウ酸、リン酸、ケイ酸、HBF4 等の無機酸;蟻
酸、酢酸、プロピオン酸、エナント酸等の脂肪族モノカ
ルボン酸;マロン酸、コハク酸、グルタル酸、アジピン
酸、メチルマロン酸、ピメリン酸、スベリン酸、アゼラ
イン酸、セバシン酸、デカンジカルボン酸、マレイン
酸、シトラコン酸等の脂肪族ジカルボン酸;安息香酸、
フタル酸、サリチル酸、トルイル酸、ピロメリット酸等
の芳香族カルボン酸等の無機酸あるいは有機酸を挙げる
ことができる。塩としては、上記有機酸および無機酸の
塩、例えば、アンモニウム塩;メチルアンモニウム、エ
チルアンモニウム、プロピルアンモニウム等のモノアル
キルアンモニウム塩;ジメチルアンモニウム、ジエチル
アンモニウム、エチルメチルアンモニウム、ジブチルア
ンモニウム等のジアルキルアンモニウム塩;トリメチル
アンモニウム、トリエチルアンモニウム、トリブチルア
ンモニウム等のトリアルキルアンモニウム塩;テトラメ
チルアンモニウム、トリエチルメチルアンモニウム、テ
トラエチルアンモニウム、テトラブチルアンモニウム、
N,N−ジメチルピロリジニウム等の第4級アンモニウ
ム塩;ホスホニウム塩、アルソニウム塩、スルホニウム
塩等を挙げることができる。これらのイオン性溶質は、
単独又は組み合わせて使用することができる。イオン性
溶質の配合量は、要求される性能によって異なるが、一
般には1〜25重量%が好ましい。
As the ionic solute used in the present invention, known acids and salts thereof that can be used as solutes in general electrolytic solutions can be used. Examples of such acids include inorganic acids such as boric acid, phosphoric acid, silicic acid and HBF 4 ; aliphatic monocarboxylic acids such as formic acid, acetic acid, propionic acid and enanthic acid; malonic acid, succinic acid and glutaric acid. , Adipic acid, methylmalonic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, maleic acid, citraconic acid and other aliphatic dicarboxylic acids; benzoic acid,
Inorganic or organic acids such as aromatic carboxylic acids such as phthalic acid, salicylic acid, toluic acid and pyromellitic acid can be mentioned. Examples of the salt include salts of the above organic acids and inorganic acids, for example, ammonium salts; monoalkylammonium salts such as methylammonium, ethylammonium, propylammonium; dialkylammonium salts such as dimethylammonium, diethylammonium, ethylmethylammonium, dibutylammonium. Trialkylammonium salts such as trimethylammonium, triethylammonium, tributylammonium; tetramethylammonium, triethylmethylammonium, tetraethylammonium, tetrabutylammonium,
Examples thereof include quaternary ammonium salts such as N, N-dimethylpyrrolidinium; phosphonium salts, arsonium salts, sulfonium salts and the like. These ionic solutes are
They can be used alone or in combination. The blending amount of the ionic solute varies depending on the required performance, but is generally preferably 1 to 25% by weight.

【0011】本発明に用いる金属酸化物微粒子は、微粒
子のコア部の表面がアルミノシリケートで被覆されてい
る。微粒子のコア部としては、金属酸化物が好ましく、
さらに好ましくは、SiO2 、Al23 、TiO2
ZrO2 、Sb23 、Ta25 等の酸化物やそれら
の複合酸化物であり、最も好ましいのは、SiO2 であ
る。
In the metal oxide fine particles used in the present invention, the surface of the core portion of the fine particles is coated with aluminosilicate. The core portion of the fine particles is preferably a metal oxide,
More preferably, SiO 2 , Al 2 O 3 , TiO 2 ,
ZrO 2 , Sb 2 O 3 , Ta 2 O 5 and other oxides and their composite oxides, most preferably SiO 2 .

【0012】このようなコア部の表面を被覆するアルミ
ノシリケートとしては、組成式: MAlO2 (Al23x (SiO2y (式中、Mは一価カチオンを表わし、xは0〜25の実
数を表わし、yは1〜200の実数を表わす)で示され
るアルミノシリケートが好ましい。
The aluminosilicate coating the surface of such a core portion has a composition formula: MAlO 2 (Al 2 O 3 ) x (SiO 2 ) y (wherein M represents a monovalent cation and x is 0). An aluminosilicate represented by a real number of .about.25, and y represents a real number of 1 to 200).

【0013】一価カチオン(M)としては、例えば、ナ
トリウムイオン等のアルカリ金属カチオン、アンモニウ
ム、第二級アンモニウム、第三級アンモニウム、第四級
アンモニウム等のオニウムカチオン、プロトン等の一価
のカチオンを挙げることができ、中でもナトリウムが好
ましい。
Examples of the monovalent cation (M) include alkali metal cations such as sodium ion, onium cations such as ammonium, secondary ammonium, tertiary ammonium and quaternary ammonium, and monovalent cations such as proton. Among them, sodium is preferable.

【0014】また、アルミノシリケート中のAl/Si
比は、0.02〜1が好ましく、さらに好ましくは0.
02〜0.8である。また粒子のコロイド状態を安定に
維持するために、粒子表面にアルミノシリケート構造に
よる強い負電荷点を作ることが必要であるが、Siに対
してAl量が少なすぎると強い負電荷点が少なくなり好
ましくない。またAl量が多すぎるとアルミノシリケー
ト構造をとることができなくなり、好ましくない。
Al / Si in aluminosilicate
The ratio is preferably 0.02 to 1, more preferably 0.
It is 02-0.8. In order to maintain a stable colloidal state of the particles, it is necessary to create strong negative charge points on the particle surface due to the aluminosilicate structure, but if the amount of Al is too small relative to Si, the strong negative charge points decrease. Not preferable. Further, if the amount of Al is too large, the aluminosilicate structure cannot be formed, which is not preferable.

【0015】アルミノシリケート被覆金属酸化物微粒子
の粒径は、3〜150nmが好ましく、さらに好ましくは
10〜50nmである。粒径が小さすぎると、高温に於い
て電解液中で微粒子の会合が急速に進行し、高い耐電圧
を維持することができず、また、粒径が大きすぎると、
電解液中に粒子をコロイド状に分散させることが困難と
なり、高い耐電圧向上効果を得ることができないので、
好ましくない。
The particle size of the aluminosilicate-coated metal oxide fine particles is preferably 3 to 150 nm, more preferably 10 to 50 nm. If the particle size is too small, the association of the fine particles rapidly proceeds in the electrolyte at high temperature, and it is not possible to maintain a high withstand voltage. If the particle size is too large,
Since it becomes difficult to disperse the particles in a colloidal state in the electrolytic solution, and it is not possible to obtain a high withstand voltage improving effect,
Not preferable.

【0016】被覆微粒子の添加量は、電解液100重量
部に対し、0.1〜20重量部が好ましく、さらに好ま
しくは、1〜10重量部である。この添加量が少なすぎ
ると十分な耐圧向上効果が得られず、また添加量が多す
ぎると電導度の低下が大きくなり好ましくない。
The amount of the coated fine particles added is preferably 0.1 to 20 parts by weight, more preferably 1 to 10 parts by weight, based on 100 parts by weight of the electrolytic solution. If the added amount is too small, the sufficient withstand voltage improving effect cannot be obtained, and if the added amount is too large, the decrease in the electrical conductivity becomes large, which is not preferable.

【0017】本発明で用いる被覆微粒子は、適当な溶媒
に分散したゾルとして添加することが望ましく、ゾルと
して添加することによって、微粒子を会合させることな
く、電解液中に安定にコロイド状に分散させることが容
易になり、耐圧向上効果及び電解液の安定性を向上させ
ることができる。
The coated fine particles used in the present invention are preferably added as a sol dispersed in a suitable solvent, and by adding as a sol, the fine particles are stably dispersed in a colloidal state in the electrolytic solution without associating the fine particles. This makes it easier to improve the pressure resistance and the stability of the electrolytic solution.

【0018】アルミノシリケート被覆金属酸化物微粒子
ゾルは、例えば、シリカゾルにケイ酸水溶液とアルミン
酸ナトリウム水溶液を同時に、且つ徐々に加えながら、
シリカ表面にアルミノシリケートを成長させ、しかる
後、適当な溶媒で置換し濃縮することによって容易に調
製することができる。
The aluminosilicate-coated metal oxide fine particle sol is prepared, for example, by simultaneously and gradually adding an aqueous solution of silicic acid and an aqueous solution of sodium aluminate to silica sol.
It can be easily prepared by growing an aluminosilicate on the surface of silica, replacing it with a suitable solvent and concentrating it.

【0019】ゾル中の微粒子の濃度は1〜50重量%が
好ましいが、高すぎるとゲル化に対して不安定であり、
低すぎると電解液の濃度調製の自由度がなくなるので1
0〜40重量%がより好ましい。ゾルに使用される溶媒
としては、水、及び前記した電解液に用いられる有機極
性溶媒等を挙げることができる。
The concentration of fine particles in the sol is preferably 1 to 50% by weight, but if it is too high, it is unstable against gelation,
If it is too low, there will be no freedom in adjusting the concentration of the electrolyte, so 1
0-40% by weight is more preferred. Examples of the solvent used for the sol include water and the organic polar solvent used for the above-described electrolytic solution.

【0020】[0020]

【実施例】以下に実施例、比較例を挙げて本発明を具体
的に説明する。 実施例1〜6及び比較例1〜6 表1に示す組成の電解コンデンサ用電解液を調製し、電
解液の電導度及び火花電圧を測定した。結果を表1に示
す。なお、用いたアルミノシリケート被覆微粒子は、コ
ア部がシリカであり、アルミノシリケート被覆厚さが約
1nmの平均粒径35nmの微粒子である。また被覆微粒子
は、エチレングリコールゾルとして用い、各イオン性溶
質を溶解した電解液に上記ゾルをコロイド状に分散させ
てコロイド状にして電解液を調製した。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples. Examples 1 to 6 and Comparative Examples 1 to 6 Electrolytic solutions for electrolytic capacitors having the compositions shown in Table 1 were prepared, and the electrical conductivity and spark voltage of the electrolytic solutions were measured. The results are shown in Table 1. The aluminosilicate-coated fine particles used were silica fine particles having a core of silica and an aluminosilicate coating thickness of about 1 nm and an average particle size of 35 nm. The coated fine particles were used as an ethylene glycol sol, and the above sol was colloidally dispersed in an electrolytic solution in which each ionic solute was dissolved to prepare an electrolytic solution.

【0021】このようにして調製した電解液について、
電導度及び火花電圧を測定した。なお電導度は25℃で
測定し、火花電圧は、電極にアルミニウム箔を用いて2
5℃で電流密度5mA/cm2で定電流陽極酸化を行った時に
はじめて絶縁破壊が観測される電圧を測定値とした。結
果を表1に示す。
Regarding the electrolytic solution thus prepared,
Conductivity and spark voltage were measured. The conductivity was measured at 25 ° C, and the spark voltage was measured using an aluminum foil for the electrode.
The voltage at which dielectric breakdown was observed only when constant current anodic oxidation was performed at 5 ° C. and a current density of 5 mA / cm 2 was used as the measured value. The results are shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】実施例7及び比較例7及び8 実施例5の電解液を、110℃で500時間放置した
後、その電解液について電導度及び火花電圧の変化を測
定した。結果を表2に示す。また比較例としてアルミノ
シリケート被覆シリカ微粒子の代りにシリカ及びアルミ
ナを用いた電解液について同様にして測定した電導度及
び火花電圧の変化を比較例として表2に示す。尚、比較
例に用いたシリカ及びアルミナの平均粒径は35nmであ
り、他は実施例5と同様にして調製した。
Example 7 and Comparative Examples 7 and 8 The electrolytic solution of Example 5 was allowed to stand at 110 ° C. for 500 hours, and then the changes in electric conductivity and spark voltage of the electrolytic solution were measured. The results are shown in Table 2. In addition, as a comparative example, Table 2 shows, as a comparative example, changes in electric conductivity and spark voltage measured in the same manner for an electrolytic solution using silica and alumina instead of the aluminosilicate-coated silica fine particles. The average particle size of silica and alumina used in the comparative example was 35 nm, and other conditions were the same as in Example 5.

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【発明の効果】本発明の電解コンデンサ用電解液は、用
いるアルミノシリケート被覆金属酸化物微粒子の表面に
アルミノシリケート構造による強い負電荷点を持ってお
り、電解液中では電解質カチオンに取り囲まれ、コロイ
ドとしては全体として、正電荷を帯びており、正電荷同
志の反発により安定なコロイド状態を保っているので、
さらにはアルミノシリケート構造とすることで、電解液
中水分によるゲル化等の変質に対する安定性が著しく増
加するので、電解液の高温でのゲル化等の変質を抑制す
ることができ、長期にわたって耐電圧向上効果を維持す
ることができる。また、電導度の低下を抑え、火花電圧
を高くすることができるので、耐電圧の高い長寿命の電
解コンデンサを得ることができる。
INDUSTRIAL APPLICABILITY The electrolytic solution for electrolytic capacitors of the present invention has a strong negative charge point due to the aluminosilicate structure on the surface of the aluminosilicate-coated metal oxide fine particles used, and is surrounded by electrolyte cations in the electrolytic solution to form a colloid. As a whole, it has a positive charge, and since the repulsion of positive charges keeps a stable colloidal state,
Furthermore, the aluminosilicate structure significantly improves the stability against gelation and other alterations due to water in the electrolytic solution, so it is possible to suppress alterations such as gelation of the electrolytic solution at high temperatures, and to withstand long-term resistance. The voltage improving effect can be maintained. Further, since it is possible to suppress the decrease in electric conductivity and increase the spark voltage, it is possible to obtain an electrolytic capacitor having a high withstand voltage and a long life.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−139537(JP,A) 特開 昭61−264679(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01G 9/02 ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-3-139537 (JP, A) JP-A-61-264679 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01G 9/02

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 有機極性溶媒、イオン性溶質、及びアル
ミノシリケート被覆金属酸化物微粒子を含有する電解コ
ンデンサ用電解液。
1. An electrolytic solution for an electrolytic capacitor, which contains an organic polar solvent, an ionic solute, and aluminosilicate-coated metal oxide fine particles.
【請求項2】 上記アルミノシリケートが、組成式: MAlO2 (Al23x (SiO2y (式中、Mは一価カチオンを表わし、xは0〜25の実
数を表わし、yは1〜200の実数を表わす)で示され
る請求項1記載の電解液。
2. The aluminosilicate has the compositional formula: MAlO 2 (Al 2 O 3 ) x (SiO 2 ) y (wherein M represents a monovalent cation, x represents a real number of 0 to 25, and y Is a real number of 1 to 200), and the electrolytic solution according to claim 1.
【請求項3】 上記アルミノシリケートのAl/Si比
が0.02〜1である請求項2記載の電解液。
3. The electrolytic solution according to claim 2, wherein the Al / Si ratio of the aluminosilicate is 0.02-1.
【請求項4】 上記アルミノシリケート被覆金属酸化物
微粒子のコア部の無機化合物がシリカである請求項1記
載の電解液。
4. The electrolytic solution according to claim 1, wherein the inorganic compound in the core of the aluminosilicate-coated metal oxide fine particles is silica.
JP13444793A 1993-06-04 1993-06-04 Electrolyte for electrolytic capacitors Expired - Fee Related JP3394068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13444793A JP3394068B2 (en) 1993-06-04 1993-06-04 Electrolyte for electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13444793A JP3394068B2 (en) 1993-06-04 1993-06-04 Electrolyte for electrolytic capacitors

Publications (2)

Publication Number Publication Date
JPH06349684A JPH06349684A (en) 1994-12-22
JP3394068B2 true JP3394068B2 (en) 2003-04-07

Family

ID=15128570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13444793A Expired - Fee Related JP3394068B2 (en) 1993-06-04 1993-06-04 Electrolyte for electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP3394068B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5426373B2 (en) * 2006-07-12 2014-02-26 キャボット マイクロエレクトロニクス コーポレイション CMP method for metal-containing substrates

Also Published As

Publication number Publication date
JPH06349684A (en) 1994-12-22

Similar Documents

Publication Publication Date Title
JP3387144B2 (en) Electrolyte for electrolytic capacitors
JPH10241999A (en) Electrolyte for electrolytic capacitor
JP3394068B2 (en) Electrolyte for electrolytic capacitors
JP3176611B2 (en) Electrolyte for electrolytic capacitors
JP3666478B2 (en) Electrolytic solution for electrolytic capacitors
JP3334192B2 (en) Electrolyte for electrolytic capacitors
JPH06104144A (en) Electrolyte for electrolytic capacitor
JPH056839A (en) Electrolytic solution for electrolytic capacitor use
JPH0661100A (en) Electrolyte for electrolytic capacitor
JPH04145616A (en) Electrolytic solution for electrolytic capacitor
JPH03173412A (en) Electrolyte for electrolytic capacitor
JPH03120808A (en) Electrolyte for electrolytic capacitor
JPH0661097A (en) Electrolyte for electrolytic capacitor
JPH04145615A (en) Electrolytic solution for electrolytic capacitor
JPH05308038A (en) Electrolyte for electrolytic capacitor
JPH03120807A (en) Electrolyte for electrolytic capacitor
JPH04266008A (en) Electrolyte for electrolytic capacitor
JPH05299298A (en) Electrolyte of electrolytic capacitor
JPH05299299A (en) Electrolyte of electrolytic capacitor
JPH0661103A (en) Electrolyte for electrolytic capacitor
JPH10135081A (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor using it
JPH04145613A (en) Electrolytic solution for electrolytic capacitor
JPH0722287A (en) Electrolyte for electrolytic capacitor
JPH04266007A (en) Electrolyte for electrolytic capacitor
JPH05308036A (en) Electrolyte for electrolytic capacitor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090131

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090131

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100131

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110131

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110131

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120131

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130131

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees