JPH04310558A - Planetary slip casting of ceramics - Google Patents

Planetary slip casting of ceramics

Info

Publication number
JPH04310558A
JPH04310558A JP16693491A JP16693491A JPH04310558A JP H04310558 A JPH04310558 A JP H04310558A JP 16693491 A JP16693491 A JP 16693491A JP 16693491 A JP16693491 A JP 16693491A JP H04310558 A JPH04310558 A JP H04310558A
Authority
JP
Japan
Prior art keywords
mold
ceramics
products
molding
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16693491A
Other languages
Japanese (ja)
Inventor
Hiroo Kobayashi
弘旺 小林
Yoshinori Omuro
大室 慶典
Hitoshi Iwasaki
仁志 岩崎
Takashi Ochiai
落合 尚
Takema Shibata
柴田 武馬
Masahiko Hamaguchi
浜口 政彦
Koji Matsumoto
好司 松本
Hiroyuki Yano
博之 矢野
Kazuya Takahata
高畑 和也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP16693491A priority Critical patent/JPH04310558A/en
Publication of JPH04310558A publication Critical patent/JPH04310558A/en
Pending legal-status Critical Current

Links

Landscapes

  • Producing Shaped Articles From Materials (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Abstract

PURPOSE:To simultaneously mold a large number of products and structures of various shapes such as hollow-shaped ceramic products such as cylinder for ceramic engine, pipe and crucible, products in continuous form such as round bar, various products of complicated shape, uniform ceramics composed of two or more ceramics, multi-layer structure ceramics, fiber-reinforced ceramics and composite ceramics with a metal in high accuracy, inexpensively and in an integrated way. CONSTITUTION:Slip, soft slip or body-shaped raw material is casted into a stationary mold or a mold in a planetary motion or put in the mold and liquid in the raw material is partially absorbed in the mold while subjecting the mold to planetary motion to mold ceramics. A great number of the above-mentioned ceramic products and structures of various shapes can be simultaneously molded in an integrated way, molded articles have excellent accuracy, smooth and specular inner face and finishing processing is almost not required.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はセラミックスの新しい成
形方法に関するもので、セラミックスの製造、特に成形
の分野に利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a new method for molding ceramics, and is used in the production of ceramics, particularly in the field of molding.

【0002】0002

【従来の技術】セラミックス粉末原料から製品を製造す
るには原料調合→成形→乾燥→焼結の工程を経て製造さ
れているのが一般的である。その中で、現在工業的に利
用されているセラミックスの成形方法は原料の種類、製
品の形状や寸法などによってさまざまであり、金型プレ
ス成形法、泥漿鋳込み成形法、押し出し成形法、静水圧
成形法、射出成形法、ドクターブレード法などがある。 しかし、これらのいずれの方法も一長一短があり、パイ
プ、ルツボなどの中空形状のセラミックス製品や比較的
大型の複雑形状の製品を精度よく、しかも均質、高密度
に短時間で、安価に一体成形する方法はない。それらの
中では、泥漿鋳込み成形法が複雑形状品の成形に有効で
あるが、寸法精度、成形体密度、肉厚、成形時間などに
問題があり、仕上げ加工も必要である。更に、泥漿鋳込
み成形法の範疇に入るものとして、成形型を振動させて
泥漿(スラリー)のチクソトロピー性を有効に利用して
成形する振動鋳込み成形法、および成形型の回転運動を
利用して成形する遠心鋳込み成形法があるが、これらの
方法も精度や成形時間などの面で不十分である。そのた
め金型プレス成形法や静水圧成形法で成形した後に、切
削などの機械加工をして荒形状のものを作り、更に焼成
後に研削、ラッピングして中空形状や複雑形状のファイ
ンセラミックス最終製品を製造するのが一般的であり、
多工程、長時間を要し、製造コストが極めて高価につく
わけである。このような理由から上述の中空形状や比較
的大型の複雑形状のファインセラミックス製品の成形方
法の確立が望まれている。
2. Description of the Related Art Generally, products are manufactured from ceramic powder raw materials through the following steps: raw material preparation, molding, drying, and sintering. Among them, the ceramic forming methods currently used industrially vary depending on the type of raw materials, the shape and dimensions of the product, etc., and include mold press molding, slurry casting, extrusion molding, and isostatic pressing. method, injection molding method, doctor blade method, etc. However, each of these methods has advantages and disadvantages, and it is possible to form hollow-shaped ceramic products such as pipes and crucibles, as well as relatively large and complex-shaped products, with high precision, uniformity, high density, in a short time, and at low cost. There's no way. Among them, the slurry casting method is effective for molding products with complex shapes, but it has problems with dimensional accuracy, molded body density, wall thickness, molding time, etc., and finishing processing is also required. Furthermore, as methods that fall under the category of slurry casting methods, there are vibratory casting methods, in which the mold is vibrated to effectively utilize the thixotropic properties of the slurry, and molding methods, which utilize the rotational movement of the mold, are methods. There are centrifugal casting methods that do this, but these methods are also insufficient in terms of accuracy and molding time. For this reason, after forming with mold press molding method or isostatic pressing method, machining such as cutting is performed to create a rough shape, and after firing, grinding and lapping are performed to create fine ceramic final products with hollow or complex shapes. It is common to manufacture
It requires multiple steps, takes a long time, and is extremely expensive to manufacture. For these reasons, it is desired to establish a method for forming fine ceramic products having a hollow shape or a relatively large complex shape as described above.

【0003】0003

【発明が解決しようとする課題】従来の成形方法や技術
では、セラミックスエンジン用シリンダー、円筒形・ 
 角形パイプ、ルツボ、コップなどの中空形状のファイ
ンセラミックス製品を仕上げ加工や研削・研磨なしで精
度よく安価に一体成形することはきわめて難しい。また
、その成形体の厚みも極薄状から肉厚状のものまで自由
に調整したり、内外面にテーパーをつけることなどもむ
つかしく、これらは早急に解決されねばならない課題で
ある。さらに、その他の形状品の成形として肉厚の丸棒
・角棒や孔あき棒などの長尺物の成形、種々の比較的大
型の複雑形状品の成形が課題である。また、原料や構造
面からは、密度差のある2種以上のセラミックス混合原
料を用いた均一体の成形、ウイスカーや繊維強化セラミ
ックスの成形、金属やプラスチックスが均一に混入され
た複合セラミックスの成形、2層・3層パイプなどの多
層構造セラミックスの成形が課題である。次に、成形時
間では、短時間に成形する方法、または同時に多数個成
形して1個当たりの成形に要する時間を短縮する方法が
必要である。セラミックスの成形には、このような多く
の課題が残っている。本発明はこれらの多くの課題を同
時に解決しようとするものである。
[Problems to be Solved by the Invention] Conventional molding methods and techniques cannot produce ceramic engine cylinders that are cylindrical or
It is extremely difficult to form hollow fine ceramic products such as rectangular pipes, crucibles, and cups into one piece with high precision and low cost without finishing processing, grinding, or polishing. Furthermore, it is difficult to freely adjust the thickness of the molded product from ultra-thin to thick, and to create tapers on the inner and outer surfaces, and these are issues that must be solved as soon as possible. Furthermore, molding of other shaped products includes the molding of long products such as thick round bars, square bars, and perforated bars, as well as the molding of various relatively large and complex shaped products. In terms of raw materials and structure, we can mold homogeneous bodies using mixed raw materials of two or more types of ceramics with different densities, mold whiskers or fiber-reinforced ceramics, and mold composite ceramics in which metals and plastics are uniformly mixed. , forming multilayer ceramics such as two-layer and three-layer pipes is a challenge. Next, regarding the molding time, there is a need for a method of molding in a short time, or a method of molding many pieces at the same time to shorten the time required for molding each piece. Many such issues remain in the molding of ceramics. The present invention attempts to solve many of these problems at the same time.

【0004】0004

【課題を解決するための手段】上述の種々の課題を解決
するためには、泥漿鋳込み成形法の範疇に入る振動鋳込
み成形法や遠心鋳込み成形法などのようにセラミックス
粉末原料を泥漿(スラリー)状に調整して、そのチクソ
トロピー性を有効に利用し、成形するのが有利である。 しかし、これらの方法では課題を十分に解決できないこ
とは既述した。そこで、それらの方法のように成形型の
振動や単純な回転運動だけを用いるのではなく、成形型
を自転させながら公転させることができる遊星運動を用
いて、スラリーのチクソトロピー性を利用して成形すれ
ば上述の多くの課題を同時に解決できる。すなわち、セ
ラミックス原料に溶媒、成形剤、成形助剤、などを添加
混練して調整した泥漿、または軟泥、または混水量が少
なく練土状を示し遊星運動を与えることによって流動を
しめす坏土を用いて、それらを静止または遊星運動中の
成形鋳型に流し込み、または装入し、成形型を遊星運動
させながら泥漿、軟泥、または坏土状の調整原料の液体
の一部分を成形鋳型に吸収させてセラミックス成形体を
成形すればよい。泥漿、軟泥または坏土状の調整原料か
ら溶媒を吸収するための成形鋳型は、石膏型、または樹
脂型、黒鉛などのセラミックス型、金属型などからなる
多孔質の型のいずれを用いてもよい。成形機に取りつけ
られるその成形鋳型の個数は通常2〜8個、またはそれ
以上の多数個取りつけることができ、しかも成形型を縦
、横、あるいは傾斜して遊星運動させることができる。 このような手段を用いてセラミックスを成形すれば、均
質、高密度に精度よく比較的短時間に多数個の中空形状
や複雑形状のセラミックス成形体を同時に成形すること
ができる。しかも、成形されたパイプやルツボなどの中
空形状品は、その内面が平滑、鏡面状であり、仕上げ加
工などが殆ど不要である。このように、本発明は課題を
解決するための手段として遊星運動を用いてセラミック
スを成形するセラミックスの新しい成形方法である。
[Means for Solving the Problems] In order to solve the various problems mentioned above, it is necessary to convert the ceramic powder raw material into a slurry, such as the vibration casting method or centrifugal casting method, which falls under the slurry casting method. It is advantageous to mold the material by adjusting the shape to make effective use of its thixotropic properties. However, as mentioned above, these methods cannot sufficiently solve the problem. Therefore, instead of using only vibration or simple rotational motion of the mold as in those methods, we use planetary motion that allows the mold to revolve while rotating on its own axis, making use of the thixotropic properties of the slurry to form the mold. By doing so, many of the problems mentioned above can be solved at the same time. In other words, slurry or soft mud prepared by adding and kneading solvents, molding agents, molding aids, etc. to ceramic raw materials, or clay that contains a small amount of water and has a kneaded clay shape and exhibits fluidity by giving it planetary motion is used. Then, they are poured or charged into a forming mold that is stationary or in planetary motion, and while the forming mold is in planetary motion, a portion of the liquid of the prepared material in the form of slurry, soft mud, or clay is absorbed into the forming mold to form ceramics. What is necessary is to form a molded body. The mold for absorbing the solvent from the prepared material in the form of slurry, soft mud, or clay may be a plaster mold, or a porous mold such as a resin mold, a ceramic mold such as graphite, or a metal mold. . The number of molds attached to the molding machine is usually 2 to 8 or more, and the molds can be moved vertically, horizontally, or tilted in planetary motion. By molding ceramics using such means, it is possible to simultaneously mold a large number of hollow or complex shaped ceramic molded bodies homogeneously, with high density, and in a relatively short period of time. Furthermore, hollow-shaped products such as molded pipes and crucibles have smooth and mirror-like inner surfaces, and almost no finishing work is required. As described above, the present invention is a new method for molding ceramics using planetary motion as a means to solve the problems.

【0005】[0005]

【作用】ファインセラミックスは耐熱性、耐食性、硬質
性、圧電性、半導性など金属やプラスチックにない多く
の優れた機能を持っているため、現在機能材料と構造材
料の両面で一層の用途開発が推進されている。しかし、
これらの機能を十分に発揮させる部材を造るには、製造
プロセスの確立、特に成形プロセスの確立が最重要課題
である。この成形プロセスが十分に確立されなければセ
ラミックスの普及は限界がある。本発明の方法を用いれ
ば、従来の方法で解決できなかった成形の種々の課題を
解決できるから、多くの機能を持ったファインセラミッ
クスの普及、発展に寄与できるものと思う。
[Action] Fine ceramics have many excellent functions that metals and plastics do not have, such as heat resistance, corrosion resistance, hardness, piezoelectricity, and semiconductivity, so they are currently being further developed for use as both functional and structural materials. is being promoted. but,
In order to create components that fully demonstrate these functions, the most important issue is establishing a manufacturing process, especially a molding process. Unless this molding process is fully established, there will be a limit to the widespread use of ceramics. By using the method of the present invention, various molding problems that could not be solved by conventional methods can be solved, so I believe that it can contribute to the spread and development of fine ceramics that have many functions.

【0006】[0006]

【実施例1】セラミックス原料として、アルミナ微粉末
(純度99.8%、平均粒径0.79μm)、ジルコニ
ア粉末(イットリアを5.26%含む、平均粒径1.1
8μm)、ならびに窒化珪素粉末(α化率97.0%、
平均粒径0.60μm)を用いて、それらの粉末原料に
水、バインダー、分散解こう剤、可塑剤および消泡剤を
適量添加混練してそれぞれの鋳込み成形用スラリー(ス
リップ)を調整した。次に、それらの各種スラリーを静
止または低速で遊星運動中の石膏製成形鋳型に鋳込み、
成形型の自転回転数が225rpm、公転数100rp
mで約1時間、遊星運動を利用して4個同時に成形した
。成形体寸法は外径φ20〜50×長さ90mmの円筒
形パイプ・シリンダーであり、それらの肉厚は1〜6m
mであった。このようにして得られた成形体は内面が平
滑で鏡面状に精度よく成形されていた。外径φ30mm
、肉厚4mmのパイプの成形体密度と相対密度を一括し
て次に示す。 それらの成形体密度は、従来の金型プレス成形法で10
0MPaの成形圧力を用いてφ20×20mmの円柱状
に成形した試片の密度(それぞれ2.52,2.50,
1.95g/cm3)よりも高かった。
[Example 1] As ceramic raw materials, fine alumina powder (purity 99.8%, average particle size 0.79 μm), zirconia powder (contains 5.26% yttria, average particle size 1.1
8 μm), and silicon nitride powder (gelatinization rate 97.0%,
Each slurry (slip) for casting molding was prepared by adding and kneading appropriate amounts of water, a binder, a dispersing peptizer, a plasticizer, and an antifoaming agent to these powder raw materials (average particle size: 0.60 μm). Next, these various slurries are cast into a plaster mold that is stationary or in planetary motion at low speed.
The rotation speed of the mold is 225 rpm, and the revolution speed is 100 rpm.
Four pieces were molded at the same time using planetary motion for about 1 hour at m. The dimensions of the molded product are cylindrical pipes and cylinders with an outer diameter of 20 to 50 mm and a length of 90 mm, and their wall thickness is 1 to 6 m.
It was m. The molded product thus obtained had a smooth inner surface and was precisely molded to have a mirror surface. Outer diameter φ30mm
The compact density and relative density of a pipe with a wall thickness of 4 mm are shown below. The density of those compacts is 10 by conventional mold press molding method.
The densities of the specimens molded into a cylindrical shape of φ20 x 20 mm using a molding pressure of 0 MPa (2.52, 2.50,
1.95 g/cm3).

【0007】[0007]

【実施例2】アルミナスラリーを石膏成形鋳型に流し込
み、成形型を傾斜して公転数が60〜120rpmで遊
星運動させながら外径φ40、高さ90、厚み2〜4m
mの平底ルツボ、および凹凸のある高さ80mmのコッ
プを成形した。これらの成形体の密度は約2.6g/c
m3で
[Example 2] Alumina slurry is poured into a plaster mold, and while the mold is tilted and planetary motion is performed at a revolution speed of 60 to 120 rpm, the outer diameter is φ40, the height is 90, and the thickness is 2 to 4 m.
A flat-bottomed crucible with a diameter of 80 mm and an uneven cup with a height of 80 mm were molded. The density of these molded bodies is approximately 2.6 g/c
in m3

【実施例1】の値と同様であった。成形体は底部の肉厚
にやや不均一さがみられるが、内面は平滑、鏡面状で仕
上げ加工などは不要であった。
The values were similar to those in Example 1. Although the thickness of the molded product was slightly uneven at the bottom, the inner surface was smooth and mirror-like, and no finishing work was required.

【0008】[0008]

【実施例3】アルミナ98%とクロミア2%の比重の異
なるセラミックス混合原料、およびアルミナ99%とア
ルミニウム箔粉末1%からなるセラミックスと金属の混
合原料を用いて円筒形パイプ、角形パイプを
[Example 3] Cylindrical pipes and rectangular pipes were manufactured using ceramic mixed raw materials with different specific gravities of 98% alumina and 2% chromia, and mixed ceramic and metal raw materials consisting of 99% alumina and 1% aluminum foil powder.

【実施例1
】と同条件で成形した。成形体断面を顕微鏡観察した結
果、クロミアおよびアルミニウム箔粉末はアルミナ中に
均一に分散されていた。このように比重差のある2種以
上の混合原料の成形も十分に可能であった。
[Example 1
] was molded under the same conditions. Microscopic observation of the cross section of the compact revealed that chromia and aluminum foil powder were uniformly dispersed in alumina. In this way, it was also possible to mold a mixture of two or more raw materials with different specific gravities.

【0009】[0009]

【実施例4】アルミナスラリーを用いて[Example 4] Using alumina slurry

【実施例1】と
同条件で肉厚2mmに成形後、次にその成形体内面上に
クロミアを肉厚2mm成形し、アルミナとクロミアの円
筒形複層パイプ・シリンダーを作製した。同様にしてア
ルミナ、クロミア、アルミナの各層が約1mmからなる
3層の複層パイプ、ならびにアルミナ、黒鉛繊維、アル
ミナからなる繊維強化の多層構造パイプを成形した。そ
れらの成形体は良好な平滑内面を持ち、また各層の厚さ
が一定で層界面の接合も良好であった。
After molding to a thickness of 2 mm under the same conditions as in Example 1, chromia was molded to a thickness of 2 mm on the inner surface of the molded body to produce a cylindrical multilayer pipe/cylinder of alumina and chromia. Similarly, a three-layer multilayer pipe consisting of alumina, chromia, and alumina each having a thickness of approximately 1 mm, and a fiber-reinforced multilayer pipe consisting of alumina, graphite fiber, and alumina were formed. These molded bodies had good smooth inner surfaces, the thickness of each layer was constant, and the bonding between the layer interfaces was also good.

【0010】0010

【発明の効果】本発明による成形法の効果を述べれば次
のようである。 (1)  遊星運動を利用するため、多数個の成形型に
鋳込むことが可能となり同時に多数個の成形体を成形出
来る。 (2)  成形型を縦、横、あるいは傾斜させることに
より種々の中空形状品や複雑形状品を成形出来る。 (3)  極薄状品から厚肉状品までの成形が可能であ
る。また、成形体の内面が平滑、鏡面状となり仕上げ加
工が殆ど不要である。 (4)  比重差のある2種以上のセラミックス原料や
、セラミツクスと金属の混合原料を成形出来る。 (5)  多層構造セラミックスや、繊維強化セラミッ
クスを成形出来る。
[Effects of the Invention] The effects of the molding method according to the present invention are as follows. (1) Since planetary motion is used, it is possible to cast into multiple molds, and multiple molded bodies can be molded at the same time. (2) By tilting the mold vertically, horizontally, or tilted, various hollow-shaped products and complex-shaped products can be molded. (3) It is possible to mold everything from ultra-thin to thick-walled products. In addition, the inner surface of the molded body is smooth and mirror-like, and almost no finishing work is required. (4) Two or more types of ceramic raw materials with different specific gravity or mixed raw materials of ceramics and metal can be molded. (5) Multilayer ceramics and fiber-reinforced ceramics can be molded.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  泥漿、または軟泥、または可塑性坏土
状に調整された原料を成形鋳型に流し込み、または装入
して成形型の遊星運動を利用してセラミックスを成形す
ることを特徴とするセラミックスの成形方法。
1. Ceramics characterized by pouring or charging raw material prepared into slurry, soft mud, or plastic clay into a mold, and molding the ceramic using the planetary motion of the mold. molding method.
JP16693491A 1991-04-09 1991-04-09 Planetary slip casting of ceramics Pending JPH04310558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16693491A JPH04310558A (en) 1991-04-09 1991-04-09 Planetary slip casting of ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16693491A JPH04310558A (en) 1991-04-09 1991-04-09 Planetary slip casting of ceramics

Publications (1)

Publication Number Publication Date
JPH04310558A true JPH04310558A (en) 1992-11-02

Family

ID=15840368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16693491A Pending JPH04310558A (en) 1991-04-09 1991-04-09 Planetary slip casting of ceramics

Country Status (1)

Country Link
JP (1) JPH04310558A (en)

Similar Documents

Publication Publication Date Title
JP2604592B2 (en) Molding method of metal, ceramic powder, etc. and composition therefor
Dhara et al. Shape forming of ceramics via gelcasting of aqueous particulate slurries
WO2013123584A1 (en) Highly filled particulate composite materials and methods and apparatus for making same
CN103264533A (en) Ceramic-intermetallic compound gradient filtering tube as well as preparation and application thereof
JPH0677924B2 (en) Mold and method for molding ceramics using the same
Denham et al. Mechanical behavior of robocast alumina
JPH04310558A (en) Planetary slip casting of ceramics
RU2278090C1 (en) Method for production of refractory articles
JPS61217208A (en) Manufacture of ceramics
JP3224645B2 (en) Ceramics molding method
JPH11291213A (en) Method for forming castable refractory block
JPH04280854A (en) Method for centrifugal casting
JPH0376201B2 (en)
JP2820476B2 (en) Slip casting mold and slip casting method
Lidman et al. An Investigation of the Slip-casting Mechanism as Applied to Stainless Steel Powder
JPH04147807A (en) Manufacture of cylindrical silicon carbide body
JP3594223B2 (en) Method for producing cylindrical ceramic body
JP2022144734A (en) Slurry casting molding evaluation method and evaluation device
JPS61281801A (en) Manufacture of powder metallurgical product
JPH01304902A (en) Method and apparatus for forming ceramic
JPS61158404A (en) Method and device for manufacturing hollow cylindrical ceramic molded shape
JPH08108415A (en) Ceramic molding method
JPH0238360A (en) Ceramic raw material for dry molding and production of molded article of ceramic using said raw material
JPH06246715A (en) Slip casting method
JPH06157117A (en) Carbon fiber reinforced gypsum forming mold and gypsum powder and production thereof