JPH0376201B2 - - Google Patents

Info

Publication number
JPH0376201B2
JPH0376201B2 JP16694983A JP16694983A JPH0376201B2 JP H0376201 B2 JPH0376201 B2 JP H0376201B2 JP 16694983 A JP16694983 A JP 16694983A JP 16694983 A JP16694983 A JP 16694983A JP H0376201 B2 JPH0376201 B2 JP H0376201B2
Authority
JP
Japan
Prior art keywords
razor
zirconia
blades
clay
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16694983A
Other languages
Japanese (ja)
Other versions
JPS6058805A (en
Inventor
Kaoru Umeya
Tomoyuki Haga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiseido Co Ltd
Original Assignee
Shiseido Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiseido Co Ltd filed Critical Shiseido Co Ltd
Priority to JP16694983A priority Critical patent/JPS6058805A/en
Publication of JPS6058805A publication Critical patent/JPS6058805A/en
Publication of JPH0376201B2 publication Critical patent/JPH0376201B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、ジルコニア粉末を用いてかみそりの
刃を製造する方法に関するものである。 [従来の技術] 本来、市販されているかみそりの刃は、ステン
レス鋼材より作られているが、このステンレス刃
より切れ味の耐久性を向上させるため、錆びない
硬度の高い靭性のあるセラミツクでかみそりの刃
を作ることが好ましい。 かみそりの刃の材料となるセラミツクについて
は、アルミナ、ジルコニア、金属複合セラミツク
および単結晶アルミナ等がある。これらのセラミ
ツクについてかみそりの刃の材料としての適性に
ついて検討を行なつた結果は、次の第1表のとお
りである。
[Industrial Field of Application] The present invention relates to a method for manufacturing razor blades using zirconia powder. [Conventional technology] Commercially available razor blades are originally made of stainless steel, but in order to improve the durability of the razor's sharpness compared to stainless steel blades, razor blades are made of ceramic that does not rust and has high hardness and toughness. It is preferable to make a blade. Ceramics used as materials for razor blades include alumina, zirconia, metal composite ceramics, and single crystal alumina. The suitability of these ceramics as materials for razor blades was investigated and the results are shown in Table 1 below.

【表】 刃付状態の良さでは、単結晶アルミナとジルコ
ニアが最も良好で、単結晶アルミナとジルコニア
と比較した場合、靭性の点でジルコニアが優れて
いる。なお、ジルコニア成形材料としては、ジル
コニアのほか、ジルコニアを主成分とし、これに
酸化カルシウム、酸化マグネシウム、酸化セリウ
ムやアルミナ等を加えた二成分系、三成分系のも
のも用いることができる。 このジルコニアを用いてかみそりの刃を製造す
る場合に、もつとも重要なことは次の条件が満た
されていることである。即ち、薄板性、高密
度性、均質性、経済性、量産性である。 かみそり素材は、出来る限り薄くする必要があ
る。それは刃付研磨時間を短縮し、量産性を高め
るためである。又、高密度性、均質性については
刃付する上で最も重要なポイントとなる。高密度
性にバラツキが有ると、刃先の直線性が得られず
波を打ち、切れ味を悪くするものである。又、経
済性と量産性は工業製品として必要なポイントと
なる。 これらの要因を含めてカミソリ素材板の製造法
について検討してみると、板製造法として、鋳込
成形(Slip Cast)と圧密成形(Consolidation
Cast)が最も適性があると思われるが、これら
と、その他の方法を比較すると次の第2表の如く
である。
[Table] Single-crystal alumina and zirconia have the best cutting edge condition, and when compared with single-crystal alumina and zirconia, zirconia is superior in terms of toughness. In addition to zirconia, as the zirconia molding material, two-component or three-component materials in which zirconia is the main component and calcium oxide, magnesium oxide, cerium oxide, alumina, etc. are added thereto can also be used. When manufacturing razor blades using this zirconia, the most important thing is that the following conditions are met. That is, thin plate properties, high density, homogeneity, economy, and mass production. The razor material needs to be as thin as possible. This is to shorten the grinding time and increase mass productivity. Also, high density and homogeneity are the most important points when making a blade. If there is variation in high density, the straightness of the cutting edge cannot be achieved, resulting in waves and poor cutting quality. In addition, economic efficiency and mass production are important points for industrial products. When we consider the manufacturing methods of razor blanks, taking into account these factors, we find that the two sheet manufacturing methods are slip casting and consolidation.
Cast) is considered to be the most suitable method, but a comparison of these and other methods is as shown in Table 2 below.

【表】 鋳込みでは薄板性並びに均質性が、圧密では均
質性が劣り、その代り生産性には見るべきものが
ある。一方、静水圧法あるいはホツトプレス法で
は品質的には問題はないが、経済性(量産性)が
ひどく見劣りする。このような事情によりジルコ
ニウムによるかみそりの刃が工業化されなかつ
た。 [発明が解決しようとする課題] さきに、本願発明者の一人は、セラミツクスの
成形法として、造形性、型から脱型のための保形
性、高密度、均質性および経済性に優れた流動圧
密成形法を発明し、特開昭60−30312号(特願昭
58−136845号)として出願したが、この成形法が
ジルコニア・液体系複合成形材料を用いたかみそ
りの刃の成形に適用出来ることを見出し、圧密成
形法における均質化の問題点を解決することに成
功した。 [課題を解決するための手段] 本発明方法によれば、ジルコニア・液体系複合
成形材料を一旦流動状態下において、液体的性質
を発揮させ得る状態下で、かみそりの刃状に造形
し、次に該造形体を流動出来ない状態下に閉じこ
めることにより固体的性質を発揮させ得る状態下
に置き、改めて圧密を行い均質化を計つた後、脱
型、焼成及び刃付することを特徴とするかみそり
の刃の製造方法が提供される。 本発明方法に適用されるジルコニア・液体系複
合成形材料の1例を示すと、ジルコニア粉体
(Zr2O3、純度98.0%、平均粒径20μm)、液体とし
て水道水を使用し、揺変性賦与助剤としてPVA
飽和溶液を用いその使用量を粉体量に対して0.1
重量%となるように調整し、またCMCを0.0重量
%及び液々エマルジヨン(商品名マクセロン)を
0.2重量%添加し、混練したものに、添加水量と
して2〜7(一例として)重量%添加したものを
挙げることができる。この調整後の坏土は流動圧
密成形に対して充分の特性を有する。 すなわち、上記調整坏土は例えば0.5cm/secよ
り充分遅い変形速度下ではクリープ変形(匍匐変
形、液体としての流動変形)を行ない得るが0.5
cm/secよりも充分速い変形速度下では塑性変形
を行なう特殊な力学的性質を有している。 次に流動圧密成形法による成形法を説明する。
ジルコニア調整坏土を用い、第1図に示すような
成形型の外筒4内の上部内筒1と下部内筒2の間
に坏土3を挿入し、外筒4を上下に移動調整し、
外筒に放射状に設けられた6つの細孔5が坏土柱
の中間位置に来るようにする。先ず、坏土柱が充
分遅い変形速度でクリープ変形するように上部内
筒を下降させ、坏土を流動圧密する。 このクリープ変形により坏土の一部は細孔をと
おして系外に排出される。このとき、外筒を例え
ば0.1回転/分の速度で回転させるようにして、
坏土の排出を円周方向に均一化することができ
る。 坏土3の厚みが第2図に示すように所定厚みと
なつたとき、上部内筒の下降を止めて流動変形を
停止する。次に、外筒4を上部位置に移動させ、
坏土排出が行われない状態下に成形体を閉じ込
め、充分速い速度で上部内筒を押し下げ、第3図
に示すように坏土が塑性圧密成形を受けるように
する。 この際、粉体間に充填された液分の不均一性が
圧密変形により解消され、均質化された成形体が
得られる。外筒を下げ、上部内筒を引き上げて成
形体を取り出す。 このようにして流動圧密成形法によつて得られ
たジルコニア成形体はかみそりの刃用成形体とし
て相応しい特性を備えている。すなわち、 薄板性 0.1mm厚まで可能である。通常は0.5
mmである。 高密度性 焼成後の理論密度6.3の99%程度
まで密度を上げることができる。 均質性 圧密成形、CIP成形、HP成形製品
を凌駕する値が得られる。 、 経済性、量産性を充分満足する。 以下、本発明を実施例により具体的に説明す
る。 [実施例] 微粉ジルコニア(ZrO2純度99.00%)100モルに
イツトリア(Y2O3)3モルを混合し、これに0.1
重量%CMC、0.1重量%PVA、液・液エマルジヨ
ン(商品名マクセロン)0.2重量%を加え、水2
〜3重量%となるように添加し、充分に混和し成
形原料とした。 これを水平断面30mm×20mm長方形状の成形型中
に挿入し、第1図に示すようにセツトした。 次いで、坏土3がクリープ変形を発揮できるよ
うな変形速度(0.01cm/sec)で上部内筒を押下
げ、坏土柱が所定厚みの0.5mmとなつたとき、下
降を中止させた。次いで第3図に示すように成形
枠をセツトし直した上で、坏土が充分固体として
振舞える速い変形速度(1.0cm/sec)で再圧密
し、斯くすることによつて粉体間に充填された含
有水分の偏りを無くして、均質度の向上を計つ
た。 上述の操作は、脱気および外気の侵入を防止す
るため、真空下で行われた。脱型は支障なく行わ
れ、脱型後のシラ地は、1600℃、2時間焼成さ
れ、かみそりの素材が得られた。 この0.5mmの薄板を次のような研磨工程で刃付
を行なつた。 1 ダイヤモンド砥石 #180 2 同 砥粒 #500 3 同 砥粒 #3000 4 ダイヤモンドペースト 0.5μm この研磨工程により得られたかみそりの切れ測
定を行なつた。測定機器は第4図に示すように、
20cmの間隔で設けた滑車6間にナイロン糸7を張
り、糸の両端にそれぞれ100grの重錘8を取付け、
かみそりの刃9をモーターで一定速度で降下さ
せ、糸の切れた位置を糸水準線からの距離mmで表
示する。この距離はメジヤー10で読み取られ
る。この数値が小さいほど切れ味がよいことを意
味する。なお、測定は10枚の刃について行ない、
その平均値を求めた。比較のため、ジルコニアを
鋳込成形法で成形し、実施例と同様に焼成および
刃付を行なつたもの、および市販ステンレスかみ
そりの刃についても測定を行なつた。結果を第3
表に示す。 第3表の結果から判断すると、流動圧密成形に
よるジルコニアかみそりの刃は、市販ステンレス
刃と同等の切れ数値を示し、鋳込み成形によるか
みそりの刃はかなり劣る切れ数値を示している。
[Table] Thinness and homogeneity are inferior in casting, while homogeneity is inferior in consolidation, but the productivity is noteworthy. On the other hand, with the hydrostatic pressure method or the hot press method, there is no problem in terms of quality, but the economic efficiency (mass production) is extremely poor. Due to these circumstances, razor blades made of zirconium were not commercialized. [Problems to be Solved by the Invention] First, one of the inventors of the present application has developed a method for molding ceramics that has excellent formability, shape retention for demolding from molds, high density, homogeneity, and economic efficiency. Invented the fluid compression molding method and published Japanese Patent Application Laid-Open No. 60-30312 (Patent Application No.
58-136845), but discovered that this molding method could be applied to molding razor blades using zirconia/liquid composite molding material, and decided to solve the homogenization problem in the compression molding method. Successful. [Means for Solving the Problems] According to the method of the present invention, a zirconia/liquid composite molding material is once shaped into a razor blade shape under a fluid state in which it can exhibit liquid properties, and then It is characterized by placing the shaped body under a condition in which it can exhibit solid properties by confining it under a condition in which it cannot flow, and after compacting it again to achieve homogenization, demolding, firing, and cutting. A method of manufacturing a razor blade is provided. An example of a zirconia/liquid composite molding material that can be applied to the method of the present invention is zirconia powder (Zr 2 O 3 , purity 98.0%, average particle size 20 μm), tap water as the liquid, and thixotropic PVA as a feeding aid
Using a saturated solution, the amount used is 0.1 relative to the amount of powder.
% by weight, and 0.0% by weight of CMC and liquid emulsion (trade name: Maxelon).
For example, 0.2% by weight of water may be added and kneaded, and 2 to 7% (as an example) of water may be added thereto. The clay after this adjustment has sufficient properties for fluid consolidation molding. That is, the above-mentioned adjusted clay can undergo creep deformation (creeping deformation, flow deformation as a liquid) at a sufficiently slow deformation rate of, for example, 0.5 cm/sec.
It has special mechanical properties that allow it to undergo plastic deformation at a deformation rate sufficiently faster than cm/sec. Next, a molding method using a fluid compression molding method will be explained.
Using zirconia adjustment clay, insert the clay 3 between the upper inner cylinder 1 and the lower inner cylinder 2 in the outer cylinder 4 of the mold as shown in Fig. 1, and adjust the outer cylinder 4 by moving it up and down. ,
The six pores 5 radially provided in the outer cylinder are arranged at the middle position of the clay pillar. First, the upper inner cylinder is lowered so that the clay column undergoes creep deformation at a sufficiently slow deformation rate, and the clay is fluidized and consolidated. Due to this creep deformation, a part of the clay is discharged out of the system through the pores. At this time, the outer cylinder is rotated at a speed of, for example, 0.1 revolutions/minute,
Discharge of clay can be made uniform in the circumferential direction. When the thickness of the clay 3 reaches a predetermined thickness as shown in FIG. 2, the lowering of the upper inner cylinder is stopped to stop the flow deformation. Next, move the outer cylinder 4 to the upper position,
The molded body is confined in a state where the clay is not discharged, and the upper inner cylinder is pushed down at a sufficiently fast speed so that the clay undergoes plastic compaction as shown in FIG. At this time, the non-uniformity of the liquid filled between the powder particles is eliminated by compaction deformation, and a homogenized molded body is obtained. Lower the outer cylinder and pull up the upper inner cylinder to take out the molded body. The zirconia molded body thus obtained by the fluid compression molding method has characteristics suitable as a molded body for razor blades. In other words, thin plates up to 0.1mm thick are possible. Usually 0.5
mm. High density: The density can be increased to about 99% of the theoretical density of 6.3 after firing. Homogeneity: Obtains values that exceed those of consolidation molded, CIP molded, and HP molded products. , satisfies economic efficiency and mass production. Hereinafter, the present invention will be specifically explained with reference to Examples. [Example] 3 moles of ittria (Y 2 O 3 ) were mixed with 100 moles of fine powder zirconia (ZrO 2 purity 99.00%), and 0.1
Add 0.1% by weight of CMC, 0.1% by weight of PVA, 0.2% by weight of liquid/liquid emulsion (trade name: Maxelon), and add 2% of water.
The mixture was added to a concentration of ~3% by weight and thoroughly mixed to form a molding raw material. This was inserted into a rectangular mold with a horizontal cross section of 30 mm x 20 mm, and set as shown in FIG. Next, the upper inner cylinder was pushed down at a deformation speed (0.01 cm/sec) at which the clay 3 could exhibit creep deformation, and when the clay pillar reached a predetermined thickness of 0.5 mm, the lowering was stopped. Next, as shown in Figure 3, the molding frame was reset, and the clay was reconsolidated at a fast deformation rate (1.0cm/sec) that allowed the clay to behave as a solid. We aimed to improve homogeneity by eliminating unevenness in the water content. The above operations were performed under vacuum to prevent degassing and ingress of outside air. Demolding was carried out without any problems, and the sillage after demolding was fired at 1600°C for 2 hours to obtain a razor material. This 0.5 mm thin plate was sharpened using the following polishing process. 1 Diamond grindstone #180 2 Same abrasive grain #500 3 Same abrasive grain #3000 4 Diamond paste 0.5 μm The sharpness of the razor obtained by this polishing process was measured. The measuring equipment is as shown in Figure 4.
A nylon thread 7 is stretched between pulleys 6 provided at intervals of 20 cm, and weights 8 of 100 gr are attached to each end of the thread.
The razor blade 9 is lowered by a motor at a constant speed, and the position where the thread breaks is displayed as the distance mm from the thread level line. This distance is read on measure 10. The smaller this number is, the better the sharpness is. In addition, measurements were taken on 10 blades.
The average value was calculated. For comparison, measurements were also performed on zirconia molded by the casting method, fired and sharpened in the same manner as in the examples, and on commercially available stainless steel razor blades. 3rd result
Shown in the table. Judging from the results in Table 3, zirconia razor blades formed by fluid compression molding exhibit cutting values equivalent to commercially available stainless steel blades, while razor blades formed by casting molding exhibit sharpness values that are considerably inferior.

【表】 [発明の効果] 本発明方法によれば、切り味がよく、錆びず、
かつ薄刃のジルコニアによるかみそりの刃が量産
されるので、経済性に優れた高品質のかみそりの
刃を提供することが可能となる。
[Table] [Effects of the invention] According to the method of the present invention, the cutting quality is good, there is no rust,
In addition, since razor blades made of thin zirconia are mass-produced, it becomes possible to provide high-quality razor blades with excellent economic efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は流動圧密成形に用いた成
形型の縦断面を示し、第4図はかみそりの刃の切
れ味の測定装置の概略構造を示す説明図である。 1……上部内筒、2……下部内筒、3……坏
土、4……外筒、5……細孔、6……滑車、7…
…ナイロン糸、8……重錘、9……かみそりの
刃、10……メジヤー。
1 to 3 show a longitudinal section of a mold used for fluid consolidation molding, and FIG. 4 is an explanatory diagram showing a schematic structure of a device for measuring the sharpness of a razor blade. 1... Upper inner cylinder, 2... Lower inner cylinder, 3... Clay, 4... Outer cylinder, 5... Pore, 6... Pulley, 7...
... Nylon thread, 8... Weight, 9... Razor blade, 10... Measure.

Claims (1)

【特許請求の範囲】 1 ジルコニア・液体系複合成形材料を一旦流動
状態下において、液体的性質を発揮させ得る状態
下で、かみそりの刃状に造形し、次に該造形体を
流動できない状態下に閉じ込めることにより固体
的性質を発揮させ得る状態下に置き、改めて圧密
を行い均質化を計つた後、脱型、焼成及び刃付す
ることを特徴とするかみそりの刃の製造方法。 2 切刃を片面研磨刃もしくは両面研磨刃に研磨
することを特徴とする特許請求の範囲第1項記載
のかみそりの刃の製造方法。 3 切刃の上及び/又は付近に被覆を施すことを
特徴とする特許請求の範囲第2項記載のかみそり
の刃の製造方法。
[Scope of Claims] 1. A zirconia/liquid composite molding material is once placed in a fluid state and shaped into a razor blade shape in a state where liquid properties can be exhibited, and then the shaped body is shaped into a razor blade shape under a state where it cannot flow. A method for manufacturing razor blades, which comprises placing the razor blades in a state where they can exhibit solid properties by confining the razor blades, and then recompacting the blades to achieve homogenization, followed by demolding, firing, and sharpening. 2. The method for manufacturing a razor blade according to claim 1, characterized in that the cutting edge is polished into a single-sided polished blade or a double-sided polished blade. 3. A method for manufacturing a razor blade according to claim 2, characterized in that a coating is applied on and/or in the vicinity of the cutting edge.
JP16694983A 1983-09-10 1983-09-10 Edge for razor Granted JPS6058805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16694983A JPS6058805A (en) 1983-09-10 1983-09-10 Edge for razor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16694983A JPS6058805A (en) 1983-09-10 1983-09-10 Edge for razor

Publications (2)

Publication Number Publication Date
JPS6058805A JPS6058805A (en) 1985-04-05
JPH0376201B2 true JPH0376201B2 (en) 1991-12-04

Family

ID=15840616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16694983A Granted JPS6058805A (en) 1983-09-10 1983-09-10 Edge for razor

Country Status (1)

Country Link
JP (1) JPS6058805A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5056227A (en) * 1990-03-19 1991-10-15 The Gillette Company Razor blade technology
US5121660A (en) * 1990-03-19 1992-06-16 The Gillette Company Razor blade technology
US5048191A (en) * 1990-06-08 1991-09-17 The Gillette Company Razor blade technology
JPH0586242U (en) * 1991-01-16 1993-11-22 富士夫 谷口 Up-down mirror

Also Published As

Publication number Publication date
JPS6058805A (en) 1985-04-05

Similar Documents

Publication Publication Date Title
CN102484200B (en) The manufacture method of piezoelectric ceramic body
US5746957A (en) Gel strength enhancing additives for agaroid-based injection molding compositions
DE60007873T2 (en) METHOD FOR PRODUCING MICRO GRINDING TOOLS
CN105777133B (en) The preparation method and particular manufacturing craft of the whole shellproof plate of the more curved surfaces of disposal molding
KR20170020437A (en) Ceramic product with oriented particles and method for the production thereof
TW200538237A (en) Porous vitrified grinding wheel and method for production thereof
DE2450384A1 (en) ABRASIVES
JPH0376201B2 (en)
JPH05254955A (en) Production of porous pzt ceramic
US6214069B1 (en) Process for the manufacture of a sintered, ceramic abrasive and grinding tools with this abrasive
DE19805889A1 (en) Sintered corundum body of closed cell structure used as e.g. grinding disc
JP2000061917A (en) Ito molding and manufacture thereof and manufacture of ito sintered body
IL44318A (en) Alumina carbide ceramic material
JP4634755B2 (en) Scraper made of sintered zirconia
CN109946130A (en) A kind of preparation method of micrometer level porous ceramic metallographic specimen
JPS62202707A (en) Manufacture of ceramics molded shape
RU2045500C1 (en) Method for production of ceramic composite
JPH08216146A (en) Apparatus for vacuum deaeration of ceramic slurry
JP4163933B2 (en) Manufacturing method of ceramic sintered body
JPH04236727A (en) Filter medium for molten metal
JPH0872032A (en) Manufacture of fiber reinforced ceramics
JP2849167B2 (en) Manufacturing method of filter media for molten metal
JPH01130908A (en) Manufacture of ceramics ball
JPS61217208A (en) Manufacture of ceramics
JPS62128962A (en) Manufacture of alumina base sintered body