JPH0872032A - Manufacture of fiber reinforced ceramics - Google Patents

Manufacture of fiber reinforced ceramics

Info

Publication number
JPH0872032A
JPH0872032A JP6216192A JP21619294A JPH0872032A JP H0872032 A JPH0872032 A JP H0872032A JP 6216192 A JP6216192 A JP 6216192A JP 21619294 A JP21619294 A JP 21619294A JP H0872032 A JPH0872032 A JP H0872032A
Authority
JP
Japan
Prior art keywords
slurry
mold
back pressure
thickness
short fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6216192A
Other languages
Japanese (ja)
Inventor
Tsuneo Tateno
常男 立野
Takehiro Tsuchida
武広 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP6216192A priority Critical patent/JPH0872032A/en
Publication of JPH0872032A publication Critical patent/JPH0872032A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To provide a manufacturing method of fiber reinforced ceramics, by which uniform orienting properties can be given to short reinforcing fibers, neither deformation nor crack and the like develops at sintering and homogeneous material characteristics can be obtained even in the direction of the thickness even in a thicker member. CONSTITUTION: Slurry S, which is prepared by dispersing ceramics powder and short reinforcing fibers in solvent solution, is poured in a casting mold 1, in which a gypsum mold 3 is arranged, and, at the same time, applied with back pressure P so as to discharge the solvent solution through the gypsum mold 3 in order to grow a cast layer LA of the ceramics powder and short reinforcing fibers for producing a formed body. After that, by sintering the formed body, fiber reinforced ceramics are manufactured. The back pressure P applied to the slurry S at the production of the formed body is increased in proportion to the increase of the thickness L of the cast layer LA or to the time elapsed since the start of pressurizing. Thus, the solution absorbing rate of the gypsum mold at the production of the formed body can be made constant, resulting in giving uniform orienting properties to the short reinforcing fibers.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐食構造部材、切削工
具、耐摩耗治工具、高温用部材等として用いて好適な繊
維強化セラミックスの製造方法に関し、詳細には、強化
繊維の配向性が均一で靭性と強度に優れる繊維強化セラ
ミックスの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fiber-reinforced ceramic suitable for use as a corrosion-resistant structural member, a cutting tool, an abrasion-resistant jig, a member for high temperature, and the like. The present invention relates to a method for producing a fiber-reinforced ceramic that is uniform and has excellent toughness and strength.

【0002】[0002]

【従来の技術】近年、高温、腐食および摩耗性環境下で
高強度を必要とされる部材や部品には、セラミックス基
等の複合材料の適用が広く進められている。一方、これ
ら複合材料の靭性・強度を改善するのにウイスカや炭素
短繊維などの強化繊維の添加が試みられ、特に、モノリ
シックなセラミックスの靭性改善には大きな期待がもた
れている。これは、強化繊維のプルアウト機構による靭
性向上と、該繊維の存在による結晶粒の粗大化の抑制に
よる強度向上などが得られるからである。そして、それ
ら繊維強化セラミックスの製造方法としては、種々の試
みがなされているが、従来では、セラミックスにウイス
カや短繊維(以下、ウイスカを含めて短繊維と略称)を
添加すると焼結性が悪くなるため、ホットプレス法によ
る製造が主体を占めていた。しかし、ホットプレス法
は、厚さの比較的薄い部材を製造する場合には、短繊維
の2次元的な配向性付与と緻密化に有効であるものの、
厚肉なものでは短繊維の配向性がランダムになり易く、
また複雑形状のものが成形し難い等の問題があった。
2. Description of the Related Art In recent years, application of composite materials such as ceramic bases has been widely promoted for members and parts which require high strength under high temperature, corrosion and abrasion environments. On the other hand, addition of reinforcing fibers such as whiskers and short carbon fibers has been attempted in order to improve the toughness and strength of these composite materials, and in particular, great expectations are placed on improving the toughness of monolithic ceramics. This is because the pull-out mechanism of the reinforcing fiber improves the toughness and the presence of the fiber suppresses the coarsening of the crystal grains to improve the strength. Although various attempts have been made as methods for producing such fiber-reinforced ceramics, conventionally, if whiskers or short fibers (hereinafter abbreviated as short fibers including whiskers) are added to ceramics, the sinterability is poor. Therefore, the manufacturing by the hot press method dominated. However, although the hot pressing method is effective for imparting a two-dimensional orientation of short fibers and densifying it when manufacturing a member having a relatively small thickness,
Thick ones tend to have random short fiber orientation,
Further, there is a problem that it is difficult to form a complicated shape.

【0003】そこで近年では、添加した短繊維に配向性
を付与でき、しかもホットプレス法よりも形状の自由度
が高く、かつ型の製造費が安価であるスリップキャスト
法やフイルタープレス法が注目され、その適用が種々試
みられている。そして、通常のスリップキャスト法で
は、原料粉を水等の溶媒液中に分散させたもの(スリッ
プやスラリー等と称されるもの)を、石膏型等の吸湿性
を有する型内に充填し、その型に溶媒液を吸収させて常
圧下で成形体を得るのであるが、繊維強化セラミックス
では、例えば、特開昭63−288973号公報に提案されてい
るように、原料粉を溶媒液中に分散させたスラリー(ス
リップ)を、フイルター等の多孔質体で形成された型内
に充填した後、このスラリーを型の多孔質体に向けて一
定の加圧力で加圧し、その多孔質体を通して溶媒液を排
出させて成形体を得、しかる後にその成形体を焼結する
方法、つまり加圧スリップキャスト法およびフイルター
プレス法の適用が、添加した短繊維の2次元的な配向度
を高めるに効果的であるとされている。
Therefore, in recent years, the slip casting method and the filter pressing method, which can give orientation to the added short fibers, have a higher degree of freedom in shape than the hot pressing method, and have a low die manufacturing cost, have been attracting attention. , Its application has been tried variously. Then, in a normal slip casting method, a raw material powder dispersed in a solvent liquid such as water (which is called slip or slurry) is filled in a hygroscopic mold such as a gypsum mold, The mold is made to absorb the solvent liquid to obtain a molded body under normal pressure.In the fiber reinforced ceramics, for example, as proposed in JP-A-63-288973, raw material powder is mixed in the solvent liquid. The dispersed slurry (slip) is filled into a mold made of a porous material such as a filter, and then the slurry is pressed toward the porous material of the mold with a constant pressure and passed through the porous material. The method of discharging the solvent liquid to obtain a molded body, and then sintering the molded body, that is, the application of the pressure slip casting method and the filter press method, improves the two-dimensional orientation degree of the added short fibers. Is said to be effective

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来のスリップキャスト法やフイルタープレス法による成
形体を焼結すると、次のような問題が生じていた。すな
わち、これら成形法では、その概念説明図である〔図
3〕に示すように、セラミックス粉(C) と短繊維(W) を
分散させたスラリー(S) 中の溶媒液(F) を、多孔質の型
(21)を通して排出し、その吸液面(21a) 上にセラミック
ス粉(C) および短繊維(W) の着肉層(LA)を成長させる過
程で、短繊維(W) に配向性を付与するのであるが、その
配向性は型(21)の吸液速度vに大きく左右される。しか
し、この吸液面(21a) 上で成長する着肉層(LA)は、それ
自体が通液抵抗を有する圧密層となるため、その成長に
伴って吸液面(21a) に向かう溶媒液(F) の流れに対する
抵抗を高め、型(21)の吸液速度vを急激に低下させる。
そのため、 (a)図に示すように吸液面(21a) に近いとこ
ろ、つまり初期に形成された着肉層(LA)では、極めて高
い短繊維(W) の配向性があるものの、その着肉層(LA)厚
さLがあまり成長しない間に(例えば、1気圧のスリッ
プキャストでは、約 5mmの厚さに成長した時点)、型(2
1)の吸液速度vが急激に低下し、それに伴って短繊維
(W) の配向性も失われて行き、結果 (b)図に示すよう
に、得られた成形体(B) は、厚さ方向での短繊維(W) の
配向性が不均一なものとなり易い。またこのことは、一
定の背圧を付加する加圧スリップキャスト法やフイルタ
ープレス法でも同様に生じ、かつ成形体の厚さが厚くな
ればなるほど顕著となる。
However, when the above-mentioned conventional slip cast method or filter press method is used to sinter the molded body, the following problems occur. That is, in these molding methods, as shown in the conceptual diagram [Fig. 3], the solvent liquid (F) in the slurry (S) in which the ceramic powder (C) and the short fibers (W) are dispersed, Porous mold
Discharge through (21) and give orientation to short fibers (W) in the process of growing ceramic powder (C) and infiltration layer (LA) of short fibers (W) on liquid absorbing surface (21a). However, the orientation is largely influenced by the liquid absorption speed v of the mold (21). However, since the inking layer (LA) that grows on the liquid absorption surface (21a) itself becomes a consolidated layer having liquid passage resistance, the solvent liquid that goes toward the liquid absorption surface (21a) as it grows. The resistance against the flow of (F) is increased, and the liquid absorption speed v of the mold (21) is rapidly reduced.
Therefore, as shown in Fig. (A), in the place near the liquid absorption surface (21a), that is, in the inking layer (LA) formed in the initial stage, although there is an extremely high orientation of the short fibers (W), While the thickness L of the meat layer (LA) does not grow very much (for example, when slip casting at 1 atm has grown to a thickness of about 5 mm), the mold (2
The liquid absorption speed v of 1) drops sharply, and short fibers
The orientation of (W) is also lost, and as shown in the result (b), the obtained molded product (B) is one in which the orientation of the short fibers (W) in the thickness direction is not uniform. It is easy to become. This also occurs in the pressure slip casting method or the filter pressing method in which a constant back pressure is applied, and becomes more remarkable as the thickness of the molded body increases.

【0005】ここで、短繊維を含まない通常の粉末法に
よる成形体を焼結すると、その説明図である〔図4〕の
(a)図に示すように、その成形体(B")が等方的に均一に
収縮した焼結体(B1") が得られる。また、短繊維をラン
ダムに配向させた成形体を焼結すると、同様に、焼結時
の収縮率に異方性のない焼結体が得られるものの、その
焼結組織の密度が上がり難いという問題が生じる。一
方、同 (b)図に示すように、短繊維(W) を一定方向に配
向させた成形体(B')を焼結すると、その焼結収縮量が、
短繊維の配向方向と直交する方向で大きく、配向方向で
小さい焼結体(B1') となる。つまり短繊維を配向させて
含む粉末成形体には、その短繊維の配向性を高めるほ
ど、配向方向の焼結収縮率が減り、配向方向と直交方向
には焼結収縮率が増加するという収縮の異方性が存在す
る。そのため、前記のように短繊維(W) の配向性が厚さ
方向で不均一な成形体(B)を焼結すると、同 (c)図に示
すように、その配向性に応じて焼結時の収縮率が異方的
に変わるので、得られた焼結体(B1)に著しい変形や場合
によっては割れが発生する。また、その諸特性も不均一
な短繊維の配向性に影響され、均質な材料特性が得難い
という問題が生じる。また、これらの問題は、厚肉な部
材を製造する場合に顕著となる。
FIG. 4 is an explanatory view of sintering a molded body produced by a normal powder method which does not contain short fibers.
As shown in Fig. (a), a sintered body (B1 ") in which the molded body (B") isotropically and uniformly contracted is obtained. Further, when a molded body in which short fibers are randomly oriented is sintered, similarly, although a sintered body having no anisotropy in shrinkage rate during sintering is obtained, it is difficult to increase the density of the sintered structure. The problem arises. On the other hand, as shown in the same figure (b), when the compact (B ') in which the short fibers (W) are oriented in a certain direction is sintered, the sintering shrinkage amount is
The sintered body (B1 ′) is large in the direction orthogonal to the orientation direction of the short fibers and small in the orientation direction. In other words, in a powder compact containing oriented short fibers, the higher the orientation of the short fibers, the lower the shrinkage rate in the orientation direction and the greater the shrinkage rate in the orthogonal direction to the orientation direction. There is anisotropy. Therefore, as described above, when a compact (B) in which the orientation of the short fibers (W) is not uniform in the thickness direction is sintered, as shown in the same figure (c), it is sintered according to the orientation. Since the shrinkage rate changes anisotropically, the resulting sintered body (B1) is significantly deformed or cracked in some cases. In addition, the various characteristics are also affected by the non-uniform orientation of the short fibers, and it is difficult to obtain homogeneous material characteristics. Moreover, these problems become remarkable when manufacturing a thick member.

【0006】本発明は、上記従来技術の問題点を解消す
るためになされたもので、より厚肉な部材であっても、
添加した強化短繊維に均一な配向性を付与でき、よって
焼結時に異方収縮が生じても、著しい変形や割れ等が発
生することがなく、靭性と強度に優れ、かつ厚さ方向に
も均質な材料特性の部材を得ることのできる繊維強化セ
ラミックスの製造方法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems of the prior art, and even if the member is thicker,
The added reinforcing short fibers can be given a uniform orientation, so even if anisotropic shrinkage occurs during sintering, there is no significant deformation or cracking, excellent toughness and strength, and even in the thickness direction. It is an object of the present invention to provide a method for producing a fiber-reinforced ceramics that can obtain a member having uniform material properties.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は以下の構成とされている。すなわち、本
発明に係る繊維強化セラミックスの製造方法は、母材と
なすセラミックス粉と強化短繊維とを溶媒液中に分散混
合してなるスラリーを、多孔質体で形成された型枠内に
充填した後、このスラリーに背圧を付加して前記多孔質
体に向けて加圧し、この多孔質体を通して溶媒液を排出
させてその表面上にセラミックス粉および短繊維の着肉
層を成長させることで、前記型枠内でセラミックス粉と
強化短繊維とからなる成形体を形成し、しかる後、この
成形体を高温で焼結する繊維強化セラミックスの製造方
法において、前記成形体の形成に際してスラリーに付加
する背圧を、前記着肉層の厚さの増加ないしは加圧開始
からの経過時間に比例して増大させることを特徴とす
る。
In order to achieve the above object, the present invention has the following constitution. That is, the method for producing a fiber-reinforced ceramics according to the present invention is such that a slurry formed by dispersing and mixing a ceramic powder serving as a base material and a reinforcing short fiber in a solvent liquid is filled in a mold formed of a porous body. After that, a back pressure is applied to the slurry to apply pressure toward the porous body, and the solvent liquid is discharged through the porous body to grow a ceramic powder and a thin fiber infiltration layer on the surface. Then, in the method for producing a fiber-reinforced ceramics, which comprises forming a molded body made of ceramic powder and reinforcing short fibers in the mold, and thereafter sintering the molded body at a high temperature, a slurry is formed when the molded body is formed. The back pressure to be applied is increased in proportion to an increase in the thickness of the inking layer or an elapsed time from the start of pressurization.

【0008】[0008]

【作用】本発明では、母材となすセラミックス粉と強化
短繊維とを溶媒液中に分散混合してなるスラリーに背圧
を付加して、充填された型枠の多孔質体に向けて加圧
し、この多孔質体を通して溶媒液を排出させてその表面
上にセラミックス粉および短繊維の着肉層を成長させる
ことで、前記型枠内でセラミックス粉と強化短繊維とか
らなる成形体を形成するのであるが、その際の多孔質体
の吸液速度と着肉層の厚さおよび背圧との関係より、下
記 (1)式が成り立つ。 v=ds/dt=K/η・Δp/L -------(1) 但し、vは多孔質体の吸液速度、sは吸液量、tは吸液
時間、Kは着肉層の液透過率、ηはスラリー濃度、Lは
着肉層の厚さ、Δpは背圧と多孔質体の出側圧力との差
圧である。一方、通常の母材粒子や短繊維を用いた場合
には、差圧Δpが変化してもKとηは殆ど変わらないこ
とが実験で確認されている。従って、 (1)式のK/ηの
値は一定となり、これを定数Aとおくと下記 (2)式が得
られる。 v=A・Δp/L -------(2) 上記 (2)式より、吸液速度vを一定にするには、Δp/
Lの値を一定にすれば良いことが分かる。また、その値
を定数Bとして、上記 (2)式を変形すると下記(3)式が
得られる。 Δp=B・L -------(3) 更にまた、着肉層の厚さLは、加圧開始からの経過時間
Tと比例関係にあることより、上記 (3)式を下記 (4)式
に置換することができる。 Δp=B・T -------(4) つまり、差圧Δpを着肉層の厚さLないしは加圧開始か
らの経過時間Tに比例させれば、上記 (2)式より、吸液
速度vは一定となる。また、多孔質体の吸液速度vが一
定になれば、前述したように、その表面上で形成される
着肉層の短繊維の配向性も一定となる。ここで、本発明
においては、前記成形体の形成に際してスラリーに付加
する背圧を、前記着肉層の厚さの増加ないしは加圧開始
からの経過時間に比例して増大させるので、前記多孔質
体の吸液速度vを一定として、添加した強化繊維に均一
な配向性を付与することができ、よって焼結時に変形や
割れの発生がなく、かつ焼結後の材料特性が均質な繊維
強化セラミックスを得ることができる。
In the present invention, back pressure is applied to the slurry obtained by dispersing and mixing the ceramic powder, which is the base material, and the reinforcing short fibers in the solvent liquid, and is applied toward the porous body of the filled mold. By pressing and discharging the solvent liquid through this porous body to grow a layer of ceramic powder and short fibers on the surface of the porous body, a molded body made of ceramic powder and reinforced short fibers is formed in the mold. However, the following equation (1) is established from the relationship between the liquid absorption speed of the porous body, the thickness of the inking layer, and the back pressure at that time. v = ds / dt = K / η · Δp / L ------- (1) where v is the liquid absorption rate of the porous body, s is the liquid absorption amount, t is the liquid absorption time, and K is the liquid absorption time. Liquid permeability of the meat layer, η is the slurry concentration, L is the thickness of the meat layer, and Δp is the pressure difference between the back pressure and the outlet pressure of the porous body. On the other hand, it has been confirmed by experiments that K and η hardly change even when the differential pressure Δp changes when ordinary base material particles or short fibers are used. Therefore, the value of K / η in the equation (1) becomes constant, and by setting this as a constant A, the following equation (2) is obtained. v = A · Δp / L ------- (2) From the above formula (2), to keep the liquid absorption speed v constant, Δp /
It is understood that the value of L should be constant. Further, if the value is used as a constant B and the above equation (2) is modified, the following equation (3) is obtained. Δp = B · L ------- (3) Furthermore, since the thickness L of the inking layer is proportional to the elapsed time T from the start of pressurization, the above equation (3) is expressed as It can be replaced by equation (4). Δp = B · T ------- (4) That is, if the pressure difference Δp is proportional to the thickness L of the inking layer or the elapsed time T from the start of pressurization, then from the above equation (2), The liquid absorption speed v becomes constant. Further, if the liquid absorption speed v of the porous body becomes constant, as described above, the orientation of the short fibers of the inking layer formed on the surface also becomes constant. Here, in the present invention, the back pressure applied to the slurry at the time of forming the molded body is increased in proportion to the increase in the thickness of the inking layer or the elapsed time from the start of pressurization. It is possible to impart uniform orientation to the added reinforcing fibers by keeping the liquid absorption rate v of the body constant, so that there is no deformation or cracking during sintering, and the fiber characteristics are uniform after sintering. Ceramics can be obtained.

【0009】なお、本発明における成形体の焼結・緻密
化の手段としては、常圧焼結および加圧焼結を始めとし
て、焼結後のHIPやカプセルHIPおよびホットプレ
ス等の一般的に用いられている方法が、目的に応じて適
用できる。
As the means for sintering and densifying the molded body in the present invention, there are generally used pressureless sintering and pressure sintering, and generally HIP and capsule HIP after sintering and hot pressing. The method used can be applied depending on the purpose.

【0010】[0010]

【実施例】本発明の実施例を図面を参照して以下に説明
する。 −実施例1− 平均粒径 0.5μm のα-Al203粉末を79.5wt%、平均直径
1.0μm でアスペクト比10の SiCウイスカを11.5wt%、
酸化物からなる焼結助剤を 9wt%とした混合物を、ボー
ルミルにて10時間湿式混合してスラリー(S) を製作し
た。また、溶媒液としては純水を用い、固形分の濃度が
64%になるように添加し、更に、スラリー(S) の分散性
を良くするために分散剤を 0.3wt%添加した。
Embodiments of the present invention will be described below with reference to the drawings. - the α-Al 2 0 3 powder of Example 1 average particle diameter 0.5μm 79.5wt%, an average diameter
11.5wt% of SiC whiskers with 1.0μm and aspect ratio of 10,
A mixture containing an oxide sintering aid of 9 wt% was wet mixed in a ball mill for 10 hours to prepare a slurry (S). Further, pure water was used as the solvent liquid, and the concentration of solid content was
It was added so as to be 64%, and 0.3 wt% of a dispersant was further added to improve the dispersibility of the slurry (S).

【0011】一方、その概要図である〔図1〕に示すよ
うに、上部に圧媒ガス導入孔(2a)を設けた倒立コップ状
の鋼製の型枠(2) の内底部に、格子状の支持板(4) に保
持された石膏型(3) を配してなる鋳込み型(1) を用意し
た。この鋳込み型(1) は、通常の加圧スリップキャスト
に用いられる構成のもので、その上部の圧媒ガス導入孔
(2a)は、図示省略の高圧空気供給装置に接続される一
方、石膏型(2) および支持板(3) の下方は大気に開放さ
れている。また本実施例では、石膏型(3) の上方の型枠
(2) 内穴の断面形状を、縦横それそれが40mmの平板が成
形できる方形断面形状とした。
On the other hand, as shown in FIG. 1 which is a schematic diagram thereof, a grid is formed on the inner bottom portion of an inverted cup-shaped steel mold (2) having a pressure medium gas introduction hole (2a) in the upper part. A casting mold (1) was prepared in which a gypsum mold (3) held on a plate-shaped support plate (4) was placed. This casting mold (1) has a structure used for ordinary pressure slip casting, and has a pressure medium gas introduction hole on the upper part thereof.
(2a) is connected to a high-pressure air supply device (not shown), while the lower parts of the plaster mold (2) and the support plate (3) are open to the atmosphere. Also, in this embodiment, the formwork above the plaster mold (3)
(2) The cross-sectional shape of the inner hole is a square cross-sectional shape that can form a flat plate of 40 mm in length and width.

【0012】そして、この鋳込み型(1) 内に前記スラリ
ー(S) を注入し、石膏型(2) の表面上に着肉層(LA)が 1
mmほど形成された時点で、圧媒ガス導入孔(2a)を経て高
圧空気を導入し、スラリー(S) に背圧(P) を付加して石
膏型(2) に向けて加圧した。またこのとき、スラリー
(S) への背圧(P) を、導入する高圧空気の圧力を調整す
ることで、加圧開始からの経過時間に比例させ、単位面
積当たり0.2MPa/minの比例定数でもって増大させた。
Then, the slurry (S) is poured into the casting mold (1) so that the infiltration layer (LA) is formed on the surface of the gypsum mold (2).
At the time when about mm was formed, high-pressure air was introduced through the pressure medium gas introduction hole (2a), a back pressure (P) was added to the slurry (S), and the slurry (S) was pressed toward the gypsum mold (2). Also at this time, the slurry
The back pressure (P) to (S) was made proportional to the elapsed time from the start of pressurization by adjusting the pressure of high pressure air to be introduced, and increased with a proportional constant of 0.2 MPa / min per unit area. .

【0013】上記条件で加圧を続けて、石膏型(2) の表
面上で着肉層(LA)を成長させ、縦横がそれぞれ40mmで、
厚さが12mmの成形体を得た。次いで、この成形体を脱型
して十分に乾燥させた後に、最初の着肉層に相当する下
面部 1mmを削り取り、しかる後に、1800℃の温度で焼結
した。
[0013] The pressurization is continued under the above conditions to grow the inking layer (LA) on the surface of the gypsum mold (2).
A molded body having a thickness of 12 mm was obtained. Then, the molded body was demolded and sufficiently dried, and then 1 mm of the lower surface portion corresponding to the first inking layer was scraped off, and then sintered at a temperature of 1800 ° C.

【0014】その結果、曲がり変形のない健全な焼結体
が得られた。また続いて、得られた焼結体を研削加工
し、石膏型(2) 面に平行な表裏2面および中央面につい
てX線回折により、 SiCウイスカの配向性を調査した。
またその配向性は、 SiCウイスカの(002) 面と(111) 面
の強度比を求め、更に、表面の強度を1として比較する
ことで評価した。その結果、〔表1〕に示すように、本
実施例で得られた焼結体での SiCウイスカの配向性は、
実験の誤差内で均一であることが確認できた。
As a result, a sound sintered body having no bending deformation was obtained. Further, subsequently, the obtained sintered body was ground, and the orientation of the SiC whiskers was investigated by X-ray diffraction on the two front and back surfaces parallel to the gypsum mold (2) surface and the central surface.
The orientation was evaluated by determining the strength ratio between the (002) plane and the (111) plane of the SiC whiskers and comparing the strength of the surface with 1. As a result, as shown in [Table 1], the orientation of the SiC whiskers in the sintered body obtained in this example was
It was confirmed to be uniform within the error of the experiment.

【0015】[0015]

【表1】 [Table 1]

【0016】ここで、本実施例では、前記スラリー(S)
に付加する背圧(P) を、その加圧開始からの経過時間に
比例させて増大させたが、これは成長する着肉層(LA)の
通液抵抗の増加を補償して解消するためであるので、そ
の背圧(P) は、着肉層(LA)の着肉厚さ(L) に比例して増
大させるものとされて良いことは言うまでもない。
Here, in this embodiment, the slurry (S) is used.
The back pressure (P) that was added to the pressure was increased in proportion to the elapsed time from the start of pressurization, because this is compensated for by the increase in the liquid flow resistance of the growing infiltration layer (LA) and it is eliminated. Therefore, it is needless to say that the back pressure (P) may be increased in proportion to the thickness (L) of the thickness of the layer (LA).

【0017】−実施例2− 平均粒径 0.8μm のα-Si3N4粉末を79.5wt%、平均直径
0.9μm でアスペクト比10の SiCウイスカを11.5wt%、
焼結助剤としてY2O4を 4.5wt%および Al203を4.5wt%
添加した混合物を、ボールミルにて10時間湿式混合して
スラリー(S) を製作した。また、溶媒液としては純水を
用い、固形分の濃度が64%になるように添加し、更に、
スラリーの分散性を良くするために分散剤を 0.3wt%添
加した。
-Example 2- 79.5 wt% α-Si 3 N 4 powder having an average particle size of 0.8 μm, average diameter
11.5 wt% of SiC whiskers with an aspect ratio of 10 at 0.9 μm,
4.5 wt% of Y 2 O 4 as a sintering aid and Al 2 0 3 and 4.5 wt%
The added mixture was wet mixed in a ball mill for 10 hours to prepare a slurry (S). In addition, pure water was used as the solvent liquid, and added so that the solid content concentration became 64%.
0.3 wt% of a dispersant was added to improve the dispersibility of the slurry.

【0018】そして、このスラリー(S) を、前記実施例
1と同じ鋳込み型(1) 内に注入し、石膏型(2) の表面上
に着肉層(LA)が 1mmほど形成された時点で、前記実施例
1と同様に、そのスラリー(S) に背圧(P) を付加し、か
つ、その背圧(P) を、加圧開始からの経過時間に比例さ
せ、単位面積当たり0.4MPa/minの比例定数でもって増大
させた。
Then, this slurry (S) was poured into the same casting mold (1) as in Example 1 above, and when the inking layer (LA) was formed on the surface of the gypsum mold (2) by about 1 mm. Then, as in Example 1, back pressure (P) was applied to the slurry (S), and the back pressure (P) was proportional to the elapsed time from the start of pressurization to 0.4 per unit area. It was increased with a proportional constant of MPa / min.

【0019】上記条件で加圧を続けて、石膏型(2) の表
面上で着肉層(LA)を成長させ、縦横がそれぞれ40mmで、
厚さが12mmの成形体を得た。次いで、この成形体を脱型
して十分に乾燥させ、第1実施例と同様に、最初の着肉
層に相当する下面部 1mmを削り取り、しかる後に、1800
℃の温度で焼結した。
[0019] Pressurization is continued under the above conditions to grow an inking layer (LA) on the surface of the gypsum mold (2).
A molded body having a thickness of 12 mm was obtained. Then, the molded body was demolded and sufficiently dried, and, similarly to the first embodiment, the lower surface portion 1 mm corresponding to the first inking layer was scraped off, and thereafter, 1800
Sintered at a temperature of ° C.

【0020】その結果、曲がり変形のない健全な焼結体
が得られた。また続いて、得られた焼結体における SiC
ウイスカの配向性を、第1実施例と同様の手順によって
調査した。その結果、〔表2〕に示すように、本実施例
で得られた焼結体での SiCウイスカの配向性は、第1実
施例のものと同様に、実験の誤差内で均一であることが
確認できた。
As a result, a sound sintered body having no bending deformation was obtained. In addition, subsequently, the SiC in the obtained sintered body
The orientation of the whiskers was investigated by the same procedure as in the first example. As a result, as shown in [Table 2], the orientation of the SiC whiskers in the sintered body obtained in this example is uniform within the error of the experiment, as in the case of the first example. Was confirmed.

【0021】[0021]

【表2】 [Table 2]

【0022】−実施例3− 平均粒径 0.8μm のα-Al203粉末を79.5wt%、平均直径
1.0μm でアスペクト比10の SiCウイスカを11.5wt%、
酸化物からなる焼結助剤を 9wt%とした混合物を、ボー
ルミルにて10時間湿式混合してスラリーを製作した。ま
た、溶媒液としては純水を用い、固形分の濃度が64%に
なるように添加し、更に、スラリーの分散性を良くする
ために分散剤を 0.3wt%添加した。
[0022] - The α-Al 2 0 3 powder of Example 3 the average particle diameter of 0.8μm 79.5wt%, an average diameter
11.5wt% of SiC whiskers with 1.0μm and aspect ratio of 10,
A mixture containing an oxide sintering aid of 9 wt% was wet mixed in a ball mill for 10 hours to prepare a slurry. Further, pure water was used as the solvent liquid, and was added so that the concentration of the solid content was 64%. Further, 0.3 wt% of a dispersant was added to improve the dispersibility of the slurry.

【0023】一方、その概要図である〔図2〕に示すよ
うに、円筒状の上金型(12)と、中心部に上下方向の多数
の通水孔(13a) を有して上金型(12)の下開口に嵌着され
た下金型(13)と、この下金型(13)上面に密着して配され
ると共に、外周縁部を該下金型(13)と上金型(12)とに挟
持された金属網製のフイルター(14)と、上金型(12)内に
上方から圧入される加圧ラム(15)とを備えてなる鋳込み
型(11)を用意した。この鋳込み型(11)は、通常のフイル
タープレス法に用いられる構成のもので、その加圧ラム
(15)は、図示省略の加圧装置に連結される一方、下金型
(13)の通水孔(13a) の下方は大気に開放されている。ま
た本実施例では、第1実施例と同様に、フイルター(14)
の上方の上金型(12)内穴の断面形状を、縦横それそれが
40mmの平板が成形できる方形断面形状とした。
On the other hand, as shown in the schematic diagram [FIG. 2], the upper metal mold (12) has a cylindrical upper mold (12) and a large number of vertical water passage holes (13a) at the center. The lower die (13) fitted in the lower opening of the die (12) is placed in close contact with the upper surface of the lower die (13), and the outer peripheral edge portion is located above the lower die (13). A casting mold (11) comprising a metal mesh filter (14) sandwiched between the mold (12) and a pressure ram (15) press-fitted into the upper mold (12) from above. I prepared. This casting mold (11) has a structure used in a usual filter press method.
(15) is connected to a pressure device (not shown), while the lower mold
The lower part of the water passage hole (13a) of (13) is open to the atmosphere. Further, in this embodiment, as in the first embodiment, the filter (14)
The cross-sectional shape of the upper mold (12) inner hole above the
It has a square cross-section so that a flat plate of 40 mm can be formed.

【0024】そして、この鋳込み型(11)内に前記スラリ
ー(S) を注入し、フイルター(14)の表面上に着肉層(LA)
が 1mmほど形成された時点で、加圧ラム(15)を圧下さ
せ、スラリー(S) に背圧(P) を付加してフイルター(14)
に向けて加圧した。またこのときの加圧ラム(15)による
背圧(P) は、その加圧開始からの経過時間に比例させ、
単位面積当たり0.4MPa/minの比例定数でもって増大させ
た。
Then, the slurry (S) is injected into the casting mold (11), and the infiltration layer (LA) is formed on the surface of the filter (14).
When about 1 mm was formed, the pressure ram (15) was pressed down and the back pressure (P) was applied to the slurry (S) to filter the filter (14).
Pressurized towards. The back pressure (P) by the pressure ram (15) at this time is proportional to the elapsed time from the start of the pressure,
It was increased with a proportional constant of 0.4 MPa / min per unit area.

【0025】上記条件で加圧を続けて、フイルター(14)
の表面上で着肉層(LA)を成長させ、縦横がそれぞれ40mm
で、厚さが12mmの成形体を得た。次いで、この成形体を
脱型して十分に乾燥させた後に、第1実施例と同様に、
最初の着肉層に相当する下面部 1mmを削り取り、しかる
後に、1800℃の温度で焼結した。
Continue pressurization under the above conditions, and filter (14)
Growing an infiltration layer (LA) on the surface of the
Then, a molded body having a thickness of 12 mm was obtained. Next, after demolding the molded body and sufficiently drying it, as in the first embodiment,
1 mm of the lower surface corresponding to the first inking layer was scraped off, and then sintered at a temperature of 1800 ° C.

【0026】その結果、曲がり変形のない健全な焼結体
が得られた。また続いて、得られた焼結体における SiC
ウイスカの配向性を、第1実施例と同様の手順によって
調査した。その結果、〔表3〕に示すように、本実施例
で得られた焼結体での SiCウイスカの配向性は、第1実
施例のものと同様に、実験の誤差内で均一であることが
確認できた。
As a result, a sound sintered body having no bending deformation was obtained. In addition, subsequently, the SiC in the obtained sintered body
The orientation of the whiskers was investigated by the same procedure as in the first example. As a result, as shown in [Table 3], the orientation of the SiC whiskers in the sintered body obtained in this example is uniform within the error of the experiment, as in the case of the first example. Was confirmed.

【0027】[0027]

【表3】 [Table 3]

【0028】ここで、上記3実施例との対比のために、
前記従来の加圧スリップキャスト法に基づいて、前記実
施例1と同組成で同寸法形状の焼結体を製造した。まず
実施例1と同様に、平均粒径 0.5μm のα-Al203粉末を
79.5wt%、平均直径 1.0μm でアスペクト比10の SiCウ
イスカを11.5wt%、酸化物からなる焼結助剤を 9wt%と
した混合物を、ボールミルにより10時間湿式混合してス
ラリーを製作した。また、溶媒液としては純水を用い、
固形分の濃度が64%になるように添加し、更に、スラリ
ーの分散性を良くするために分散剤を 0.3wt%添加し
た。
Here, for comparison with the above three embodiments,
Based on the conventional pressure slip casting method, a sintered body having the same composition and size as in Example 1 was manufactured. In First same manner as in Example 1, the α-Al 2 0 3 powder having an average particle diameter of 0.5μm
A mixture of 79.5 wt%, 11.5 wt% SiC whiskers with an average diameter of 1.0 μm and an aspect ratio of 10 and 9 wt% oxide sintering aid was mixed by a ball mill for 10 hours to prepare a slurry. Also, pure water is used as the solvent liquid,
A solid content concentration of 64% was added, and 0.3 wt% of a dispersant was further added to improve the dispersibility of the slurry.

【0029】そして、このスラリー(S) を、前記実施例
1と同じ鋳込み型(1) 内に注入し、石膏型(2) の表面上
に着肉層(LA)が 1mmほど形成された時点で、圧媒ガス導
入孔(2a)を経て高圧空気を導入し、スラリー(S) に単位
面積当たり0.6MPaの一定圧力とした背圧(P')を付加して
石膏型(2) に向けて加圧した。
Then, this slurry (S) was poured into the same casting mold (1) as in Example 1, and at the time when the inking layer (LA) was formed on the surface of the plaster mold (2) by about 1 mm. Then, high-pressure air was introduced through the pressure medium gas introduction hole (2a), and a back pressure (P '), which was a constant pressure of 0.6 MPa per unit area, was added to the slurry (S) and directed toward the gypsum mold (2). And pressurized.

【0030】上記一定圧力の加圧を続けて、石膏型(2)
の表面上で着肉層(LA)を成長させ、縦横がそれぞれ40mm
で、厚さが12mmの成形体を得た。次いで、この成形体を
脱型して十分に乾燥させた後に、前記実施例1と同様
に、最初の着肉層に相当する下面部 1mmを削り取り、し
かる後に、1800℃の温度で焼結した。
The gypsum mold (2) is continuously pressed under the constant pressure.
Growing an infiltration layer (LA) on the surface of the
Then, a molded body having a thickness of 12 mm was obtained. Then, after demolding the molded body and drying it sufficiently, the lower surface portion 1 mm corresponding to the first inking layer was scraped off and sintered at a temperature of 1800 ° C. as in Example 1. .

【0031】その結果、得られた焼結体は球面の一部の
ように変形したものとなった。また続いて、得られた焼
結体における SiCウイスカの配向性を、第1実施例と同
様の手順によって調査した。その結果、〔表4〕に示す
ように、この比較例で得られた焼結体での SiCウイスカ
の配向性は、その厚さ方向で著しく変化していた。
As a result, the obtained sintered body was deformed like a part of a spherical surface. Further, subsequently, the orientation of the SiC whiskers in the obtained sintered body was investigated by the same procedure as in the first example. As a result, as shown in [Table 4], the orientation of the SiC whiskers in the sintered body obtained in this comparative example was remarkably changed in the thickness direction.

【0032】[0032]

【表4】 [Table 4]

【0033】すなわち、スラリーに付加する背圧を一定
とする従来技術では、型の吸水速度が成長する着肉層の
厚さに反比例して小さくなり、それに伴いウイスカの配
向度が急速に悪くなる。また、このことは前述の (1)式
により裏付けられる。これに対して、本発明では、スラ
リーに付加する背圧を着肉層の厚さに比例して増大させ
るので、成長する着肉層自体の通液抵抗の増大を解消し
て型の吸水速度を一定に保ち、前記3実施例で確認され
たように、強化繊維として添加されたウイスカ等の配向
度を均一なものとすることができる。
That is, in the conventional technique in which the back pressure applied to the slurry is constant, the water absorption rate of the mold decreases in inverse proportion to the thickness of the growing inking layer, and the orientation degree of the whiskers rapidly deteriorates accordingly. . Moreover, this is supported by the above-mentioned equation (1). On the other hand, in the present invention, since the back pressure applied to the slurry is increased in proportion to the thickness of the inking layer, the increase in the liquid passage resistance of the growing inking layer itself is eliminated and the water absorption speed of the mold is eliminated. Can be kept constant, and as confirmed in the above-mentioned three examples, the degree of orientation of the whiskers added as the reinforcing fibers can be made uniform.

【0034】なお、前記3実施例で用いたα-Al203粉末
およびα-Si3N4粉末の粒径、強化繊維としての SiCウイ
スカ、その直径とアスペクト比は、好ましい一例であっ
て、本発明はこれらに限定されるものではない。例え
ば、原料セラミックス粉の粒度は、 1μm 以上では十分
な焼結強度が得られないので、その平均粒径は 1μm 以
下が望ましい。また、強化繊維として添加する短繊維と
しては、 SiCウイスカの他に、 Si3N4ウィスカ、 TiCウ
ィスカ、 TiNウィスカ、 Al203ウィスカ、Zr02ウィスカ
等を用いることができ、また炭素短繊維も好適である
が、現状の入手容易性、強度および靭性発現の観点から
SiCウイスカが望ましい。また、そのアスペクト比は、
4以下ではプルアウト機構等による靭性強化が十分でな
いので4以上とし、かつ、その長さは、20μm 以上では
該短繊維自体が破壊の起点となり易いので20μm 以下と
し、かつまた直径は、 0.2μm 以下では靭性強化が十分
でなく、 5μm 以上ではアスペクト比との関連で長さが
20μm 以上となるので 0.2μm〜 5μm とすることが望
ましい。更にまた、その添加量は、8vol%以下では靭性
強化が十分でないので8vol%以上とすることが望まし
く、これらの条件を満たす原料を用い、かつ適切な溶媒
液や分散液を選定すれば、本発明に適応する健全なスラ
リーが得られる。
The particle diameters of the α-Al 2 O 3 powder and α-Si 3 N 4 powder used in the above three examples, the SiC whiskers as reinforcing fibers, and the diameter and aspect ratio thereof are preferable examples. However, the present invention is not limited to these. For example, when the particle size of the raw material ceramic powder is 1 μm or more, sufficient sintering strength cannot be obtained, so the average particle size is preferably 1 μm or less. In addition to SiC whiskers, Si 3 N 4 whiskers, TiC whiskers, TiN whiskers, Al 2 0 3 whiskers, Zr 0 2 whiskers, and the like can be used as the short fibers added as the reinforcing fibers. Is also suitable, but from the viewpoint of current availability, strength and toughness development
SiC whiskers are preferred. Also, its aspect ratio is
If it is 4 or less, the toughness is not sufficiently strengthened by the pull-out mechanism or the like, so it is set to 4 or more, and if the length is 20 μm or more, the short fiber itself is a starting point of fracture, so the length is 20 μm or less and the diameter is 0.2 μm or less In the case of 5 μm or more, the
Since it will be 20 μm or more, 0.2 μm to 5 μm is desirable. Further, the addition amount is preferably 8 vol% or more because the toughness is not sufficiently strengthened at 8 vol% or less, and if a raw material satisfying these conditions is used and an appropriate solvent liquid or dispersion liquid is selected, A healthy slurry is obtained which is compatible with the invention.

【0035】[0035]

【発明の効果】以上に述べたように、本発明によれば、
より厚肉な部材であっても、添加した強化短繊維に均一
な配向性を付与でき、もって焼結時に異方収縮が生じて
も、著しい変形や割れ等が発生することがなく、靭性と
強度に優れ、かつ厚さ方向にも均質な材料特性の繊維強
化セラミックスを得ることができる。
As described above, according to the present invention,
Even for thicker members, it is possible to impart uniform orientation to the added reinforcing short fibers, and even if anisotropic shrinkage occurs during sintering, significant deformation or cracking does not occur, and toughness and It is possible to obtain fiber-reinforced ceramics having excellent strength and uniform material properties in the thickness direction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に用いた鋳込み型の概要図であ
る。
FIG. 1 is a schematic view of a casting mold used in an example of the present invention.

【図2】本発明の実施例に用いた別の鋳込み型の概要図
である。
FIG. 2 is a schematic view of another casting mold used in the embodiment of the present invention.

【図3】スリップキャスト法およびフイルタープレス法
による粉末成形体の成形方法の概念説明図である。
FIG. 3 is a conceptual explanatory view of a molding method of a powder compact by a slip casting method and a filter pressing method.

【図4】粉末成形体の焼結時に生じる収縮形態の説明図
である。
FIG. 4 is an explanatory diagram of a shrinkage form that occurs during sintering of the powder compact.

【符号の説明】[Explanation of symbols]

(1) --鋳込み型 (2) --型枠 (2a)--圧媒ガス導入孔 (3) --石膏型 (4) --支持板 (LA)--着肉層 (L) --着肉層厚さ (P) --背圧 (S) --スラリー (1) --Casting mold (2) --Form frame (2a) --Pressurized gas introduction hole (3) --Gypsum mold (4) --Support plate (LA) --Inking layer (L)- -Thickening layer thickness (P) --Back pressure (S) --Slurry

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 母材となすセラミックス粉と強化短繊維
とを溶媒液中に分散混合してなるスラリーを、多孔質体
で形成された型枠内に充填した後、このスラリーに背圧
を付加して前記多孔質体に向けて加圧し、この多孔質体
を通して溶媒液を排出させてその表面上にセラミックス
粉および短繊維の着肉層を成長させることで、前記型枠
内でセラミックス粉と強化短繊維とからなる成形体を形
成し、しかる後、この成形体を高温で焼結する繊維強化
セラミックスの製造方法において、前記成形体の形成に
際してスラリーに付加する背圧を、前記着肉層の厚さの
増加ないしは加圧開始からの経過時間に比例して増大さ
せることを特徴とする繊維強化セラミックスの製造方
法。
1. A slurry obtained by dispersing and mixing ceramic powder, which is a base material, and reinforced short fibers in a solvent liquid, is filled in a mold made of a porous material, and a back pressure is applied to the slurry. By adding and pressurizing toward the porous body, discharging the solvent liquid through the porous body and growing a ceramic powder and an infiltration layer of short fibers on the surface thereof, the ceramic powder in the mold is obtained. In the method for producing a fiber-reinforced ceramics, in which a molded body composed of a reinforced short fiber is formed, and thereafter, the molded body is sintered at a high temperature, a back pressure applied to the slurry when the molded body is formed A method for producing fiber-reinforced ceramics, which comprises increasing the thickness of a layer or increasing it in proportion to the time elapsed from the start of pressurization.
JP6216192A 1994-09-09 1994-09-09 Manufacture of fiber reinforced ceramics Withdrawn JPH0872032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6216192A JPH0872032A (en) 1994-09-09 1994-09-09 Manufacture of fiber reinforced ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6216192A JPH0872032A (en) 1994-09-09 1994-09-09 Manufacture of fiber reinforced ceramics

Publications (1)

Publication Number Publication Date
JPH0872032A true JPH0872032A (en) 1996-03-19

Family

ID=16684732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6216192A Withdrawn JPH0872032A (en) 1994-09-09 1994-09-09 Manufacture of fiber reinforced ceramics

Country Status (1)

Country Link
JP (1) JPH0872032A (en)

Similar Documents

Publication Publication Date Title
CA1317316C (en) Process for the production of porous ceramics using decomposable polymeric microspheres and the resultant product
EP2336098A1 (en) Process for producing part of silicon carbide matrix composite material
EP0217946A1 (en) High density reinforced ceramic bodies and method of making same
CN109279909A (en) A kind of preparation method of high strength carbonizing boron porous ceramics
US6528214B1 (en) Ceramic membrane
WO1988007902A2 (en) Forming of complex high performance ceramic and metallic shapes
CN107935628B (en) Foam silicon carbide ceramic and preparation method thereof
US5443770A (en) High toughness carbide ceramics by slip casting and method thereof
JPS61197474A (en) Manufacture of short fiber reinforced ceramic formed body
JPH03218967A (en) High-strength alumina-zirconia-based ceramics sintered body
EP0410601A2 (en) Composite ceramic material
US5935888A (en) Porous silicon nitride with rodlike grains oriented
CN104086183B (en) The controlled porous Si of a kind of porosity3N4Preparation method
CN114133270B (en) Hollow flat plate ceramic filter membrane and preparation method thereof
JPH0872032A (en) Manufacture of fiber reinforced ceramics
US5928583A (en) Process for making ceramic bodies having a graded porosity
JP6837685B2 (en) Manufacturing method of aluminum alloy-based composite material
US4970181A (en) Process for producing ceramic shapes
JPH01172283A (en) Production of fine porous ceramic body
JP2614749B2 (en) Manufacturing method of porous metal body
JP2958472B2 (en) High strength porous member and method of manufacturing the same
JPH02290211A (en) Ceramic filter and manufacture thereof
JP3619258B2 (en) Manufacturing method of composite reinforcement for functionally graded metal matrix composite
JP3126059B2 (en) Alumina-based composite sintered body
CN111548139A (en) Composite domestic ceramic product with high crack resistance and preparation method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011120