JPH04309762A - Operation method of heat utilization system using hydrogen storage alloy - Google Patents

Operation method of heat utilization system using hydrogen storage alloy

Info

Publication number
JPH04309762A
JPH04309762A JP7659591A JP7659591A JPH04309762A JP H04309762 A JPH04309762 A JP H04309762A JP 7659591 A JP7659591 A JP 7659591A JP 7659591 A JP7659591 A JP 7659591A JP H04309762 A JPH04309762 A JP H04309762A
Authority
JP
Japan
Prior art keywords
heat
temperature
hydrogen
vibration
generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7659591A
Other languages
Japanese (ja)
Other versions
JP2526319B2 (en
Inventor
Takero Sato
佐藤 健朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3076595A priority Critical patent/JP2526319B2/en
Publication of JPH04309762A publication Critical patent/JPH04309762A/en
Application granted granted Critical
Publication of JP2526319B2 publication Critical patent/JP2526319B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the efficiency by achieving coincidence of head generating/ absorbing speed between the sides of generating and discharging a hydrogen occlusion heat of a heat utilizing device using a hydrogen storage alloy. CONSTITUTION:In a cooling cycle, MH-heat medium temperature difference is large on the side of generating a stored heat and small on the side of discharging or absorbing heat. To improve this, a strong vibration is applied on the side of generating a stored heat and the vibration applied is weak on the side of discharging and absorbing heat. As a result, a heat transfer coefficient between the MH and a heat exchanger tube is improved and the rate of the coefficient changes depending on the degree of vibration. The vibration is made stronger at a part with a larger temperature difference and weaker at the part with a smaller temperature difference to make a heating value equal between the sides of generating and discharging the stored heat so that the resulting generation of hydrogen can be made equal therebetween. Thus, the storing time and the discharge time of the heat utilizing apparatus can be equal eventually thereby achieving an operation with higher efficiency.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この技術は水素吸蔵合金と水素の
授受の際の熱吸収あるいは熱発生の現象を冷房あるいは
ヒートポンプなど熱利用装置として用いる工業分野に適
用される。
[Industrial Application Field] This technology is applied to the industrial field where the phenomenon of heat absorption or heat generation during exchange of hydrogen with a hydrogen storage alloy is used as a heat utilization device such as an air conditioner or a heat pump.

【0002】0002

【従来の技術】従来冷房装置として最も広く普及してい
た方式は、熱媒としてフロンを用い〔圧縮〕−〔放熱〕
−〔膨張〕−〔外部からの熱吸収〕のサイクルを繰り返
し、〔外部からの熱吸収〕の際に冷房を行うものであっ
た。この方式は圧縮の際に外部からの動力を必要とする
こと、最近の地球環境問題によってフロン使用に制限が
課せられることなどにより、これらの問題点を持たない
冷房.冷凍装置が要求される時代になった。
[Prior Art] The most widely used conventional cooling system uses fluorocarbons as a heat medium [compression] - [heat dissipation]
The cycle of - [expansion] - [heat absorption from the outside] was repeated, and cooling was performed during the [heat absorption from the outside]. This method requires external power for compression, and recent global environmental issues have imposed restrictions on the use of fluorocarbons, so this method is an air conditioner that does not have these problems. The era has come when refrigeration equipment is required.

【0003】それを満たす技術の一つとして水素吸蔵合
金(以降MHと略す)を利用した冷房装置あるいはヒー
トポンプがある。この方式はMH−水素反応の速度が極
めて速く、小型化の可能性を有していて大きい期待が寄
せられている。しかしながらこの技術の問題点としてM
Hを粉体として用いるため、粉体層としての熱伝導率が
悪く、熱交換量を大きくするために大きい装置が必要と
なり、従来のフロン利用の方法に比して経済性にとぼし
い状態であった。本発明者は、特願平2−282955
において外部よりMH容器に振動を加えることにより熱
交換量が著しく増大しこの点が改良されることを提案し
た。
[0003] One of the technologies that satisfies this requirement is a cooling device or a heat pump that utilizes a hydrogen storage alloy (hereinafter abbreviated as MH). This system has high expectations because the MH-hydrogen reaction speed is extremely high and there is a possibility of miniaturization. However, the problem with this technology is that M
Since H is used as a powder, the thermal conductivity of the powder layer is poor, and large equipment is required to increase the amount of heat exchange, making it less economical than conventional methods using CFCs. Ta. The present inventor has filed Japanese Patent Application No. 2-282955.
proposed an improvement in this point by significantly increasing the amount of heat exchange by applying vibration to the MH container from the outside.

【0004】0004

【発明が解決しようとする課題】MHを用いた冷房装置
において1例を示せば、MHの操作線図は横軸に温度の
逆数をとり、縦軸にMHの示す水素圧力をとり、図1の
ように表される。またここで用いられる高温用合金MH
1と低温合金MH2の温度の変化の例を図2に示す。以
下高温用MHと低温用MHの両者についてその経過を説
明する。
[Problems to be Solved by the Invention] To give an example of a cooling system using MH, the operating diagram of MH has the reciprocal of temperature on the horizontal axis and the hydrogen pressure indicated by MH on the vertical axis. It is expressed as follows. Also, the high temperature alloy MH used here
FIG. 2 shows an example of the temperature change between MH1 and the low temperature alloy MH2. The progress of both the high-temperature MH and the low-temperature MH will be explained below.

【0005】(1)高温用MHでは、サイクルの間で高
温熱媒温度と放熱用熱媒温度の間でMH温度が変動する
のに過ぎない。ここでの時間Thでの移動熱量Qhは次
のように表される。 Qh=Hh×Ah×Δth×Th    ……………(
a)Hh:熱媒とMHの総括伝熱係数、Ah:伝熱面積
、Δth:熱媒とMHの対数平均温度差。
(1) In a high-temperature MH, the MH temperature merely fluctuates between the high-temperature heat medium temperature and the heat radiation heat medium temperature during the cycle. The amount of heat Qh transferred at time Th here is expressed as follows. Qh=Hh×Ah×Δth×Th ……………(
a) Hh: Overall heat transfer coefficient between the heating medium and MH, Ah: Heat transfer area, Δth: Logarithmic average temperature difference between the heating medium and MH.

【0006】(2)それに対して低温用MHでは、水素
吸蔵時はMH温度は低温より次第に温度上昇し、いった
ん放熱用熱媒温度の温度を上回りそれからこの熱媒によ
り冷却される経過をたどる。水素放出時は放出熱により
MHは自ら冷却し冷熱取得用熱媒の温度以下となり、こ
の熱媒により暖められる(熱媒は冷却される)経過を辿
る。 Ql=Hl×Al×Δtl×Tl      …………
(b)Hl:熱媒とMHの総括伝熱面積、Al:伝熱面
積、Δtl:熱媒とMHの対数平均温度差。
(2) On the other hand, in a low-temperature MH, during hydrogen storage, the MH temperature gradually rises from the low temperature, once exceeding the temperature of the heat dissipating heat medium, and then being cooled by this heat medium. When hydrogen is released, the MH cools itself due to the released heat, becomes below the temperature of the heat medium for obtaining cold heat, and is warmed by this heat medium (the heat medium is cooled). Ql=Hl×Al×Δtl×Tl …………
(b) Hl: Overall heat transfer area between the heating medium and MH, Al: Heat transfer area, Δtl: Logarithmic average temperature difference between the heating medium and MH.

【0007】このように高温用MH1と低温用MH2と
では熱媒との温度差が異なり、高温用では比較的温度差
が取れるため、式(a)でしめされるΔthが大きく交
換熱量Qhが大きくなる。一方低温用MH2では図2の
複雑な変化をするので、式(b)のΔtlが大きく取れ
ないためQlも小さくなる傾向となる。したがって図3
のように冷房装置を組み立てて図1のサイクルを行わせ
た場合、Qh>Qlのアンバランスを生じる問題点があ
った。すなわちMH1側では必要以上の水素が発生し、
MH2側ではその水素を吸蔵しきれないという問題が発
生する。具体的な現象としては容器内に反応に関与しな
い過剰の水素が滞留し、過度の圧力上昇の問題や発生熱
量の不均衡を生じる。
[0007] As described above, the temperature difference between the high temperature MH1 and the low temperature MH2 with respect to the heat medium is different, and since a relatively large temperature difference can be obtained for the high temperature MH1, the Δth expressed by equation (a) is large, and the amount of heat exchanged Qh is large. growing. On the other hand, in the case of MH2 for low temperature, the complex changes shown in FIG. 2 occur, so that Δtl in equation (b) cannot be made large, so Ql also tends to become small. Therefore, Figure 3
When an air conditioner is assembled as shown in FIG. 1 and the cycle shown in FIG. 1 is performed, there is a problem that an imbalance of Qh>Ql occurs. In other words, more hydrogen than necessary is generated on the MH1 side,
A problem arises in that the MH2 side cannot absorb all the hydrogen. Specifically, excess hydrogen that does not participate in the reaction remains in the container, causing problems such as excessive pressure rise and an imbalance in the amount of heat generated.

【0008】[0008]

【課題を解決するための手段】この問題を解決しQh=
Qlとする手段としては式(a)(b)において以下の
方法が考えられる。 a.サイクルタイムに変更をくわえる。高温側MH1で
はQが大きくなるのでその分だけ継続時間Tを短くする
ことが考えられる。しかし図3のように通常二組の装置
で連続運転を行う以上、吸蔵−放出時間は一致しなけれ
ばサイクル上冷房が継続しなくなる時間を生じるので、
このままでは連続したサイクルを組むことができない。
[Means for solving the problem] Solve this problem and Qh=
As a means for determining Ql, the following method can be considered in equations (a) and (b). a. Add changes to cycle time. Since Q becomes large on the high temperature side MH1, it is conceivable to shorten the duration T by that amount. However, as shown in Figure 3, since two sets of devices are normally operated continuously, if the storage and release times do not match, there will be a period of time in the cycle during which cooling will not continue.
If this continues, it will not be possible to create a continuous cycle.

【0009】b.MH1とMH2の熱交換器伝熱面積に
差を持たせる。Ah/Al=Δtl/Δthに設計する
ことにより、一応計算上は交換熱量を一致させることが
出来る。しかし運転状態は季節変動、時間変動があり、
いつも一定とは限らない。たとえば放散用熱媒は外気に
熱を捨てるケースが多いが外気温度は時間変動があるの
でQhとQlの量も常に変動し、図1の関係も昼夜間で
変わることになる。この問題を解決するためには熱交換
器など設備を固定するのでは対応できず、外的条件の変
動にもフレキシブルに対応できる方法でなければならな
い。
b. A difference is made between the heat exchanger heat transfer areas of MH1 and MH2. By designing Ah/Al=Δtl/Δth, the amount of heat exchanged can be made to match in calculation. However, operating conditions are subject to seasonal and hourly fluctuations.
It's not always constant. For example, the heat dissipation medium often dissipates heat into the outside air, but since the outside air temperature fluctuates over time, the amounts of Qh and Ql also change constantly, and the relationship shown in FIG. 1 also changes between day and night. In order to solve this problem, fixing equipment such as heat exchangers is not enough; it must be possible to flexibly respond to changes in external conditions.

【0010】c.本発明者は特願平2−282955、
図4においてMH容器の振動加速度と水素発生量の関係
を示した。振動の強さによって水素発生量に変化を生じ
るのは、伝熱量が変化し熱媒からMHへの熱移動量が増
加し、水素発生量が増加することによるものである。従
ってMH1とMH2に与える振動量に差を設けることに
より、内部での伝熱量を異なる値にすることが出来る。 それにより、MH1,MH2容器での熱媒−MH温度差
による伝熱量の違いをカバーすることが可能となる。
c. The inventor has filed Japanese Patent Application No. 2-282955,
FIG. 4 shows the relationship between the vibration acceleration of the MH container and the amount of hydrogen generated. The reason why the amount of hydrogen generated changes depending on the strength of the vibration is that the amount of heat transfer changes and the amount of heat transferred from the heat medium to the MH increases, resulting in an increase in the amount of hydrogen generated. Therefore, by providing a difference in the amount of vibration given to MH1 and MH2, it is possible to set the amount of heat transfer inside to different values. Thereby, it becomes possible to cover the difference in heat transfer amount due to the heat medium-MH temperature difference in the MH1 and MH2 containers.

【0011】[0011]

【作用】図4には振動の強さを横軸にとり、縦軸にMH
と熱媒管のみかけの総括伝熱係数をとり、実験結果を表
示している。振動をMHに加えることにより、伝熱量が
変化するのはMH粉体が流動化して伝熱面に接触するの
で伝熱係数が増大することと、伝熱面より遠い部分に存
在して加熱あるいは冷却されにくいMHも液体のように
流動混合し伝熱面に接近するので温度差Δtが大きく取
れるという二つの効果によるものである。
[Effect] In Figure 4, the horizontal axis shows the vibration strength, and the vertical axis shows the MH.
and the apparent overall heat transfer coefficient of the heat medium tube, and the experimental results are displayed. When vibration is applied to the MH, the amount of heat transfer changes because the MH powder fluidizes and comes into contact with the heat transfer surface, which increases the heat transfer coefficient, and also because the MH powder is present in areas farther from the heat transfer surface and is heated or heated. This is due to two effects: MH, which is difficult to cool, flows and mixes like a liquid and approaches the heat transfer surface, so a large temperature difference Δt can be obtained.

【0012】高温側合金が収納されるMH1においては
図1,図2に示されるように熱媒−MHの温度差は静止
時でも大きくとれる。一方MH2では温度差は途中で逆
転し、逆転した後も温度差として大きくとれない。した
がって加える振動をMH1には弱く、MH2では強く与
えることによりHh<Hlにすることが可能で、この温
度差が相殺されるためにQhとQlを等しくでき、ひい
ては水素交換量を一致させることが出来る。
As shown in FIGS. 1 and 2, in the MH1 in which the high-temperature side alloy is stored, the temperature difference between the heating medium and the MH is large even when the MH is at rest. On the other hand, in MH2, the temperature difference reverses halfway, and even after the reverse occurs, the temperature difference cannot be large. Therefore, by applying vibration weakly to MH1 and strongly to MH2, it is possible to make Hh < Hl, and since this temperature difference is canceled out, Qh and Ql can be made equal, and as a result, the amount of hydrogen exchange can be made equal. I can do it.

【0013】ふたつのMH容器間で水素発生量>吸蔵量
と差がある場合、吸蔵されなかった水素ガスはMH容器
空間部に存在するので圧力は上昇する。圧力上昇すると
MHはさらに水素を吸蔵することになるなど動的に変動
する要素はあるが、問題点として容器の法的な限界圧を
越える場合も生じることが指摘される。
[0013] If there is a difference between the two MH containers (hydrogen generation amount>storage amount), the pressure increases because unoccluded hydrogen gas exists in the MH container space. Although there are factors that change dynamically, such as MH absorbing more hydrogen when the pressure increases, it has been pointed out that the problem is that the legal limit pressure of the container may be exceeded.

【0014】逆に発生量<吸蔵量の場合は容器内圧は減
少し、二つのMH間で水素を移動させようとする駆動力
が減少する。その結果反応そのものに遅れを生じ、それ
に伴う熱発生に支障を生じる。QhとQlを等しく運転
することによりこのような状態を避けることが可能とな
りバランスのとれた運転が可能になる。
On the other hand, if the amount generated is smaller than the amount stored, the internal pressure of the container decreases, and the driving force for moving hydrogen between the two MHs decreases. As a result, there is a delay in the reaction itself, which causes problems in heat generation. By operating Qh and Ql equally, such a situation can be avoided and balanced operation becomes possible.

【0015】具体的な制御方法としては、MH容器間の
水素移動量については、水素流量計を設置しMH1→M
H2あるいはMH2→MH1の値を測定することが出来
るが、現実には水素流量計は高価であり、水素流れ方向
毎に流量計を設置することは支障がある。1台の流量計
で二つの向きの流量を測定するためには、流量計回りに
配管と弁を設け、流れの方向が変わる度に弁の切り替え
を行う必要がある。
As a specific control method, a hydrogen flow meter is installed to control the amount of hydrogen transferred between MH containers, and MH1→M
Although it is possible to measure the value of H2 or MH2→MH1, hydrogen flowmeters are actually expensive, and installing a flowmeter for each hydrogen flow direction is problematic. In order to measure flow rates in two directions with one flowmeter, it is necessary to install piping and valves around the flowmeter, and to switch the valves each time the flow direction changes.

【0016】簡略な方法としては、熱媒のMH容器入出
の温度差と流量をそれぞれのMH容器で測定し、MHに
吸収された熱量および放出された熱量を算出比較するこ
とにより、概略の水素発生量と吸蔵量を知ることができ
る。この場合は同時にMH合金内部の温度を測定してM
H自身の顕熱量変化をも計算に入れる必要がある。
[0016] A simple method is to measure the temperature difference and flow rate of the heating medium in and out of the MH container in each MH container, calculate and compare the amount of heat absorbed by the MH and the amount of heat released. You can know the amount generated and the amount stored. In this case, the temperature inside the MH alloy is measured at the same time.
It is also necessary to take into account changes in the amount of sensible heat of H itself.

【0017】[0017]

【実施例】MHを利用した冷房装置(3000kcal
/h)を次のように構成した。二種類の粉末状MH(低
温側MH2としてランタン−ニッケル、高温側MH1と
してランタン−ニッケル−アルミニウム)それぞれ10
kgずつ準備し、フィンチューブ型熱交換器を内蔵した
圧力容器(届出圧9.9kg/cm2)に収め、図3の
ように配管を設置した。ここでフィンチューブ熱交換器
は4個のMH容器とも等しい伝熱面積を有している。駆
動用熱源として105℃の熱水を用い、水素吸蔵時発生
熱は水を用いて外部に設置した放熱器により大気へ放散
する。また冷熱はMH2より発生するのでこれは有機熱
媒液を用いて冷房用放熱器へ導く。各MH容器には電動
の加振装置を設置し、インバーター制御によりそれぞれ
の振動量を可変ならしめた。加振装置は市販のコンクリ
ート打設用(モータ30W)を使用した。
[Example] Cooling device using MH (3000kcal
/h) was configured as follows. Two types of powdered MH (lanthanum-nickel as low-temperature side MH2, lanthanum-nickel-aluminum as high-temperature side MH1) 10 each
kg each was prepared and placed in a pressure vessel (reported pressure 9.9 kg/cm2) containing a fin-tube heat exchanger, and piping was installed as shown in Figure 3. Here, the fin tube heat exchanger has the same heat transfer area for all four MH containers. Hot water at 105°C is used as the driving heat source, and the heat generated during hydrogen storage is radiated to the atmosphere using water using a radiator installed outside. Also, since cold heat is generated from MH2, it is guided to a cooling radiator using an organic heat transfer liquid. An electric vibrator was installed in each MH container, and the amount of vibration of each was made variable by inverter control. A commercially available vibration device for concrete placement (motor 30W) was used.

【0018】この装置の運転サイクルは図1に示すもの
と基本的に同一であるが、外気温度の変動によって■,
■の熱媒温度が影響を受ける。また駆動用熱源温度も最
高115℃から最低95℃まで不定期に変動することが
わかった。したがってサイクルでの駆動熱源温度と放熱
熱媒温度の差の最大、最小は図5の(1),(2)に示
すものとなり、冷房熱媒温度■も大きい影響を受ける。
The operating cycle of this device is basically the same as that shown in FIG. 1, but due to fluctuations in outside temperature,
■Heating medium temperature is affected. It was also found that the driving heat source temperature fluctuated irregularly from a maximum of 115°C to a minimum of 95°C. Therefore, the maximum and minimum differences between the driving heat source temperature and the radiating heat medium temperature in the cycle are shown in (1) and (2) in FIG. 5, and the cooling heat medium temperature ■ is also greatly affected.

【0019】図5の(1)の運転においてMH1の熱媒
−合金の温度差は比較的大きくとれるのに対してMH2
は■,■の温度差がとれずこのままでは水素吸蔵放出が
遅い状態にあった。そのため、MH1では振動量は0.
5Gと少なめに設定し、MH2では3.5Gと大きく設
定した。また吸蔵放出時間はそれぞれ5分、全サイクル
時間は10分とした。この操作によって得られた冷房熱
量は3080kcal/hrであった。
In the operation shown in (1) of FIG. 5, the temperature difference between the heating medium and the alloy for MH1 is relatively large, whereas for MH2
The temperature difference between ■ and ■ could not be maintained, and hydrogen storage and desorption were slow as it was. Therefore, in MH1, the amount of vibration is 0.
I set it as low as 5G, and set it as high as 3.5G for MH2. The storage and release times were each 5 minutes, and the total cycle time was 10 minutes. The amount of cooling heat obtained by this operation was 3080 kcal/hr.

【0020】図5(2)の場合は駆動熱源温度が低下し
、かつ日中であったので放熱温度が下がらないという悪
い条件での冷房であった。駆動用熱媒温度と放熱用熱媒
温度の差は95°−30°=65°と低下したのでMH
1の振動を1.0Gまで増加した。MH2の振動は図5
(1)と同じく3.5Gであった。吸蔵放出時間はそれ
ぞれ5分、全サイクル時間は10分であった。この操作
によって得られた冷房熱量は2300kcal/hrで
あった。
In the case of FIG. 5(2), the driving heat source temperature was lowered, and since it was daytime, cooling was performed under poor conditions in which the heat radiation temperature did not decrease. The difference between the driving heat medium temperature and the heat radiation heat medium temperature decreased to 95°-30°=65°, so MH
The vibration of 1 was increased to 1.0G. The vibration of MH2 is shown in Figure 5.
Same as (1), it was 3.5G. The storage and release times were 5 minutes each, and the total cycle time was 10 minutes. The amount of cooling heat obtained by this operation was 2300 kcal/hr.

【0021】[0021]

【比較例】駆動用熱媒温度115℃、放熱用熱媒温度2
5℃と図5(1)と同じ温度条件において、同じ装置に
おいて、4個のMH容器の振動を等しく、1.0Gに設
定し冷房運転を行った。
[Comparative example] Driving heat medium temperature: 115°C, heat dissipation heat medium temperature: 2
Under the same temperature conditions as 5° C. and FIG. 5(1), cooling operation was performed in the same apparatus with the vibrations of the four MH containers set equally at 1.0 G.

【0022】[0022]

【発明の効果】本発明によってMH利用冷房装置あるい
はヒートポンプにおいて、高温側合金低温側合金におけ
る水素発生吸蔵量をほぼ等しく制御可能となり、容器内
での過度な圧力上昇あるいは圧力低下により起こる水素
授受量の低下を防ぐことが可能となった。また同時に熱
源温度や放熱温度の変動に伴う、熱出力量の変化もそれ
ぞれのMH容器の振動状況を変えることにより可能とな
った。
Effects of the Invention According to the present invention, in an MH-based cooling device or heat pump, it is possible to control the amount of hydrogen generation and storage in the high-temperature side alloy and the low-temperature side alloy almost equally, thereby reducing the amount of hydrogen exchanged due to excessive pressure rise or pressure drop in the container. It became possible to prevent the decline in At the same time, it has become possible to change the amount of heat output due to changes in heat source temperature and heat radiation temperature by changing the vibration conditions of each MH container.

【0023】従来MHの特性と熱交換器などの仕様など
で決定されていた熱利用システムに新たな制御方法を加
えた点に本発明の意義があり、MH熱利用システムの用
途を大きくひろげるものである。
The significance of the present invention lies in the fact that it adds a new control method to the heat utilization system, which was conventionally determined based on the characteristics of the MH and the specifications of the heat exchanger, etc., and greatly expands the applications of the MH heat utilization system. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は水素吸蔵合金を用いた冷房装置での温度圧力操作
線図、図2は冷房運転中の各部の温度の図、図3は冷房
装置における水素及び熱の流れを示す図、図4は振動加
速度と熱媒−MH間のみかけの総括伝熱係数の関係の例
の図、図5は実施例の冷房装置における温度圧力操作線
図、である。
Figure 1 is a diagram of temperature and pressure operation in a cooling system using a hydrogen storage alloy, Figure 2 is a diagram showing the temperature of each part during cooling operation, Figure 3 is a diagram showing the flow of hydrogen and heat in the cooling system, and Figure 4 is a diagram showing the flow of hydrogen and heat in the cooling system. FIG. 5 is a diagram showing an example of the relationship between vibration acceleration and the apparent overall heat transfer coefficient between the heating medium and the MH, and FIG. 5 is a temperature-pressure operation diagram in the cooling device of the embodiment.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】水素吸蔵合金を用いるヒートポンプ或は冷
凍機を運転するに際し、熱媒と水素吸蔵合金間の温度差
が小さい側で水素吸蔵合金に振動を加えて伝熱係数を大
きくして温度差と伝熱係数の積を高温側および低温側で
一致させるようにしたことを特徴とする水素吸蔵合金を
用いた熱利用システムの運転方法。
Claim 1: When operating a heat pump or refrigerator using a hydrogen storage alloy, vibration is applied to the hydrogen storage alloy on the side where the temperature difference between the heating medium and the hydrogen storage alloy is small to increase the heat transfer coefficient and the temperature is increased. A method of operating a heat utilization system using a hydrogen storage alloy, characterized in that the product of the difference and the heat transfer coefficient is made to match on the high temperature side and the low temperature side.
JP3076595A 1991-04-09 1991-04-09 Operation method of heat utilization system using hydrogen storage alloy Expired - Lifetime JP2526319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3076595A JP2526319B2 (en) 1991-04-09 1991-04-09 Operation method of heat utilization system using hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3076595A JP2526319B2 (en) 1991-04-09 1991-04-09 Operation method of heat utilization system using hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JPH04309762A true JPH04309762A (en) 1992-11-02
JP2526319B2 JP2526319B2 (en) 1996-08-21

Family

ID=13609670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3076595A Expired - Lifetime JP2526319B2 (en) 1991-04-09 1991-04-09 Operation method of heat utilization system using hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JP2526319B2 (en)

Also Published As

Publication number Publication date
JP2526319B2 (en) 1996-08-21

Similar Documents

Publication Publication Date Title
Wang et al. Performance researches and improvements on heat regenerative adsorption refrigerator and heat pump
JPH01252838A (en) Latent heat accumulative cooling device
CN104538821A (en) Laser temperature control system and method
CN104677158A (en) Forced cooling device based on latent heat exchanging
Gao et al. Study on MnCl2/CaCl2–NH3 two-stage solid sorption freezing cycle for refrigerated trucks at low engine load in summer
He et al. Efficiency enhancement of a loop thermosyphon on a mixed-wettability evaporator surface
Cao et al. Experimental study on the temperature management behaviours of a controllable loop thermosyphon
JP2004319658A (en) Electronic cooler
CN106935931A (en) The rigid flat tube of hot pressing conversion and thermal management device of battery
Liu et al. Energy and exergy analysis of a novel direct-expansion ice thermal storage system based on three-fluid heat exchanger module
JPH04309762A (en) Operation method of heat utilization system using hydrogen storage alloy
KR20030029071A (en) The Cooler using PCM(Phase change material) and Thermoelectric module
Michel et al. First experimental characterization of CaCl2 coated heat exchanger for thermochemical heat transformer applications in industrial waste heat recovery
Masche et al. Improving magnetic cooling efficiency and pulldown by varying flow profiles
CN215819285U (en) Temperature control cooling system
JPH0821679A (en) Electronic refrigeration type drinking water cooler
Jin et al. Simulation of battery simultaneous cooling based on the dual fluid medium system
CN210897481U (en) Device for adjusting hydrogen release rate of alloy hydrogen storage equipment
Inaba et al. Numerical simulation for fin effect of a rectangular latent heat storage vessel packed with molten salt under heat release process
Gan et al. Development and experimental study of a 3-dimensional enhanced heat pipe radiator for cooling high-power electronic devices
CN213578196U (en) System for cooling circulating water based on semiconductor refrigeration technology
Li et al. A basic study on Thermosyphon-type thermal storage unit (TSU) using Nanofluid as the heat transfer medium
CN209418981U (en) A kind of stainless steel cooling chamber for laser semiconductor refrigeration cooling-water machine
JPS63243691A (en) Heat accumulating type heat exchanger
JP2000111286A (en) Cold heat storage device and cold heat storage element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960123