JPH0430957A - Control method for grinder - Google Patents

Control method for grinder

Info

Publication number
JPH0430957A
JPH0430957A JP13481690A JP13481690A JPH0430957A JP H0430957 A JPH0430957 A JP H0430957A JP 13481690 A JP13481690 A JP 13481690A JP 13481690 A JP13481690 A JP 13481690A JP H0430957 A JPH0430957 A JP H0430957A
Authority
JP
Japan
Prior art keywords
grinding
speed
sharpness
grindstone
spark
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13481690A
Other languages
Japanese (ja)
Other versions
JP2940073B2 (en
Inventor
Ryoichi Suzuki
良一 鈴木
Yasutami Matsumoto
安民 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP13481690A priority Critical patent/JP2940073B2/en
Publication of JPH0430957A publication Critical patent/JPH0430957A/en
Application granted granted Critical
Publication of JP2940073B2 publication Critical patent/JP2940073B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To achieve the prevention from burning in grinding and the improvement in efficiency, by varying a grinding speed in accordance with the change in the grinding wheel sharpness with the grinding wheel sharpness being found on each grinding cycles. CONSTITUTION:A grinding speed is operated by the signals transmitted from a grinding wheel diameter arithmetic part 2 and grinding force detection part 3 by an arithmetic control part 1 and the result thereof is output to a notch control part 4. The grinding wheel arithmetic part 2 divides the grinding wheel diameter in three large, medium and small ranges, for instance, and sets the grinding start speed and steady grinding speed corresponding thereto like starting speed and steady speed. Namely the grinding wheel sharpness is found on each grinding cycles from the grinding speed detection value during grinding and grinding force detection value and the grinding speed is made to be controlled in proportion to this grinding wheel sharpness. Consequently it is effective very much as a grinding seizure counter measure and grinding efficiency and the improvement of the working accuracy of a work can be realized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は円筒状あるいは円柱状ワークの内、外面を研削
する研削盤の制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of controlling a grinding machine that grinds the inner and outer surfaces of a cylindrical or cylindrical workpiece.

(従来技術) この種の研削盤において砥石の切味K(金属除去パラメ
ータ)は研削送り速度(研削速度)と同様に加工精度や
研削サイクルタイムに大きな影響を与えるが、砥石切味
は砥石の種類、砥石径あるいはツルーイング、ドレッシ
ング等により変化する。切味変動の大きい砥石、例えば
CBN砥石を用いて研削を行う場合、一般にドレス後や
砥石径大の使用傾城では砥石切味は悪い、この状態で定
常の研削送りを実行すると研削力が過大となって研削焼
けが発生することが多い。第7図(a)は砥石切味の差
が研削力の差となることを示すための研削力と研削速度
の関係を示した図である。図中Aは砥石径が小で砥石切
味が良く、Bは砥石径大、砥石切味が悪い状態である。
(Prior art) In this type of grinding machine, the cutting quality K (metal removal parameter) of the grinding wheel has a great influence on the machining accuracy and grinding cycle time, as does the grinding feed rate (grinding speed), but the cutting quality of the grinding wheel It varies depending on the type, grinding wheel diameter, truing, dressing, etc. When grinding with a grindstone that has large variations in cutting quality, such as a CBN grindstone, the cutting quality of the grindstone is generally poor after dressing or when the grindstone is tilted to a large diameter, and if steady grinding feed is performed in this condition, the grinding force will be excessive. This often results in grinding burn. FIG. 7(a) is a diagram showing the relationship between grinding force and grinding speed to show that a difference in grindstone cutting quality results in a difference in grinding force. In the figure, A shows a condition in which the diameter of the grindstone is small and the sharpness of the grindstone is good, and B shows a state in which the diameter of the grindstone is large and the sharpness of the grindstone is poor.

CBN砥石は研削を重ねるごとに切味が向上してくるこ
とが経験的に知られているが、第7図(a)ではBから
Aの方向に直線の傾きが変化してくる。粗研削速度をv
lに設定すると切味良の時はF、の研削力が、また切味
層の場合はF2の研削力がかかることになる。
It is known from experience that the cutting quality of a CBN grindstone improves with repeated grinding, but in FIG. 7(a), the slope of the straight line changes from B to A. Rough grinding speed v
When set to 1, a grinding force of F is applied when the cutting quality is good, and a grinding force of F2 is applied when the cutting layer is sharp.

F2 >F、ではワーク加工面には大きな力が発生する
。:れらは削る力よりも砥石のボンド面で擦る力の方が
大きいため研削熱による研削焼けの原因となり易い(第
7図(C)のC,D箇所)。そのため通常切味が良好に
なるまで経験的なスキップ数を設けて第7図(b)、 
(C)に示すように段階的に研削速度を上昇させている
When F2 >F, a large force is generated on the machined surface of the workpiece. : Since the force of rubbing against the bond surface of the grindstone is greater than the force of grinding, it is easy to cause grinding burn due to grinding heat (points C and D in Fig. 7 (C)). Therefore, we usually set an empirical number of skips until the cutting quality becomes good, as shown in Fig. 7(b).
As shown in (C), the grinding speed is increased in stages.

第8図はフィードレート研削でなおかつ仕上研削力が一
定に制′4nされている状態でのスパークアウト研削時
間と仕上研削力との関係を示したものであり、砥石切味
による研削力の差が寸法変化となることを示す例である
。Aは切味が良い場合、Bは砥石切味が悪い場合である
。仕上送り完了から送り停止後10秒のスパークアウト
研削に移行し、10秒後の研削力はF、およびF2とな
り、ワーク寸法変化は直径当り(F2−Fl )X2X
1/ktIm程度の差となって現れる。なおkは砥石軸
バネ定数(KG/μm)である。
Figure 8 shows the relationship between the spark-out grinding time and the final grinding force when feed rate grinding is used and the final grinding force is controlled to a constant level. This is an example showing that there is a dimensional change. A is a case where the cutting quality is good, and B is a case where the cutting quality of the whetstone is poor. From the completion of finishing feed to spark-out grinding 10 seconds after stopping feed, the grinding force after 10 seconds becomes F and F2, and the workpiece dimensional change is (F2-Fl)X2X per diameter.
This appears as a difference of about 1/ktIm. Note that k is the grindstone shaft spring constant (KG/μm).

(発明が解決しようとする課′I3) 上述したように従来の研削方法は、砥石切味に関係なく
経験的に設定されたスキップ数で研削速度を決定してい
たので、どうしても安全側な速度設定となり、研削能率
が制限される。これに対して砥石切味を計算し研削力を
変化させる方法もあるが、研削力制御では軸受外輪の内
面溝研削の場合、第9図に示すようにワーク10の溝工
ンジ部10aに砥石9が当り、局部的に過大な力がかか
り易く、ワークに研削焼けが発生する。また従来のよう
にスパークアウト時間を経験によって決める方法では、
フィードレート研削の場合、微妙に寸法変化を起すとい
う問題があった。またCBN砥石の切味は砥石径は勿論
のこと、ンルアーの状態変化等によっても太き(左右さ
れ、ツルーイングやドレッシングにも影響され易く、砥
石切味を成る範囲に制御するのは非常に大変であった。
(Problem to be solved by the invention 'I3) As mentioned above, in the conventional grinding method, the grinding speed was determined by the number of skips set empirically regardless of the sharpness of the grinding wheel, so it was inevitable to set the speed on the safe side. settings, limiting grinding efficiency. On the other hand, there is a method of calculating the sharpness of the grinding wheel and changing the grinding force, but in the case of grinding the inner groove of the outer ring of the bearing, in the case of grinding force control, the grinding force is applied to the grooved part 10a of the work 10 as shown in FIG. 9 hits, and excessive force is likely to be applied locally, causing grinding burn on the workpiece. In addition, the conventional method of determining the spark-out time based on experience,
In the case of feed rate grinding, there was a problem in that it caused slight dimensional changes. In addition, the cutting quality of a CBN grindstone is affected not only by the diameter of the grinding wheel, but also by changes in the condition of the lure, etc., and is easily affected by truing and dressing, making it extremely difficult to control the sharpness within a certain range. Met.

本発明はこのような問題に鑑み、砥石切味により自動的
に研削速度、ツルーイング判定を行うようにし、これに
よってCBN砥石の場合においても研削能率向上、効率
向上を図り得、また同様に砥石切味に応じて自動的にス
パークアウト時間を制御することによりワークの加工精
度および研削能率の向上を図り得る研削制御方法を提供
することにある。
In view of these problems, the present invention automatically determines the grinding speed and truing based on the grinding quality of the grinding wheel, thereby improving the grinding efficiency and efficiency even in the case of CBN grinding wheels, and also improves the grinding efficiency of the grinding wheel. It is an object of the present invention to provide a grinding control method capable of improving workpiece machining accuracy and grinding efficiency by automatically controlling spark-out time according to taste.

(課題を解決するための手段) 本発明による研削盤の制御方法は、研削中の研削速度検
出値および研削力検出値から各研削サイクル毎に砥石切
味を求め、この砥石切味に比例して研削速度を制?!l
(増減)するようにしたものである。
(Means for Solving the Problems) A method for controlling a grinding machine according to the present invention determines the grinding wheel cutting quality for each grinding cycle from the grinding speed detection value and the grinding force detection value during grinding, and calculates the grinding wheel cutting quality proportional to this grinding wheel cutting power. Can you control the grinding speed? ! l
(increase/decrease).

また本発明によれば、ツルーインク後の前記砥石切味を
モニタし、該砥石切味が予め定めたヅーンに入るように
ツルーイング、ドレッシングを実行することを特徴とす
る研削制御方法が提供される。
Further, according to the present invention, there is provided a grinding control method characterized by monitoring the sharpness of the grindstone after true ink, and performing truing and dressing so that the sharpness of the grindstone falls within a predetermined range.

さらに本発明によれば、スパークアウト中の研削力をモ
ニタし、該研削力が目標値まで下がった時点で砥石を急
速後退させるかあるいはスパークアウト時間が成る設定
値よりずれた場合に、スパーアウト研削力を変更すると
ともに切り上り点補正(寸法調整)をすることを特徴と
する研削制御方法が提供される。
Furthermore, according to the present invention, the grinding force during spark-out is monitored, and when the grinding force falls to a target value, the grinding wheel is rapidly retreated, or when the spark-out time deviates from the set value, the spark-out is performed. A grinding control method is provided that is characterized by changing the grinding force and correcting the cut-up point (dimensional adjustment).

また本発明によれば、研削中の研削速度検出値および研
削力検出値から各研削サイクル毎に砥石切味を求め、該
砥石切味に応じて研削中のスパークアウト時間を制御す
ることを特徴とする研削力制御方法が提供される。
Further, according to the present invention, the grinding wheel cutting quality is determined for each grinding cycle from the grinding speed detection value and the grinding force detection value during grinding, and the spark-out time during grinding is controlled according to the grinding wheel cutting quality. A grinding force control method is provided.

(作用) 本発明によれば、砥石切味により切込速度を変化させる
ため研削焼は対策として非常に有効であるほか、研削能
率の向上が図れる。また砥石切味をモニタしてツルーイ
ングおよびドレッシング後の砥石性状つまり砥石切味を
成る決めた範囲内に制御することができる。またスパー
クアウト時間も砥石切味により自動的に制御されること
により、ワークの加工精度を安定に保つことができる。
(Function) According to the present invention, grinding is very effective as a countermeasure because the cutting speed is changed depending on the sharpness of the grindstone, and the grinding efficiency can be improved. Furthermore, by monitoring the sharpness of the grindstone, the properties of the grindstone after truing and dressing, that is, the sharpness of the grindstone, can be controlled within a predetermined range. In addition, the spark-out time is automatically controlled by the sharpness of the grindstone, so that the machining accuracy of the workpiece can be maintained stably.

(実施例) 次に本発明の実施例を図面を参照して説明する。(Example) Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明に係る制御方法を実施する場合の制御系
統を示すブロック図、第2図は本発明に適用される内面
研削盤の平面図である。本発明は前述のように研削速度
および研削力を検出して砥石切味を演算し、この砥石切
味に比例して研削速度を増減する。具体的には演算制御
部1で砥石径演算部2および研削力検出部3からの信号
により後述の演算式にしたがって研削速度を演算し、そ
の結果を切込制御部4へ出力する。砥石径演算部2は例
えば砥石径を大、中、小の3つの範囲に分割し、これに
対応した研削開始速度、定常研削速度を開始速度(中)
、定常速度(中)のように設定する。勿論砥石径はさら
に細かく多段階に分け、それに対応した速度を設定して
もよい、これらを第7図(司に示せば砥石径大では研削
速度Vt、砥石径小では研削速度v1のように研削速度
を変化させて、研削時の研削力を低くし、研削焼けが発
生しにくい設定とする。砥石径大で研削速度Vのままだ
と研削力FはF2のように大となる。これをさけるため
砥石径大では研削速度v2とする。
FIG. 1 is a block diagram showing a control system for implementing the control method according to the present invention, and FIG. 2 is a plan view of an internal grinder to which the present invention is applied. As described above, the present invention detects the grinding speed and grinding force, calculates the grindstone cutting quality, and increases or decreases the grinding speed in proportion to the grindstone cutting quality. Specifically, the arithmetic control section 1 calculates the grinding speed according to a calculation formula described later based on signals from the grindstone diameter calculation section 2 and the grinding force detection section 3, and outputs the result to the cutting control section 4. For example, the grindstone diameter calculation unit 2 divides the grindstone diameter into three ranges: large, medium, and small, and sets the corresponding grinding start speed and steady grinding speed to the start speed (medium).
, set like steady speed (medium). Of course, the diameter of the grinding wheel can be further divided into multiple stages, and the corresponding speed can be set. By changing the grinding speed, the grinding force during grinding is lowered and settings are made to prevent grinding burn from occurring.If the grinding wheel diameter is large and the grinding speed remains at V, the grinding force F will be large as F2. In order to avoid this, the grinding speed is set to v2 when the diameter of the grinding wheel is large.

また使用中の砥石径の変化量はツルーイング時の切込ス
ライド位宜の変化量で間接的に判断できるから、これに
より砥石径の大小を判定する。切込速度を一定に制御す
るための切込制御部4は速度指令信号を切込送り制御部
5へ出力する。切込送り制御部5は切込モータ7(第2
図)を駆動し、研削部6は第2図の切込スライド8.砥
石9を動作させ、ワークIOに対する砥石9の切込を行
う。
Further, since the amount of change in the diameter of the grinding wheel during use can be indirectly determined by the amount of change in the cutting slide position during truing, the size of the diameter of the grinding wheel can be determined based on this. A cutting control section 4 for controlling the cutting speed to a constant value outputs a speed command signal to a cutting feed control section 5. The cutting feed control section 5 is connected to the cutting motor 7 (second
), and the grinding section 6 drives the cutting slide 8. in FIG. The grindstone 9 is operated to cut into the workpiece IO.

11は砥石軸モータ、12は砥石軸、13は砥石送りモ
ータである。
11 is a grindstone shaft motor, 12 is a grindstone shaft, and 13 is a grindstone feed motor.

ツルーイング完了後、研削開始速度例えば前記砥石径に
対応する研削速度が設定され、研削が開始されるが、こ
の場合開始速度設定は粗速度、仕上速度設定の2つによ
り研削が開始される。研削中は研削力検出部3によりそ
れぞれの研削力が測定され、以下に示す演算式により砥
石切味Kが算出される。
After truing is completed, a grinding start speed is set, for example, a grinding speed corresponding to the grindstone diameter, and grinding is started. In this case, grinding is started using two starting speed settings: a rough speed setting and a finishing speed setting. During grinding, each grinding force is measured by the grinding force detection unit 3, and the grindstone cutting edge K is calculated using the calculation formula shown below.

■、・・・粗速度設定(vw/ S )、■、・・・仕
上速度設定(msr/ s )、Fll・・・粗研削力
(KG)、 F、・・・仕上研削力(K(1,)、 Dw・・・ワーク仕上寸法(ms+) 、B・・・研削
中(am )、これらはすべて演算制御部1で実行され
る。砥石切味Kが求まったならば、次にこの砥石切味K
に基づいて以下の演算式により粗研削速度■1.仕上研
削達度■、が演算部1で自動的に算出される。
■,...Rough speed setting (vw/s), ■,...finishing speed setting (msr/s), Fll...rough grinding force (KG), F,...finishing grinding force (K( 1,), Dw...workpiece finishing dimension (ms+), B...during grinding (am), all of these are executed by the arithmetic control unit 1.Once the grinding wheel sharpness K has been determined, next this Whetstone sharpness K
Based on the following calculation formula, the rough grinding speed ■1. The finish grinding degree (■) is automatically calculated by the calculation unit 1.

Vr = V++oX     (mm/ s )K 
mt? Vr  = VFIIX       (mm/ s 
)K□。
Vr = V++oX (mm/s)K
mt? Vr = VFIIX (mm/s
)K□.

■1゜・・・定常状態仕上り速度(ms/ S )、■
、。・・・定常状態仕上送り速度(am/ s )、K
、E、−・・定常状態切味(IIII+”/ K G−
s )、上式により砥石切味が定常状態に到達するまで
は砥石切味に比例した速度で研削し、−度定常状態にな
ったならばその後は定常速度で研削を続行する。
■1゜... Steady state finishing speed (ms/S), ■
,. ... Steady state finishing feed rate (am/s), K
, E, -...Steady state sharpness (III+"/K G-
s) According to the above formula, grinding is performed at a speed proportional to the grindstone cutting quality until the cutting edge of the grindstone reaches a steady state, and once it reaches a -degree steady state, grinding is continued at a steady speed.

第3図(a)〜(C)はそれぞれ研削個数(スキップ数
N)と砥石切味に、研削速度■、および研削力Fとの関
係を示したものである。上式の砥石切味には研削個数N
個の移動平均を用いることも考えられるし、速度の上昇
率を制限することもあり得る。
FIGS. 3(a) to 3(C) show the relationship between the number of grinding pieces (number of skips N), the sharpness of the grindstone, the grinding speed (2), and the grinding force F, respectively. The number of grinding pieces N is required for the above type of whetstone sharpness.
It is also conceivable to use a moving average of 1, or to limit the rate of increase in speed.

かくして第3図(b)、 (C)に示すように変化し、
第7図(b)、 (C)に比較して、なだらかにかつ能
率よく研削を遂行することができる。K ll!、とし
ては砥石切味が安定した状態の定常速度(■7゜、■、
。)で研削したときの砥石切味を用いる(第3図(a)
)。
In this way, it changes as shown in Figure 3(b) and (C),
Compared to FIGS. 7(b) and 7(C), grinding can be performed smoothly and efficiently. Kll! , is the steady speed at which the sharpness of the whetstone is stable (■7°, ■,
. )) (Figure 3 (a))
).

本発明の他の形態においては、ツルーイング後の砥石切
味をモニタし、ツルーイング、ドレッシングの制御を行
って砥石切味が予め定めたゾーンに入るようにする。C
BN砥石はツルーイングによって切味が悪くなることを
経験している。ツルーイング完了後ワークを研削し砥石
切味Kを求め、前記の特性を利用する。砥石切味には、
K〉最大設定切味の場合、ツルーイング不足と判定し、
もう−度ツルーイングを実行するにれらはすべて演算制
御部1で実行される。予め決めたNテロツルーイングし
てもK〉最大設定切味であればツルーイングNGと判定
し研削焼は防止のためサイクル終了とする。一方ツルー
イング過多でK〈最小設定切味となった場合はドレッシ
ングを実行し、砥石切味を出す。同様にドレンシング完
了後ワークを研削し、砥石切味Kを求め、ドレッシング
不足と判定し、予め決めておいたND回トレンシングし
てもK〈最小設定切味であればドレッシングNGと判定
し焼は防止のためサイクル終了とする。
In another embodiment of the present invention, the sharpness of the whetstone after truing is monitored, and the truing and dressing are controlled so that the sharpness of the whetstone falls within a predetermined zone. C
I have experienced that the cutting quality of BN whetstones deteriorates due to truing. After truing is completed, the workpiece is ground to obtain the grindstone cutting edge K, and the above-mentioned characteristics are utilized. For the sharpness of the whetstone,
K〉In the case of maximum setting sharpness, it is determined that truing is insufficient,
All operations for executing truing are executed by the arithmetic control unit 1. Even if the predetermined N-tero truing is performed, if K〉maximum setting sharpness, the truing is determined to be NG and the cycle is terminated to prevent grinding burns. On the other hand, if excessive truing results in K<the minimum setting sharpness, dressing is performed to bring out the sharpness of the whetstone. Similarly, after the completion of drenching, the workpiece is ground, the grindstone cutting quality K is determined, and dressing is determined to be insufficient. To prevent this, the cycle is terminated.

これら一連の流れを第4図にフローチャートとして示す
。第5図は砥石切味判定によるツルーイングゾーン決定
方法を説明するための図であり、ツルーイング開始から
実研削開始までのワーク個数と砥石切味の関係を示して
いる(同図■−■−■−■の過程)。図示の例は4回目
にツルーイングの所定判定ゾーンに砥石切味が制御され
た場合である。これら一連のサイクルによりツルーイン
グ後の砥石切味を最小設定切味〈砥石切味〈最大設定切
味の状態にすることができる。
A series of these steps is shown as a flowchart in FIG. Figure 5 is a diagram for explaining the method of determining the truing zone by judging the sharpness of the grinding wheel, and shows the relationship between the number of workpieces and the sharpness of the grinding wheel from the start of truing to the start of actual grinding (Fig. −■ process). The illustrated example is a case where the grindstone sharpness is controlled to fall within the predetermined truing determination zone for the fourth time. Through this series of cycles, the sharpness of the whetstone after truing can be brought into a state of minimum set sharpness <grindstone sharpness <maximum set sharpness.

本発明の他の形態としてスパークアウト中の研削力をモ
ニタし、スパークアウト完了時の研削力が目標値まで下
がった時点で切込を象速後退させる例を以下に示す。仕
上研削完了後スパークアウト時間と砥石切味との関係に
より、ワーク寸法が変化することは既に述べたが、この
対策としてスパークアウト完了の研削力を一定にすれば
ワーク寸法も揃うことは明白である。この例としてスパ
ークアウト時間と研削力の関係を第6図(a)、 (b
)に示す。F、は仕上研削力であり、切込送りが停止し
てからスパークアウトが開始する。F、はスパークアウ
ト完了点となる研削力であり、第1図の研削力検出部3
により随時演算制御部】に取り込まれ、研削力とFzの
比較が行われ、両者の一致が確認されると、切込制御部
4に対して急速後退の指令が発せられ、切込送り制御部
5により切込モータ7が駆動されて切込スライド8は後
退を開始し、研削原点に戻る。かくして第6図(a)の
ように砥石切味が良、悪の状態でも砥石切味による寸法
変化の影響が少なくなる。ただし砥石切味によりスレッ
ショルドフォース(研削可能な限界研削力)は第7図(
a)に示すようにFat→F o+のように変動し、F
#とF o+が近づいてくると研削が思うように進行し
、なくなる。ワークの真円度、びびりを良くするために
はF#はスレッショルドフォースにある程度は近づけた
方がよい。この様子を第6図(a)で示せば、スパーク
アウト延長時間分βが長くなり、サイクルタイムの変動
が大きくなることが考えられる。この対策として、以下
のようにF#を変更する。変更の目安としてスパークア
ウト時間T&(FFからFIまで下がる時間)を計測し
、F#を変更する。変更方法はまずスパークアウト下限
時間T L < T # <スパークアウト上限時間T
、となるようにα1なる予め決められたオフセント量を
F、に加算または減算してT、を制御する。T、はN個
の移動平均を用いることも考えられる。
As another embodiment of the present invention, an example in which the grinding force during spark-out is monitored and the depth of cut is retracted at a constant speed when the grinding force at the completion of spark-out has decreased to a target value will be shown below. It has already been mentioned that the dimensions of the workpiece change depending on the relationship between the sparkout time and the sharpness of the grinding wheel after finish grinding is completed, but it is clear that as a countermeasure to this, the dimensions of the workpiece will be the same if the grinding force at the completion of sparkout is kept constant. be. As an example of this, the relationship between spark-out time and grinding force is shown in Figures 6 (a) and (b).
). F is the finish grinding force, and spark-out starts after cutting feed stops. F is the grinding force at which the spark-out is completed, and the grinding force detector 3 in Fig. 1
The grinding force and Fz are compared with each other, and when it is confirmed that the two match, a rapid retraction command is issued to the cutting control unit 4, and the cutting force is input to the cutting feed control unit. 5 drives the cutting motor 7, and the cutting slide 8 starts to retreat and returns to the grinding origin. In this way, even when the sharpness of the grindstone is good or bad as shown in FIG. 6(a), the influence of dimensional changes due to the sharpness of the grindstone is reduced. However, depending on the sharpness of the grindstone, the threshold force (the limit of grinding force that can be ground) is shown in Figure 7 (
As shown in a), it fluctuates as Fat→F o+, and F
As # and F o+ get closer, the grinding progresses as expected and disappears. In order to improve the roundness and vibration of the workpiece, it is better to keep F# somewhat close to the threshold force. If this situation is shown in FIG. 6(a), it is conceivable that the spark-out extension time β becomes longer and the cycle time fluctuation becomes larger. As a countermeasure to this, change F# as follows. As a guideline for change, measure the spark-out time T& (the time it takes to drop from FF to FI) and change F#. How to change: First, spark out lower limit time T L < T # < Spark out upper limit time T
, T is controlled by adding or subtracting a predetermined offset amount α1 to F so that . It is also possible to use N moving averages for T.

T#≧TljでFグ’−Fν+α、(KG)Ta≦TL
でF 、′= F 、−α、(KG)上記条件は連続N
回でF、変更となることも考えられる。上記の演算はす
べて演算制御部1で実行される。次にF、を変更したと
きのワーク寸法の制御について、寸法変化分は直径換算
で以下に示す式により求める。
T#≧Tlj, Fgu'-Fν+α, (KG)Ta≦TL
So F ,'= F , -α, (KG) The above condition is continuous N
It is also possible that it will be changed to F in the second round. All of the above calculations are executed by the calculation control section 1. Next, regarding the control of the workpiece dimensions when F is changed, the dimensional change is calculated in terms of diameter using the formula shown below.

Δd=(F#’−F#)Xi/kX2 (μm)k・・
・スピンドルバネ定数(KG/μm)この直径換算変化
量を補正するため仕上送り完了点57点を変更する。変
更後の仕上送り完了点をSt’ とすれば S T’ −3r−Δd (μm) となり、F&を変更した分の寸法補正は仕上送り完了点
で制御する。上記演算はすべて演算制御部lで実行され
る。か(してToにより安定したスパークアウトを実行
できる。これらの様子は第6図(b)、 (C)に示す
とおりである。
Δd=(F#'-F#)Xi/kX2 (μm)k...
・Spindle spring constant (KG/μm) In order to correct this amount of change in diameter conversion, the 57 finishing feed completion points are changed. If the finish feed completion point after the change is St', it becomes ST' -3r-Δd (μm), and the dimensional correction corresponding to the change in F& is controlled at the finish feed completion point. All of the above calculations are executed by the calculation control unit l. (Thus, stable spark-out can be executed by To. These situations are shown in Fig. 6(b) and (C).

また砥石切味Kによりスパークアウト時間T0を変化さ
せても同様な対策が可能である。この例を以下に示す。
A similar measure can also be taken by changing the spark-out time T0 depending on the sharpness K of the grindstone. An example of this is shown below.

仕上研削力からスパークアウト中に変化する研削力をF
#とすると、以下の式に示すようにスパークアウトによ
り研削力F、の変化は F a = (F F   F 、、6)e−”に’+
F、、。
The grinding force that changes from finish grinding force to sparkout is F.
#, the change in grinding force F due to sparkout is F a = (F F F ,, 6) e-” as shown in the following formula.
F...

2に−に 上式中のLをスパークアウト時間T0とすれば砥石切味
KによりToを変化させてF#を一定にすることができ
る。Toの算出は上式からtを解いて として求められる。これらはすべて演算制御部1で算出
され、Toが新たなスパークアウト時間として切込制御
部4に入力される。かくして第6図(a)のようにTo
を変化させてF、をほぼ一定に制御し、砥石切味による
寸法変化の影響を少なくする。上式の砥石切味にはN個
の移動平均を用いることも考えられるし、スパークアウ
ト時間の制限を設けることもできる。この方法において
もFdがF n@に近づきすぎるため、Toが長くなり
すぎる欠点があり得る。この場合にはスパークアウト完
了点の力F==、仕上完了点S7を変更する。
Second, if L in the above equation is set as the spark-out time T0, F# can be kept constant by changing To with the sharpness K of the grindstone. To is calculated by solving t from the above equation. These are all calculated by the arithmetic control section 1, and To is input to the cutting control section 4 as a new spark-out time. Thus, as shown in Figure 6(a), To
By changing F, it is controlled to be almost constant, and the influence of dimensional changes due to grindstone cutting quality is reduced. It is also conceivable to use N moving averages for the above-mentioned grindstone cutting quality, and it is also possible to set a limit on the spark-out time. Even in this method, since Fd is too close to Fn@, there may be a drawback that To becomes too long. In this case, the force F== at the spark-out completion point and the finish completion point S7 is changed.

F、。は(VIFF−V、F、)/ (vえ−VF)か
ら求め、F、>Fa >F、。となるF −= F−o
+α。
F. is found from (VIFF-V, F,)/(ve-VF), F,>Fa>F. F −= F−o
+α.

を求める。α。は予め決めた定数である。これによりT
oをほぼ一定におさえることができる。
seek. α. is a predetermined constant. This allows T
o can be kept almost constant.

次に砥石切味Kに反比例してスパークアウト時を制御し
、F、を一定にしてワーク寸法の変化を小さくする方法
を以下に示す。第6図(a)のように砥石切味によりス
パークアウト時間を変化させてスパークアウト完了時の
研削力F、をほぼ一定の所へ制御する。制御すべきスパ
ークアウト時間T0は次式 %式%(1) ただしT・・・定常状態(切味安定、定常研削速度)で
研削したときの最適スパークアウト 時間、 K IEF・・・定常状態での砥石切味、CBN砥石は
ツルーイング後は切味が悪いが、研削を重ねていくとほ
ぼ安定した状態に落ち着いてくる。この状態の切味をK
RtFとして砥石切味が定常状態の切味より悪い場合、 T、>T、  (TO=T+α)となる。また砥石切味
が定常状態よりも良くなったことを想定するとTo <
”rとなるが、本来スパークアウトはワークの真円度や
びびり等を良好にするためのものであるためT0≧Tと
し、−度定常状態になったならば、その後はT、=Tと
して研削を続行する。
Next, a method of controlling the spark-out time in inverse proportion to the grinding wheel sharpness K and keeping F constant to reduce changes in workpiece dimensions will be described below. As shown in FIG. 6(a), the spark-out time is varied depending on the sharpness of the grindstone, and the grinding force F at the time of completion of spark-out is controlled to be approximately constant. The spark-out time T0 to be controlled is calculated using the following formula (% formula %) (1) However, T...optimum spark-out time when grinding in a steady state (stable cutting quality, steady grinding speed), K IEF...in a steady state The cutting quality of the CBN whetstone is poor after truing, but as the grinding process continues, it becomes almost stable. The sharpness in this state is K
When the sharpness of the grindstone is worse than the steady state sharpness as RtF, T,>T, (TO=T+α). Also, assuming that the sharpness of the whetstone has become better than in the steady state, To <
”r, but since spark out is originally intended to improve the roundness and chatter of the workpiece, T0≧T, and once it reaches a -degree steady state, then T, =T. Continue grinding.

上式の砥石切味にはN個の移動平均を用いることもでき
るし、スパークアウト時間の変化率を制限することもあ
り得る。かくして第6図(a)のように砥石切味による
寸法変化の影響を少なくすることができる。上記のT。
It is possible to use N moving averages for the above-mentioned grindstone cutting quality, and it is also possible to limit the rate of change of the spark-out time. In this way, as shown in FIG. 6(a), the influence of dimensional changes due to the sharpness of the grindstone can be reduced. T above.

は演算制御部lで自動的に算出され、次回の研削時に適
用される。
is automatically calculated by the arithmetic control unit l and applied during the next grinding.

(発明の効果) 以上説明したように本発明によれば、砥石切味変化に応
じて研削速度を変化させるため、研削焼は防止および能
率向上が同時に達成されるだけでなく、速度設定が自動
化され、研削盤の無人化運転が可能となる。またスパー
クアウトの制御により常に加工精度の良い安定した品質
が得られる。
(Effects of the Invention) As explained above, according to the present invention, since the grinding speed is changed according to the change in the sharpness of the grinding wheel, not only is it possible to prevent grinding burn and improve efficiency at the same time, but also the speed setting is automated. This enables unmanned operation of the grinding machine. In addition, by controlling spark-out, stable quality with good processing accuracy can always be obtained.

ツルーイングゾーン判定により砥石切味を良好な状態か
ら使用可能となるばかりでなく、ツルーイング装置自体
、ドレノンング装置自体のNG判定もできるという効果
もある。
By determining the truing zone, it is possible not only to use the grindstone in a good condition, but also to be able to determine whether the truing device itself or the drainage device itself is NG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る制御方法を実施する場合の制御系
統を示すブロック図、第2図は本発明に適用される内面
研削盤の平面図、第3図(a)〜(C)はそれぞれ研削
個数と砥石切味、研削速度、および研削力との関係を示
した図、第4図は本発明におけるツルーイングゾーン判
定のフローチャートを示す図、第5図は砥石切味判定に
よるツルーイングゾーン決定方法を説明するための研削
個数(スキンプ数)と砥石切味の関係を示す図、第6図
(a)(b)は本発明を実施する場合の研削時間に対す
る研削カバターンを示す図、第6図(C)は本発明にお
ける切込パターンを示す図、第7図(a)は研削力と研
削速度の関係を示す図、第7図[有1)、 (C)はそ
れぞれ従来の研削個数に対する粗研削速度および粗研削
力の関係を示す図、第8図は一般の仕上研削からスパー
クアウトに至る研削カバターンを示す図、第9図は軸受
外輪の溝研削における砥石の溝エツジ当り状態を示す図
である。 l・・・演夏制御部、2・・・砥石径演算部、3・・・
研削力検出部、4・・・切込制御部、5・・・切込送り
制御部、6・・・研削部、7・・・切込モータ、8・・
・切込スライド、9・・・砥石、10・・・ワーク、 11・・・砥石軸モータ、13・・・砥石送りモータ。
Fig. 1 is a block diagram showing a control system when implementing the control method according to the present invention, Fig. 2 is a plan view of an internal grinder applied to the present invention, and Figs. 3 (a) to (C) are Each figure shows the relationship between the number of pieces to be ground, grinding wheel cutting quality, grinding speed, and grinding force. Fig. 4 is a flowchart of truing zone determination in the present invention. Fig. 5 shows truing zone determination by grinding wheel cutting quality judgment. A diagram showing the relationship between the number of grinding pieces (number of skimps) and the sharpness of the grindstone for explaining the method, FIGS. Figure (C) is a diagram showing the cutting pattern in the present invention, Figure 7 (a) is a diagram showing the relationship between grinding force and grinding speed, and Figure 7 (C) is a diagram showing the relationship between grinding force and grinding speed. Figure 8 is a diagram showing the relationship between rough grinding speed and rough grinding force, Figure 8 is a diagram showing the grinding cover turn from general finish grinding to spark out, and Figure 9 is a diagram showing the state of the grindstone hitting the groove edge in groove grinding of the outer ring of the bearing. FIG. l... Enka control section, 2... Grinding wheel diameter calculation section, 3...
Grinding force detection unit, 4... Cutting control unit, 5... Cutting feed control unit, 6... Grinding unit, 7... Cutting motor, 8...
- Cutting slide, 9... Grinding wheel, 10... Workpiece, 11... Grinding wheel shaft motor, 13... Grinding wheel feed motor.

Claims (6)

【特許請求の範囲】[Claims] (1)、研削中の研削速度検出値および研削力検出値か
ら各研削サイクル毎に砥石切味Kを求め、この砥石切味
に比例して研削速度を制御することを特徴とする研削盤
の制御方法。
(1) A grinding machine characterized in that a grinding wheel cutting edge K is determined for each grinding cycle from a grinding speed detection value and a grinding force detection value during grinding, and the grinding speed is controlled in proportion to this grinding wheel cutting edge. Control method.
(2)、ツルーイング後の前記砥石切味Kをモニタし、
該砥石切味が予め定めたゾーンに入るようにツルーイン
グ、ドレッシングを実行することを特徴とする研削盤の
制御方法。
(2) Monitoring the grindstone sharpness K after truing,
A method for controlling a grinding machine, characterized in that truing and dressing are performed so that the sharpness of the grindstone falls within a predetermined zone.
(3)、研削中の研削速度検出値および研削力検出値か
ら各研削サイクル毎に砥石切味Kを求め、該砥石切味に
応じて研削中のスパークアウト時間を制御することを特
徴とする研削盤の制御方法。
(3) The grinding wheel cutting edge K is determined for each grinding cycle from the grinding speed detection value and the grinding force detection value during grinding, and the spark-out time during grinding is controlled according to the grinding wheel cutting edge. How to control a grinding machine.
(4)、スパークアウト中の研削力をモニタし、該研削
力が目標値まで下がった時点で砥石を急速後退させるこ
とを特徴とする研削盤の制御方法。
(4) A method for controlling a grinding machine, which comprises monitoring the grinding force during spark-out, and rapidly retracting the grindstone when the grinding force falls to a target value.
(5)、実スパークアウト時間がその設定値よりずれた
ときスパークアウト研削力を変更し、切り上がり点補正
を行うことを特徴とする請求項第3項記載の研削盤の制
御方法。
(5) The method for controlling a grinding machine according to claim 3, characterized in that when the actual spark-out time deviates from the set value, the spark-out grinding force is changed and the cutting point is corrected.
(6)、スパークアウト中の研削力を一定にするように
前記砥石切味Kに反比例してスパークアウト時間を制御
することを特徴とする請求項第3項記載の研削盤の制御
方法。
(6) The method for controlling a grinding machine according to claim 3, characterized in that the spark-out time is controlled in inverse proportion to the grinding wheel cutting edge K so that the grinding force during spark-out is constant.
JP13481690A 1990-05-24 1990-05-24 Grinding machine control method Expired - Fee Related JP2940073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13481690A JP2940073B2 (en) 1990-05-24 1990-05-24 Grinding machine control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13481690A JP2940073B2 (en) 1990-05-24 1990-05-24 Grinding machine control method

Publications (2)

Publication Number Publication Date
JPH0430957A true JPH0430957A (en) 1992-02-03
JP2940073B2 JP2940073B2 (en) 1999-08-25

Family

ID=15137159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13481690A Expired - Fee Related JP2940073B2 (en) 1990-05-24 1990-05-24 Grinding machine control method

Country Status (1)

Country Link
JP (1) JP2940073B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009034783A (en) * 2007-08-02 2009-02-19 Denso Corp Inner face grinding pattern setting device, inner face grinding device, inner face grinding pattern setting method, and inner face grinding method and program
JP2012143843A (en) * 2011-01-13 2012-08-02 Toyo Advanced Technologies Co Ltd Inner surface grinding machine
JP2013158890A (en) * 2012-02-07 2013-08-19 Nsk Ltd Super finishing device, and super finishing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009034783A (en) * 2007-08-02 2009-02-19 Denso Corp Inner face grinding pattern setting device, inner face grinding device, inner face grinding pattern setting method, and inner face grinding method and program
JP2012143843A (en) * 2011-01-13 2012-08-02 Toyo Advanced Technologies Co Ltd Inner surface grinding machine
JP2013158890A (en) * 2012-02-07 2013-08-19 Nsk Ltd Super finishing device, and super finishing method

Also Published As

Publication number Publication date
JP2940073B2 (en) 1999-08-25

Similar Documents

Publication Publication Date Title
JPS5830110B2 (en) Kensaku Kakoseigyosouchi
US5044125A (en) Method and apparatus for controlling grinding processes
JP2940027B2 (en) Grinding method with grinding force control
US3964210A (en) Grinding apparatus
US3798846A (en) Method of grinding
JPH1177532A (en) Grinding device for rolling roll
JPH0430957A (en) Control method for grinder
US4110938A (en) Infeeding method for internal grinders
JPH06339859A (en) Dressing timing judging method for super abrasive grain wheel and device thereof
JP2011245592A (en) Grinding method and grinding machine
JP2021074841A (en) Processing quality prediction system
JPS5926431B2 (en) Grindstone dressing time detection device
JP2513342B2 (en) Retraction grinding method and grinding device in grinding force control grinding
JP5594094B2 (en) Grinding method and grinding apparatus by power control
KR100268856B1 (en) Dressing method and apparatus for grinding grindstone
Hahn A Survey on Precision Grinding for Improved Product Quality
JP3300384B2 (en) Grinding machine control method
JP2940435B2 (en) Adjustment method of retraction amount in grinding
Lindsay et al. Relationship between wheel characteristics and operating problems in high-production precision grinding
JPH069785B2 (en) Grinding control device
JP2023150900A (en) Grinding system
JP2021171871A (en) Chattering detection system
JP2023158577A (en) Grinding system
JP3104357B2 (en) Adjustment method for the amount of retraction in internal grinding
JP2023158578A (en) Grinding system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees