JP3300384B2 - Grinding machine control method - Google Patents

Grinding machine control method

Info

Publication number
JP3300384B2
JP3300384B2 JP12374091A JP12374091A JP3300384B2 JP 3300384 B2 JP3300384 B2 JP 3300384B2 JP 12374091 A JP12374091 A JP 12374091A JP 12374091 A JP12374091 A JP 12374091A JP 3300384 B2 JP3300384 B2 JP 3300384B2
Authority
JP
Japan
Prior art keywords
grinding
amount
workpiece
cutting
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12374091A
Other languages
Japanese (ja)
Other versions
JPH04354672A (en
Inventor
敏 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Via Mechanics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Via Mechanics Ltd filed Critical Hitachi Via Mechanics Ltd
Priority to JP12374091A priority Critical patent/JP3300384B2/en
Publication of JPH04354672A publication Critical patent/JPH04354672A/en
Application granted granted Critical
Publication of JP3300384B2 publication Critical patent/JP3300384B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は研削盤における研削条件
の制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling grinding conditions in a grinding machine.

【0002】[0002]

【従来の技術】研削加工を行う際には、あらかじめ工作
物の材質、研削砥石の種類、要求精度などを勘案して研
削条件を決定する。最近の人手不足や熟練者不足を反映
して、このような研削条件の決定過程を自動化するため
の技術開発も行われている。例えば特開昭63−295
177号公報には、内面研削において研削抵抗を測定
し、研削抵抗が一定になるように切込み速度を制御する
という、切込み速度の自動決定方法が開示されている。
2. Description of the Related Art When performing a grinding process, grinding conditions are determined in advance in consideration of the material of a workpiece, the type of a grinding wheel, required accuracy, and the like. Reflecting the recent shortage of labor and skilled workers, technology development for automating the process of determining such grinding conditions is also being carried out. For example, JP-A-63-295
No. 177 discloses an automatic cutting speed determination method in which a grinding force is measured in inner surface grinding and a cutting speed is controlled so that the grinding force becomes constant.

【0003】[0003]

【発明が解決しようとする課題】内面研削盤や円筒研削
盤でプランジ研削を行う時のように、研削作業が連続
で、研削抵抗を連続的に測定できる場合、上記した従来
技術により切込み速度を制御できる。しかしながら、平
面研削盤での平面研削作業の場合、図7に示すように加
工は断続的であり、切込みもステップ状であるから、研
削抵抗も断続的に発生する。このため、上記した従来技
術のように連続的に研削抵抗を測定して切込み量を制御
することはできない。なお、通常は固定した研削砥石6
に対し工作物13が移動するが、同図においては説明の
便宜上、研削砥石6が移動するように示してある。とこ
ろで、平面研削作業における実質切込み量が常に一定で
あれば、直前の切込み工程で測定した研削抵抗を許容研
削抵抗と比較し、その結果に基づいて次の切込み工程に
おける切込み量が決定でき、平面研削盤においても従来
技術のような研削抵抗一定の制御を行うことができる。
しかしながら、図8に示すように、平面研削では一般に
最初に研削砥石6と工作物13とが接触するときの切込
み量は空研削を含むため、最初の実質切込み量は設定切
込み量よりも小さい。したがって、このときに測定され
る研削抵抗は正規の設定切込み量で研削したときの値よ
りも小さくなり、この研削抵抗に基づいて次の切込み量
を決定すると、次の切込み工程における切込み量が過大
になるという問題があった。
In the case where the grinding operation is continuous and the grinding force can be measured continuously, such as when plunge grinding is performed with an internal grinding machine or a cylindrical grinding machine, the cutting speed is reduced by the above-mentioned conventional technique. Can control. However, in the case of a surface grinding operation using a surface grinding machine, as shown in FIG. 7, the processing is intermittent and the cut is step-shaped, so that the grinding resistance is also generated intermittently. For this reason, it is not possible to control the depth of cut by continuously measuring the grinding resistance as in the above-described prior art. Normally, the fixed grinding wheel 6
However, the workpiece 13 moves, but in the figure, for convenience of explanation, the grinding wheel 6 is shown to move. By the way, if the substantial cutting amount in the surface grinding operation is always constant, the grinding force measured in the immediately preceding cutting step is compared with the allowable grinding resistance, and the cutting amount in the next cutting step can be determined based on the result. Even with a grinding machine, it is possible to control the grinding resistance constant as in the prior art.
However, as shown in FIG. 8, in the surface grinding, the cutting amount when the grinding wheel 6 and the workpiece 13 first contact each other generally includes an empty grinding, so that the initial substantial cutting amount is smaller than the set cutting amount. Therefore, the grinding force measured at this time is smaller than the value obtained when grinding with the regular set cutting amount, and when the next cutting amount is determined based on this grinding force, the cutting amount in the next cutting step becomes excessively large. There was a problem of becoming.

【0004】また、研削抵抗は一般に図9に示すように
変化する。すなわち、初期切込み量が過大であると同図
の点線aで示すように研削抵抗が大きくなり、研削焼け
や研削砥石の異常摩耗が生じる。また、同図の点線bで
示すように初期切込み量が過小であると能率が低くな
る。したがって、同図の実線cで示すように、精度と能
率の両面からみて適正な研削抵抗になるように切込み量
を決定することが重要である。さらに、研削開始後の数
回のいわゆる過渡状態の切込み工程では、設定切込み量
が一定であっても、研削砥石と工作物間の弾性変位によ
って切残し量が生じるため、実切込み量は設定切込み量
よりも小さくなる。そして、切込み回数の増加とともに
実切込み量が設定切込み量に近づいていくので、研削抵
抗は図9に示すように漸増していく。このため、上記過
渡状態において直前の切込み工程の研削抵抗を基準とし
て次の切込み量を決定すると、やはり切込み量が過大に
なるという問題があった。本発明の目的は、上記した従
来技術の課題を解決し、平面研削盤における平面研削の
ように断続研削を行う場合にも、適切な切込み量を決定
できる研削盤の制御方法を提供することにある。
Further, the grinding force generally changes as shown in FIG. That is, if the initial depth of cut is excessive, the grinding resistance increases as shown by the dotted line a in the figure, and grinding burns and abnormal wear of the grinding wheel occur. Further, as shown by the dotted line b in the figure, if the initial cutting amount is too small, the efficiency becomes low. Therefore, as shown by the solid line c in the figure, it is important to determine the depth of cut so as to obtain an appropriate grinding force in terms of both accuracy and efficiency. Furthermore, in the cutting process in the so-called transient state several times after the start of grinding, even if the set cutting amount is constant, the uncut amount is generated due to the elastic displacement between the grinding wheel and the workpiece. Less than the amount. Then, as the actual number of cuts approaches the set amount of cut as the number of cuts increases, the grinding resistance gradually increases as shown in FIG. For this reason, when the next cutting amount is determined on the basis of the grinding resistance in the immediately preceding cutting process in the transient state, there is a problem that the cutting amount is also excessively large. An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a grinding machine control method capable of determining an appropriate cutting depth even when performing intermittent grinding such as surface grinding in a surface grinding machine. is there.

【0005】[0005]

【課題を解決するための手段】上記した目的を達成する
ため、第1の発明は、工作物に対して所定の切込み量で
研削砥石とワークを相対的に移動させて研削を行う切込
み工程を工作物が定寸になるまで断続的に繰り返し行う
研削盤における研削盤の制御方法にであって、研削抵抗
もしくは研削抵抗の大きさに対応して変化する物理的な
検出量の許容値と、相前後する切込み工程における検出
量の比の許容範囲とを予め定めておき、上記検出量の比
が予め設定した許容範囲となるまでは切込み量を一定と
し、検出量が上記許容値を越えるかまたは、検出量の比
が上記許容範囲になったとき上記検出量と許容値の比に
応じて次の切込み工程における切込み量を変更し、次回
以降の切込み工程における検出量が許容値になるよう
御す。また、第2の発明は、工作物に対して所定の切
込み量で研削砥石とワークを相対的に移動させて研削を
行う切込み工程を工作物が定寸になるまで断続的に繰り
返し行う研削盤における研削盤の制御方法にであって、
研削抵抗もしくは研削抵抗の大きさに対応して変化する
物理的な検出量の許容値を予め定めておき、最初に検出
した切込み工程の検出量は無視し、2回目以降の切込み
工程において、現切り込み工程における検出量に基づき
その次の切込み工程における切込み量として許容研削抵
抗における切残し量と現切込み工程における切残し量と
の差を現切込み量に加算した値とするように制御する。
なお、差Δδ、切残し量δs、δiは下記の式1〜式3で
表わされる。 Δδ=δs−δi=(F0−Fi)/k 式1 δs=F0/k 式2 δi=Fi/k 式3 ここで、F0:許容研削抵抗 Fi:各切込み工程における研削抵抗 δs:許容研削抵抗F0における切残し量 δi:各切込み工程における切残し量 k:研削砥石と工作物間のばね定数
In order to achieve the above-mentioned object, a first aspect of the present invention is to provide a workpiece with a predetermined cutting depth.
Infeed for grinding by relatively moving the grinding wheel and workpiece
Process is repeated intermittently until the workpiece is fixed size
A method of controlling a grinding machine in a grinding machine, wherein an allowable value of a physical detection amount that changes in accordance with the grinding resistance or the magnitude of the grinding resistance, and a detection in a cutting process that is successively performed.
An allowable range of the ratio of the amount is determined in advance, and the cut amount is kept constant until the ratio of the detected amount reaches the predetermined allowable range. When the detected amount exceeds the allowable value or the ratio of the detected amount is When the allowable range is reached, the ratio between the detection amount and the allowable value
Change the cutting amount in the next cutting process accordingly,
Detecting the amount of braking <br/> that Gyosu to be the limit for the subsequent cut process. In the second invention, a predetermined cut is made to the workpiece.
The grinding wheel and the workpiece are relatively moved by the
The cutting process to be performed is intermittently repeated until the workpiece
A method of controlling a grinding machine in a grinding machine to be turned back,
The allowable value of the grinding force or the physical detection amount that changes according to the magnitude of the grinding force is determined in advance, and the detection amount of the cutting process detected first is ignored, and the second and subsequent cuts are performed.
In the process, based on the detected amount in the current cutting process
Allowable grinding resistance as the depth of cut in the next
The amount of uncut and the amount of uncut in the current cutting process
Is controlled to be a value obtained by adding the difference between the current depth of cut and the current cutting depth .
The difference Δδ and the uncut amounts δs and δi are represented by the following equations 1 to 3. Δδ = δs−δi = (F0−Fi) / k Equation 1 δs = F0 / k Equation 2 δi = Fi / k Equation 3 where F0: allowable grinding resistance Fi: grinding resistance in each cutting process δs: allowable grinding resistance Uncut amount at F0 δi: Uncut amount at each cutting step k: Spring constant between grinding wheel and workpiece

【0006】[0006]

【作用】第1の発明では、図4に示すように、初期切込
み量が過小な場合、相前後する切込み工程における研削
抵抗の比を比較し、この比が所定の値よりも小さくなる
定常状態になるまで切込み量は一定であるが、定常状態
になると矢印ロのように切込み量を増す。一方、初期切
込み量が過大な場合、研削抵抗が予め設定した許容値よ
りも大きくなったら切込み量を変更するようにしたか
ら、過渡状態であっても研削抵抗が適正値を超過する
と、ただちに矢印イのように研削抵抗を軽減する方向に
切込み量を変更する。したがって、初期切込み量が過大
あるいは過小の場合でも、定常状態における切込み量は
研削抵抗が適正値になるように変更される。また、第2
の発明では、各切込み工程における研削抵抗がFiであ
るとき発生した切残し量δiと許容研削抵抗がF0である
ときの切残し量δsとの差Δδを、現切込み量に加えた
値を次の切込み工程の切込み量として研削するから、図
6に示すように、速やかに許容研削抵抗に到達させるこ
とができる。さらに、いずれの方法においても切込み量
が許容値以下になったときにはドレッシングを行うか
ら、さらに精度と能率を向上させることができる。
According to the first aspect of the present invention, as shown in FIG. 4, when the initial cutting amount is too small, the ratio of the grinding resistance in the cutting process before and after the cutting is compared, and the steady state where the ratio is smaller than a predetermined value is obtained. The depth of cut is constant until, but when it reaches a steady state, the depth of cut is increased as indicated by arrow B. On the other hand, if the initial depth of cut is excessive, the depth of cut is changed when the grinding resistance exceeds a preset allowable value. The depth of cut is changed in the direction to reduce the grinding resistance as shown in b. Therefore, even when the initial cutting amount is too large or too small, the cutting amount in the steady state is changed so that the grinding resistance becomes an appropriate value. Also, the second
In the invention, the difference Δδ between the uncut amount δi generated when the grinding resistance in each cutting step is Fi and the uncut amount δs when the allowable grinding resistance is F 0 is calculated by adding a value obtained by adding the current cutting amount. Since the grinding is performed as a cutting amount in the next cutting step, as shown in FIG. 6, the allowable grinding resistance can be quickly reached. Further, in any of the methods, dressing is performed when the cut amount becomes equal to or less than the allowable value, so that accuracy and efficiency can be further improved.

【0007】[0007]

【実施例】以下、本発明を実施するための装置の構成例
を、図1ないし図2により説明する。図1は本発明を平
面研削盤に適用した場合の構成例を示す側面図で、図2
は正面図である。1はベッド。2はコラムで、ベッド1
に矢印Yの方向に摺動自在に保持され、モータ3により
駆動される。4はスピンドルヘッドで、コラム2に矢印
Zの方向に摺動自在に保持され、モータ5により駆動さ
れる。6は研削砥石で、スピンドルヘッド4に回転自在
に保持された砥石軸7の先端に取り付けられている。8
はテーブルで、ベッド1に矢印Xの方向に摺動自在に保
持され、図示しない油圧シリンダにより駆動される。9
はチャックで、力検出器10を介してテーブル8に取り
付けられている。力検出器10は、増幅器11を経由し
て数値制御装置12に接続されている。13は工作物
で、チャック9に取り付けられている。14a、14b
は近接センサで、ベッド1に取り付けられている。15
はドッグで、テーブル8に取り付けられている。なお、
ドッグ15が近接センサ14a、14bに対向すると、
近接センサ14a、14bの信号が数値制御装置12に
入力されると同時にテーブル8の移動方向が切り替わる
ようになっている。以下、工作物13を両端切込みのプ
ランジ研削で加工する場合を例にとり、動作について説
明する。図3は本発明の第1の実施例を示す切込み量制
御のフローチャートである。なお、以下、図3における
ステップ110〜200をまとめて「過渡状態の制御」
と呼ぶ。また、ステップ300〜360をまとめて「定
常状態の制御」と呼ぶ。予め数値制御装置12に入力さ
れたプログラムにより、モータ3、モータ5及び図示し
ない油圧シリンダが制御されて、工作物9が研削砥石6
により加工される。ここで、研削抵抗は、近接センサ1
4aの信号をトリガとして測定され、近接センサ14b
の信号でリセットされるようになっており、アップカッ
ト研削における研削抵抗のみが測定されるようになって
いる。研削砥石6は工作物13の近傍まで早送りで下降
し、その後、近接センサ14a、14bの信号を受ける
ごとに切込み量tだけ下降して研削が行われ、同時に力
検出器10により研削抵抗Fが測定される(ステップ1
20)。最初に研削抵抗Fが測定された切込み工程では
切込み量の変更は行われず、次の切込み工程へ進む。た
だし、研削抵抗Fが許容研削抵抗F0よりも大きい場合
には後述する「定常状態の制御」の工程へ移る(ステッ
プ150)。2回目以降に測定された研削抵抗Fiは先
ず、許容研削抵抗F0と比較され、許容研削抵抗F0より
も大きくなると後述する「定常状態の制御」に移行する
(ステップ190)。また、測定された研削抵抗Fiが
許容研削抵抗F0よりも小さい場合、引き続き直前にお
ける切込み工程の研削抵抗Fi-1との比が計算され、こ
れが許容値αよりも大きい間は切込み量の変更は行われ
ず、研削が続行される(ステップ200)。そして、F
i/Fi-1≦αになると、「定常状態の制御」の工程へ移
り、研削抵抗Fiと許容研削抵抗F0との比により切込み
量が(F0/Fi)・tに変更されて(ステップ300)
研削が行われ、この操作が定寸になるまで続けられて研
削が終了する。なお、途中で切込み量が許容値βよりも
小さくなると(ステップ310)、研削砥石6の切れ味
が悪くなったものと判断してドレッシングが行われる
(ステップ320)。本実施例では以上の構成としたの
で、図4に示すように、初期切込み量が小さい場合、過
渡状態では切込量は一定であるが、定常状態になってか
ら切込み量が変更されて所定の研削抵抗F0のもとで研
削が行われる。また、初期切込み量が大きい場合は、過
渡状態においても研削抵抗Fiが許容研削抵抗F0を超過
した時点で直ちに切込み量が変更されて許容研削抵抗F
0になるように制御されるので、切込み量が過大に変更
されることがなく、研削焼けや研削砥石の異常摩耗が防
止されるという効果がある。さらに、切込み量が許容値
β以下になったときにドレッシングをして研削砥石の切
れ味を回復するようにしたので、過小な切込み量で研削
が続けられることがなく、能率のよい研削ができるとい
う効果がある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of the configuration of an apparatus for carrying out the present invention will be described below with reference to FIGS. FIG. 1 is a side view showing a configuration example when the present invention is applied to a surface grinder.
Is a front view. 1 is a bed. 2 is a column, 1 bed
Are slidably held in the direction of arrow Y and are driven by the motor 3. Reference numeral 4 denotes a spindle head, which is slidably held on the column 2 in the direction of arrow Z and driven by a motor 5. Reference numeral 6 denotes a grinding wheel, which is attached to the tip of a grinding wheel shaft 7 rotatably held by the spindle head 4. 8
Is a table, which is slidably held on the bed 1 in the direction of arrow X and driven by a hydraulic cylinder (not shown). 9
Is a chuck attached to the table 8 via a force detector 10. The force detector 10 is connected to a numerical controller 12 via an amplifier 11. A workpiece 13 is mounted on the chuck 9. 14a, 14b
Is a proximity sensor attached to the bed 1. Fifteen
Is a dog attached to the table 8. In addition,
When the dog 15 faces the proximity sensors 14a and 14b,
At the same time as the signals from the proximity sensors 14a and 14b are input to the numerical controller 12, the moving direction of the table 8 is switched. The operation will be described below, taking as an example a case where the workpiece 13 is machined by plunge grinding with cuts at both ends. FIG. 3 is a flowchart of the cutting amount control according to the first embodiment of the present invention. Hereinafter, steps 110 to 200 in FIG. 3 are collectively referred to as “transient state control”.
Call. Steps 300 to 360 are collectively referred to as “steady state control”. The motor 3, the motor 5, and the hydraulic cylinder (not shown) are controlled by a program previously input to the numerical controller 12, and the workpiece 9 is moved to the grinding wheel 6.
It is processed by. Here, the grinding resistance is determined by the proximity sensor 1
4a as a trigger and the proximity sensor 14b
, And only the grinding resistance in the up-cut grinding is measured. The grinding wheel 6 descends at a rapid traverse to the vicinity of the workpiece 13, and thereafter, when receiving signals from the proximity sensors 14 a, 14 b, the grinding wheel 6 descends by the cutting amount t to perform grinding. At the same time, the grinding force F is reduced by the force detector 10. Measured (step 1
20). In the cutting step where the grinding force F is measured first, the cut amount is not changed, and the process proceeds to the next cutting step. However, if the grinding resistance F is larger than the allowable grinding resistance F 0 , the process proceeds to a “steady state control” process described later (step 150). It measured grinding force Fi to the second and subsequent first be compared with the permissible grinding force F 0, moves to "control the steady state" to be described later to be larger than the permissible grinding force F 0 (step 190). When the measured grinding resistance Fi is smaller than the allowable grinding resistance F 0 , the ratio with the grinding resistance F i−1 of the immediately preceding cutting step is calculated, and while this ratio is larger than the allowable value α, the cutting amount is reduced. No change is made and grinding continues (step 200). And F
When i / F i-1 ≤ α, the process proceeds to the “steady state control” step, where the depth of cut is changed to (F 0 / Fi) · t by the ratio of the grinding resistance Fi to the allowable grinding resistance F 0. (Step 300)
Grinding is performed, and this operation is continued until a fixed size is reached, and the grinding is completed. If the cutting amount becomes smaller than the allowable value β in the middle (step 310), it is determined that the sharpness of the grinding wheel 6 has deteriorated, and dressing is performed (step 320). In the present embodiment, the above configuration is adopted. As shown in FIG. 4, when the initial cutting amount is small, the cutting amount is constant in the transient state, but the cutting amount is changed after the steady state and the predetermined amount is changed. The grinding is performed under the grinding resistance F 0 . If the initial depth of cut is large, the depth of cut is changed immediately when the grinding resistance Fi exceeds the allowable grinding resistance F 0 even in a transient state, and the allowable grinding resistance F
Since it is controlled to be 0 , the cutting amount is not excessively changed, and there is an effect that grinding burn and abnormal wear of the grinding wheel are prevented. In addition, since the sharpness of the grinding wheel is restored by dressing when the depth of cut is equal to or less than the allowable value β, the grinding can not be continued with an excessively small depth of cut and efficient grinding can be performed. effective.

【0008】図5は、本発明の第2の実施例を示すフロ
ーチャートである。なお、最初に研削抵抗が測定される
までの工程は上記実施例と同じであるので省略する。2
回目以降に測定される研削抵抗Fは許容研削抵抗F0
比較され、次の切込み量、すなわち3回目以降の切込み
量がt+(F0−F)/kに変更されて次の切込みが行
われる。以下、定寸に達するまでこの操作が繰り返され
る。途中で切込み量が許容値βよりも小さくなると研削
砥石の切れ味が悪くなったものと判断し、ドレッシング
が行われる。本実施例では以上の構成としたので、図6
に示すように、切残し量を考慮して切込み量の変更が行
われ、切込み開始後短時間に定常状態になるので、上記
した第1の実施例の効果の他に、能率のよい加工ができ
るという効果がある。
FIG. 5 is a flowchart showing a second embodiment of the present invention. Note that the steps up to the first measurement of the grinding resistance are the same as those in the above embodiment, and will not be described. 2
The grinding force F measured after the first time is compared with the allowable grinding force F 0, and the next cutting amount, that is, the cutting amount after the third time is changed to t + (F 0 −F) / k, and the next cutting is performed. Will be Hereinafter, this operation is repeated until the fixed size is reached. If the cutting amount becomes smaller than the allowable value β in the middle, it is determined that the sharpness of the grinding wheel has deteriorated, and dressing is performed. In the present embodiment, the above configuration is adopted.
As shown in (1), the cut amount is changed in consideration of the uncut amount, and a steady state is obtained in a short time after the start of the cut. Therefore, in addition to the effects of the above-described first embodiment, efficient machining can be performed. There is an effect that can be.

【0009】なお、上記2つの実施例では、一般にアッ
プカット研削とダウンカット研削では研削抵抗が異なる
ため、アップカット研削における研削抵抗だけで制御す
るようにしたが、許容研削抵抗を別々に設けることによ
り、アップカット研削とダウンカット研削の両方の研削
抵抗で制御するようにしても良いし、ダウンカット研削
の研削抵抗だけで制御するようにしてもよい。また、上
記2つの実施例では、両端切込みのプランジ研削の場合
について示したが、片端切込みの場合も同様に制御でき
るし、トラバース研削の場合にも、各トラバース工程ご
との研削抵抗を用いることにより同様の制御を行うこと
ができる。さらに、上記2つの実施例では、いずれも研
削抵抗を検出量としたが、研削抵抗により生じるモータ
の電流変化、各部の弾性変位や振動の変化など研削抵抗
に対応する物理量を検出量としてもよい。
In the above two embodiments, since the grinding resistance generally differs between the up-cut grinding and the down-cut grinding, the control is performed only by the grinding resistance in the up-cut grinding. However, the allowable grinding resistance is provided separately. Accordingly, the control may be performed with both the grinding resistance of the up-cut grinding and the down-cut grinding, or may be controlled only with the grinding resistance of the down-cut grinding. Also, in the above two embodiments, the case of plunge grinding with both ends cut was shown. However, the case of single end cut can be controlled in the same manner, and in the case of traverse grinding, it is possible to use the grinding resistance for each traverse step. Similar control can be performed. Further, in both of the above embodiments, the grinding resistance is used as the detection amount, but a physical amount corresponding to the grinding resistance, such as a change in motor current caused by the grinding resistance, a change in elastic displacement or vibration of each part, may be used as the detection amount. .

【0010】[0010]

【発明の効果】以上詳述したように、本発明によれば、
平面研削盤における平面研削のように断続研削を行う場
合にも、適切な切込み量を決定でき、切込み量が過酷に
なって研削焼けや研削砥石の異常摩耗が発生することが
防止されるとともに、初期切込みが過大あるいは過小で
あっても、最適な切込み量に設定できる。すなわち、最
適な切込み量を自動的に設定できるから、精度および作
業能率を向上させることができるという効果がある。
As described in detail above, according to the present invention,
Even when performing intermittent grinding like surface grinding in a surface grinder, it is possible to determine an appropriate depth of cut, which prevents the depth of cut from becoming severe and causing grinding burns and abnormal wear of the grinding wheel, Even if the initial cut is too large or too small, the optimum cut amount can be set. That is, since the optimal cut amount can be automatically set, there is an effect that accuracy and work efficiency can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用した場合の構成例を示す平面研削
盤の側面図。
FIG. 1 is a side view of a surface grinding machine showing a configuration example when the present invention is applied.

【図2】本発明を適用した場合の構成例を示す平面研削
盤の正面図。
FIG. 2 is a front view of a surface grinding machine showing a configuration example when the present invention is applied.

【図3】第1の発明の制御方法を示すフローチャート。FIG. 3 is a flowchart showing a control method according to the first invention.

【図4】第1の発明における切込み工程数と、研削抵抗
および切込み量の関係を示す説明図である。
FIG. 4 is an explanatory diagram showing a relationship between the number of cutting steps, a grinding resistance, and a cutting amount in the first invention.

【図5】第2の発明の制御方法を示すフローチャート。FIG. 5 is a flowchart showing a control method according to the second invention.

【図6】第2の発明における切込み工程数と、研削抵抗
および切込み量の関係を示す説明図である。
FIG. 6 is an explanatory diagram showing a relationship between the number of cutting steps, a grinding resistance, and a cutting amount in the second invention.

【図7】平面研削盤における研削砥石と工作物との相対
移動様式を示す説明図。
FIG. 7 is an explanatory view showing a relative movement mode between a grinding wheel and a workpiece in the surface grinding machine.

【図8】平面研削盤における研削砥石と工作物との相対
移動様式を示す説明図。
FIG. 8 is an explanatory view showing a relative movement mode between a grinding wheel and a workpiece in the surface grinding machine.

【図9】平面研削盤における研削砥石と工作物との相対
移動様式を示す説明図。
FIG. 9 is an explanatory view showing a relative movement mode between a grinding wheel and a workpiece in the surface grinding machine.

【符号の説明】[Explanation of symbols]

6 研削砥石 10 力検出器 12 数値制御装置 13 工作物 14a、14b 近接センサ 15 ドッグ 6 Grinding wheel 10 Force detector 12 Numerical controller 13 Workpiece 14a, 14b Proximity sensor 15 Dog

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】工作物に対して所定の切込み量で研削砥石
とワークを相対的に移動させて研削を行う切込み工程を
工作物が定寸になるまで断続的に繰り返し行う研削盤に
おける研削盤の制御方法にであって、 研削抵抗もしくは研削抵抗の大きさに対応して変化する
物理的な検出量の許容値と、相前後する切込み工程にお
ける検出量の比の許容範囲とを予め定めておき、上記検
出量の比が予め設定した許容範囲となるまでは切込み量
を一定とし、検出量が上記許容値を越えるかまたは、検
出量の比が上記許容範囲になったとき上記検出量と許容
値の比に応じて次の切込み工程における切込み量を変更
し、次回以降の切込み工程における検出量が許容値にな
るよう制御することを特徴とする研削盤の制御方法。
1. A grinding wheel having a predetermined cutting depth with respect to a workpiece.
Cutting process to perform relative grinding of workpiece and workpiece
For a grinder that repeats intermittently until the workpiece becomes a fixed size
A method of controlling a grinding machine in which the allowable value of a physical detection amount that changes in accordance with the grinding resistance or the magnitude of the grinding resistance, and the allowable range of the ratio of the detection amount in the cutting process that follows one after another. The depth of cut is kept constant until the ratio of the detection amount is within a predetermined allowable range, and the cut amount is greater than the allowable value, or when the ratio of the detection amount is within the allowable range, Detection amount and tolerance
Change the cutting depth in the next cutting process according to the value ratio
And the detected amount in the next and subsequent cutting process becomes an allowable value.
Grinder control wherein the benzalkonium be so that control.
【請求項2】工作物に対して所定の切込み量で研削砥石
とワークを相対的に移動させて研削を行う切込み工程を
工作物が定寸になるまで断続的に繰り返し行う研削盤に
おける研削盤の制御方法にであって、 研削抵抗もしくは研削抵抗の大きさに対応して変化する
物理的な検出量の許容値を予め定めておき、最初に検出
した切込み工程の検出量は無視し、2回目以降の切込み
工程において、現切り込み工程における検出量に基づき
その次の切込み工程における切込み量として許容研削抵
抗における切残し量と現切込み工程における切残し量と
の差を現切込み量に加算した値とするように制御するこ
とを特徴とする研削盤の制御方法。
2. A grinding wheel having a predetermined cutting depth with respect to a workpiece.
Cutting process to perform relative grinding of workpiece and workpiece
For a grinder that repeats intermittently until the workpiece becomes a fixed size
A method of controlling a grinding machine in which the allowable value of the grinding force or the physical detection amount that changes in accordance with the magnitude of the grinding force is set in advance, and the detection amount of the cutting process detected first is ignored. And the second and subsequent cuts
In the process, based on the detected amount in the current cutting process
Allowable grinding resistance as the depth of cut in the next
The amount of uncut and the amount of uncut in the current cutting process
A control method for controlling the difference so as to obtain a value obtained by adding the difference to the current depth of cut .
JP12374091A 1991-05-28 1991-05-28 Grinding machine control method Expired - Fee Related JP3300384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12374091A JP3300384B2 (en) 1991-05-28 1991-05-28 Grinding machine control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12374091A JP3300384B2 (en) 1991-05-28 1991-05-28 Grinding machine control method

Publications (2)

Publication Number Publication Date
JPH04354672A JPH04354672A (en) 1992-12-09
JP3300384B2 true JP3300384B2 (en) 2002-07-08

Family

ID=14868163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12374091A Expired - Fee Related JP3300384B2 (en) 1991-05-28 1991-05-28 Grinding machine control method

Country Status (1)

Country Link
JP (1) JP3300384B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008183655A (en) * 2007-01-29 2008-08-14 Nisshin Seisakusho:Kk Honing method, honing stick infeed device of honing machine and honing machine

Also Published As

Publication number Publication date
JPH04354672A (en) 1992-12-09

Similar Documents

Publication Publication Date Title
US4539779A (en) Method of compensating for dressing tool wear during the dressing of grinding wheels
JP2555296B2 (en) Machining state detection device for machine tools
JPS5830110B2 (en) Kensaku Kakoseigyosouchi
JPS62173170A (en) Grinding wheel trueing device
JPS6219986B2 (en)
JPH0373255A (en) Processing condition detector of machine tool
JP2008093788A (en) Grinder
JP3300384B2 (en) Grinding machine control method
JP3305732B2 (en) Control method of surface grinder
US4110938A (en) Infeeding method for internal grinders
JP2684347B2 (en) Turning method to reduce air cut time
JPH0757463B2 (en) Turning method to reduce air cut time
JP2574674B2 (en) Grinding machine cutting device
EP0566853A2 (en) Method and apparatus for dressing a grinding wheel
JP2940073B2 (en) Grinding machine control method
JPH01188252A (en) Compensation for tool abrasion in nc machine tool
JPH0258053B2 (en)
JP3210704B2 (en) Grinding machine and traverse grinding method
JP3120578B2 (en) Grinding equipment
JPH0771787B2 (en) Grinding control device
JP2553227B2 (en) Tool damage detection method for machine tools
JPH03294174A (en) Retraction grinding method in grinding by controlling grinding force
JPH02237766A (en) Method and device for controlling dressing of grinding grindstone
JPH09314439A (en) Grinding method
JPH09300203A (en) Honing method and control device used therefor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020409

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080419

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees