JPH04309278A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH04309278A
JPH04309278A JP7491291A JP7491291A JPH04309278A JP H04309278 A JPH04309278 A JP H04309278A JP 7491291 A JP7491291 A JP 7491291A JP 7491291 A JP7491291 A JP 7491291A JP H04309278 A JPH04309278 A JP H04309278A
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
current
impurity concentration
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7491291A
Other languages
Japanese (ja)
Other versions
JP3179511B2 (en
Inventor
Shinichi Nakatsuka
慎一 中塚
Shigeo Yamashita
茂雄 山下
Kenji Uchida
内田 憲治
Takashi Kajimura
梶村 俊
Takeo Takahashi
健夫 高橋
Kenichi Uejima
研一 上島
Kazunori Saito
和徳 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Renesas Eastern Japan Semiconductor Inc
Original Assignee
Hitachi Ltd
Hitachi Tohbu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Tohbu Semiconductor Ltd filed Critical Hitachi Ltd
Priority to JP07491291A priority Critical patent/JP3179511B2/en
Publication of JPH04309278A publication Critical patent/JPH04309278A/en
Application granted granted Critical
Publication of JP3179511B2 publication Critical patent/JP3179511B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To prevent a high-frequently current from leaking out through the junction capacitance of a current blocking section when high-frequency modula tion is performed on a semiconductor laser used for an optical disk device, etc., for preventing the generation of noise. CONSTITUTION:Crystals of an n-Al0.5Ga0.5As clad layer 2 (1.5mum), undoped Al0.14Ga0.86As active layer 3 (0.04mum), p-Al0.5Ga0.5As clad layer 4 (1.5mum), and p-GaAs contact layer 5 (0.3mum) are successively grown on an n-GaAs substrate 1. Then the layers 4 and 5 are processed to a ridge-like shape and a clock layer composed of an n-GaAs layer 6 (0.8mum) and undoped GaAs layer 7 (0.3mum) is formed. Finally, the structure shown in Fig. 1 is formed by growing a p-GaAs buried layer 8 (1.2mum). The laser chip of this semiconductor laser is formed by providing Au electrodes 9 on the surface and rear of the semiconductor wafer thus manufactured.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、書替え可能光ディスク
などの光記録装置の光源として用いる半導体レ−ザに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser used as a light source for an optical recording device such as a rewritable optical disk.

【0002】0002

【従来の技術】従来の光記録装置用半導体レ−ザを図9
に示す。この構造は、プロシーディング  オブ  ト
ゥエルブス  アイ  イー  イー  イー  イン
ターナショナル  レーザー  コンファレンス  1
990年  第270頁(Proc. of 12th
 IEEE international semic
onductor laser Conference
 (1990) 278P)にあるように、n−GaA
s基板上1にn−AlGaAsクラッド層2、AlGa
As活性層3、p−AlGaAsクラッド層4、p−G
aAsコンタクト層5を順次形成した後、ストライプ状
のSiO2等の絶縁膜を形成し(図示せず)、この膜を
マスクとしてp−AlGaAs層4まで化学エッチング
を行う。次に、このSiO2膜を残したままn−GaA
s電流ブロツク層6の選択成長を行う。最後に接触抵抗
低減のためp−GaAs埋込層8を成長するものである
[Prior Art] Fig. 9 shows a conventional semiconductor laser for an optical recording device.
Shown below. This structure is based on the Proceedings of the International Laser Conference 1
990, page 270 (Proc. of 12th
IEEE international semi
onductor laser conference
(1990) 278P), n-GaA
n-AlGaAs cladding layer 2, AlGa
As active layer 3, p-AlGaAs cladding layer 4, p-G
After sequentially forming the aAs contact layer 5, a striped insulating film of SiO2 or the like is formed (not shown), and using this film as a mask, chemical etching is performed up to the p-AlGaAs layer 4. Next, while leaving this SiO2 film, n-GaA
Selective growth of the s-current blocking layer 6 is performed. Finally, a p-GaAs buried layer 8 is grown to reduce contact resistance.

【0003】0003

【発明が解決しようとする課題】上記従来の半導体レ−
ザにおいては、半導体レ−ザを光ディスク装置等に用い
る際に、雑音防止のため高周波変調を行なう。しかし、
高周波電流が、電流ブロツク部におけるn−GaAs電
流ブロツク層6とその上下に位置するp−GaAs埋込
層8、p−AlGaAsクラッド層4との各々の接合容
量を介して漏れてしまうため、高周波変調による雑音低
減効果が得られないという問題がある。
[Problems to be Solved by the Invention] The above-mentioned conventional semiconductor laser
When a semiconductor laser is used in an optical disk device or the like, high frequency modulation is performed to prevent noise. but,
The high frequency current leaks through the junction capacitance between the n-GaAs current blocking layer 6 in the current blocking section, the p-GaAs buried layer 8 and the p-AlGaAs cladding layer 4 located above and below it. There is a problem that the noise reduction effect cannot be obtained by modulation.

【0004】本発明の目的は、この問題を解決すること
にある。
[0004] The purpose of the present invention is to solve this problem.

【0005】[0005]

【課題を解決するための手段】上記目的は、上記従来技
術については、n型電流ブロツク層とその上下に位置す
るp型半導体層との界面の少なくとも一方に、不純物濃
度が上記p、n層に比べて小さい低不純物濃度半導体層
を設けることにより達成できる。
[Means for Solving the Problems] The above object is to provide an impurity concentration in at least one of the interfaces between the n-type current blocking layer and the p-type semiconductor layers located above and below the n-type current blocking layer in the above-mentioned p and n layers. This can be achieved by providing a semiconductor layer with a low impurity concentration that is smaller than that of the semiconductor layer.

【0006】すなわち上記目的は、活性層中のストライ
プ領域のみに通電するためのPN接合電流ブロック構造
を有する半導体レ−ザにおいて、上記PN接合電流ブロ
ック構造の構成要素である電流ブロック層と少なくとも
該層に対し上記活性層側に在る層とでPN接合を構成し
、少なくとも1つの上記PN接合の界面に該PN接合構
成層より不純物濃度が小さい低不純物濃度半導体層を形
成することにより達成できる。
That is, the above object is to provide a semiconductor laser having a PN junction current blocking structure for supplying current only to the striped region in the active layer, which is at least compatible with the current blocking layer which is a component of the PN junction current blocking structure. This can be achieved by forming a PN junction with a layer on the active layer side, and forming a low impurity concentration semiconductor layer having a lower impurity concentration than the layer constituting the PN junction at the interface of at least one of the PN junctions. .

【0007】また、低不純物濃度半導体層の厚さおよび
不純物濃度を、半導体レ−ザ使用時に印加される高周波
電流が発光に有効に寄与し、上記高周波電流より高い周
波数の電流成分が発光に寄与しないように設定すること
により、半導体レ−ザのサ−ジ破壊を防止できる。
[0007] Furthermore, the thickness and impurity concentration of the low impurity concentration semiconductor layer can be adjusted so that the high frequency current applied when using a semiconductor laser effectively contributes to light emission, and the current component with a frequency higher than the above high frequency current contributes to light emission. By setting the voltage so as not to occur, damage to the semiconductor laser due to surge can be prevented.

【0008】[0008]

【作用】p型半導体層とn型半導体層とで低不純物濃度
半導体層を挾んだ構造とすることにより、空乏層が延び
易くなり、接合容量を大幅に低減できる。その結果、高
周波電流の漏れを低減でき、高周波変調による雑音低減
効果が得られる。
[Operation] By forming a structure in which a low impurity concentration semiconductor layer is sandwiched between a p-type semiconductor layer and an n-type semiconductor layer, the depletion layer can easily extend, and the junction capacitance can be significantly reduced. As a result, leakage of high frequency current can be reduced, and a noise reduction effect due to high frequency modulation can be obtained.

【0009】半導体層間の接合容量は次の式で表される
ので、低不純物濃度半導体層の不純物濃度と接合容量の
関係は、図2のようになる。
Since the junction capacitance between semiconductor layers is expressed by the following equation, the relationship between the impurity concentration of the low impurity concentration semiconductor layer and the junction capacitance is as shown in FIG.

【0010】   ところで、このような電流ブロツク構造を有する半
導体レ−ザの高周波電流に対する等価回路は図3のよう
になる。抵抗R2を通る電流が有効電流であり、容量C
を通って流れる電流が漏れ電流である。この等価回路を
基に、実測した半導体レ−ザのR1、R2を用いて、容
量Cと高周波電流の発光寄与率との関係を計算すると図
8のようになる。従来の半導体レ−ザにおいては、接合
容量が200pF以上あったため、高周波電流の半分以
上が漏れ電流となっていた。図8より、高周波電流の半
分以上が有効に用いられるためには、Cは100pF以
下である必要があることがわかる。また図2より、この
ような低い容量は低不純物濃度半導体層の不純物濃度を
1x1017cm ̄3以下とすれば得られることがわか
る。電流狭窄は従来の半導体レ−ザと同様電流ブロック
層で行われる。低不純物濃度半導体層の導電型は任意で
ある。またその禁止帯幅はレ−ザとして機能する値であ
れば良い。低不純物濃度半導体層として、電流ブロック
層またはそれと隣接する層と同じ材料を選べば不純物濃
度の制御が非常に容易になる。またその場合には、低不
純物濃度半導体層は電流ブロック層またはそれと隣接す
る層と同じ役割を果たす。
Incidentally, an equivalent circuit for high frequency current of a semiconductor laser having such a current block structure is shown in FIG. The current passing through resistor R2 is the effective current, and the capacitance C
The current flowing through it is the leakage current. Based on this equivalent circuit and using the actually measured R1 and R2 of the semiconductor laser, the relationship between the capacitance C and the light emission contribution rate of the high frequency current is calculated as shown in FIG. In conventional semiconductor lasers, since the junction capacitance was 200 pF or more, more than half of the high frequency current became leakage current. From FIG. 8, it can be seen that in order for more than half of the high frequency current to be used effectively, C needs to be 100 pF or less. Further, from FIG. 2, it can be seen that such a low capacitance can be obtained by setting the impurity concentration of the low impurity concentration semiconductor layer to 1×10 17 cm −3 or less. Current confinement is performed by a current blocking layer, similar to conventional semiconductor lasers. The conductivity type of the low impurity concentration semiconductor layer is arbitrary. Further, the prohibited band width may be any value as long as it functions as a laser. If the same material as the current block layer or the layer adjacent thereto is selected for the low impurity concentration semiconductor layer, the impurity concentration can be controlled very easily. Further, in that case, the low impurity concentration semiconductor layer plays the same role as the current blocking layer or a layer adjacent thereto.

【0011】さらに、本構造によればCを適当に設定す
ることにより、高周波変調電流を発光に有効に寄与させ
、レ−ザに有害なサ−ジ電流をCを介して流すように設
計することも可能である。パルス電流により半導体レ−
ザの光破壊現象が発生する光出力は、パルス幅の1/2
から1/4乗に反比例することが知られており、サ−ジ
電流により放電する電荷の量が一定の場合、パルス幅が
小さいほど有害となる。従って、半導体レ−ザ使用時に
必要な周波数以上の電流成分は発光に寄与しないことが
望ましい。本発明によればストライプ領域以外の漏れ電
流を制御できるので、必要な周波数以上の電流成分を容
易に無効化できる。
Furthermore, according to the present structure, by appropriately setting C, the high frequency modulation current is made to contribute effectively to light emission, and the surge current harmful to the laser is designed to flow through C. It is also possible. Semiconductor laser is activated by pulsed current.
The optical output at which the optical destruction phenomenon occurs is 1/2 of the pulse width.
It is known that the pulse width is inversely proportional to the 1/4th power, and when the amount of charge discharged by a surge current is constant, the smaller the pulse width, the more harmful it becomes. Therefore, it is desirable that current components having a frequency higher than that required when using a semiconductor laser do not contribute to light emission. According to the present invention, since leakage current in areas other than the stripe region can be controlled, current components having a frequency higher than a required frequency can be easily nullified.

【0012】0012

【実施例】実施例1 本発明の実施例1を図1に従い説明する。本構造はまず
、n−GaAs基板1上にn−Al0.5Ga0.5A
sクラッド層2(1.5μm厚)、アンド−プAl0.
14Ga0.86As活性層3(0.04μm厚)、p
−Al0.5Ga0.5Asクラッド層4(1.5μm
厚)、p−GaAsコンタクト層5(0.3μm厚)を
順次結晶成長する。次に、SiO2膜のストライプ状の
パタンを形成し、このパタンをマスクとしてリッジ状に
p−Al0.5Ga0.5Asクラッド層4およびp−
GaAsコンタクト層5を加工し、さらにn−GaAs
6(0.8μm厚)及びアンド−プGaAs7(0.3
μm厚)からなる電流ブロック層を形成する。この時、
SiO2パタンの上に結晶成長の起こらないMOCVD
法の特性のためにリッジ上部にはブロック層の成長は起
こらない。最後にSiO2パタンを取り除いた後、p−
GaAs埋込層8(1.2μm厚)を成長して図1のよ
うな構造とする。以上のようにして作成した半導体ウエ
ハの表面と裏面にAu電極9を設けた後、ストライプ方
向に600μmストライプと直交する方向に300μm
にウエハをへき開してレ−ザチップとする。アンド−プ
GaAs7の不純物濃度は5x1016cm ̄3以下と
なっており、ブロック層部分の接合容量23は図2より
50pF以下となる。このような素子の高周波電流に対
する等価回路は図3のようになり、R1とR2はそれぞ
れ4Ω及び2Ωである。したがって、700MHzの高
周波電流の発光寄与率は70%となる。
EXAMPLES Example 1 Example 1 of the present invention will be described with reference to FIG. This structure first consists of n-Al0.5Ga0.5A on an n-GaAs substrate 1.
s cladding layer 2 (1.5 μm thick), undoped Al0.
14Ga0.86As active layer 3 (0.04 μm thick), p
-Al0.5Ga0.5As cladding layer 4 (1.5μm
(thickness), p-GaAs contact layer 5 (0.3 μm thick) is successively crystal-grown. Next, a striped pattern of SiO2 film is formed, and using this pattern as a mask, the p-Al0.5Ga0.5As cladding layer 4 and the p-
The GaAs contact layer 5 is processed and further n-GaAs
6 (0.8 μm thick) and undoped GaAs7 (0.3 μm thick)
A current blocking layer having a thickness of .mu.m is formed. At this time,
MOCVD without crystal growth on SiO2 pattern
Due to the characteristics of the method, no block layer grows on the top of the ridge. Finally, after removing the SiO2 pattern, p-
A GaAs buried layer 8 (1.2 μm thick) is grown to form a structure as shown in FIG. After providing Au electrodes 9 on the front and back surfaces of the semiconductor wafer created as described above, the thickness of the electrodes is 600 μm in the stripe direction and 300 μm in the direction orthogonal to the stripes.
The wafer is then cleaved into laser chips. The impurity concentration of the undoped GaAs 7 is less than 5 x 1016 cm~3, and the junction capacitance 23 of the block layer portion is less than 50 pF from FIG. The equivalent circuit for high frequency current of such an element is as shown in FIG. 3, where R1 and R2 are 4Ω and 2Ω, respectively. Therefore, the light emission contribution rate of the 700 MHz high frequency current is 70%.

【0013】実施例2 本発明第2の実施例2を図4に従い説明する。本構造は
まず、n−GaAs基板1上にn−Al0.5Ga0.
5Asクラッド層2(1.5μm厚)、量子井戸構造活
性層12(0.04μm厚)、p−Al0.5Ga0.
5Asクラッド層4(1.5μm厚)、p−GaAsコ
ンタクト層5(0.3μm厚)を順次結晶成長する。次
に、SiO2膜のストライプ状のパタンを形成し、この
パタンをマスクとしてリッジ状にp−Al0.5Ga0
.5Asクラッド層4およびp−GaAsコンタクト層
5を加工し、さらにアンド−プGaAs7(0.1μm
厚)及びn−GaAs6(1.1μm厚)からなる電流
ブロック層を形成する。この時、SiO2パタンの上に
結晶成長の起こらないMOCVD法の特性のためにリッ
ジ上部にはブロック層の成長は起こらない。最後にSi
O2パタンを取り除いた後、p−GaAs埋込層8(1
.2μm厚)を成長して図4のような構造とした。以上
のようにして作成した半導体ウエハの表面と裏面にAu
電極9を設けた後、ストライプ方向に600μmストラ
イプと直交する方向に300μmにウエハをへき開して
レ−ザチップとする。MOCVDのV族ソ−スとIII
族ソ−スの供給量を最適化することにより、アンド−プ
GaAs7の不純物濃度は1x1016cm ̄3以下と
なっている。アンド−プGaAs層7の不純物濃度が低
い場合には、アンド−プ層全域が空乏化するため接合容
量はアンド−プ層の膜厚によって決まる。この場合の接
合容量は<GaAsの誘電率>X<チップ面積>/<ア
ンド−プ層膜厚> で表わされ、本素子の場合約100pFとなる。一方、
このような素子の高周波電流に対する等価回路は図3の
ようになり、R1とR2はそれぞれ4Ω及び2Ωである
。 したがって、700MHzの高周波電流の発光寄与率は
60%となる。しかも、本構造においては1GHz以上
の高周波成分は電流ブロック層の接合容量を介して漏れ
てしまうため発光に寄与せず、サ−ジ破壊が起こりにく
いという利点もある。
Embodiment 2 A second embodiment of the present invention will be explained with reference to FIG. In this structure, first, n-Al0.5Ga0.
5As cladding layer 2 (1.5 μm thick), quantum well structure active layer 12 (0.04 μm thick), p-Al0.5Ga0.
A 5As cladding layer 4 (1.5 μm thick) and a p-GaAs contact layer 5 (0.3 μm thick) are successively crystal-grown. Next, a striped pattern of SiO2 film is formed, and using this pattern as a mask, p-Al0.5Ga0
.. The 5As cladding layer 4 and the p-GaAs contact layer 5 are processed, and undoped GaAs7 (0.1 μm
A current blocking layer made of n-GaAs6 (1.1 μm thick) is formed. At this time, due to the characteristics of the MOCVD method in which crystal growth does not occur on the SiO2 pattern, no block layer grows on the upper part of the ridge. Finally, Si
After removing the O2 pattern, p-GaAs buried layer 8 (1
.. 2 μm thick) to form a structure as shown in FIG. Au was applied to the front and back sides of the semiconductor wafer prepared as described above.
After providing the electrodes 9, the wafer is cleaved to 600 μm in the stripe direction and 300 μm in the direction perpendicular to the stripes to form laser chips. MOCVD group V source and III
By optimizing the supply amount of the group source, the impurity concentration of the undoped GaAs7 is reduced to 1×10 16 cm −3 or less. When the impurity concentration of the undoped GaAs layer 7 is low, the entire undoped layer is depleted, so that the junction capacitance is determined by the thickness of the undoped layer. The junction capacitance in this case is expressed as <permittivity of GaAs>X<chip area>/<thickness of undoped layer>, and is approximately 100 pF in the case of this element. on the other hand,
The equivalent circuit for high frequency current of such an element is as shown in FIG. 3, where R1 and R2 are 4Ω and 2Ω, respectively. Therefore, the light emission contribution rate of the 700 MHz high frequency current is 60%. Moreover, in this structure, high frequency components of 1 GHz or higher leak through the junction capacitance of the current blocking layer, so they do not contribute to light emission, and there is an advantage that surge damage is less likely to occur.

【0014】実施例3 本発明の実施例3を図5に従い説明する。本構造はまず
、p−GaAs基板13上にアンド−プGaAs8及び
n−GaAs7からなる電流ブロック層を形成する。次
に、通常のホトリソクラフ技術を用いて、電流ブロック
層の一部にストライプ状の溝14を形成する。次に、液
層成長法によりp−Al0.5Ga0.5Asクラッド
層15、アンド−プAl0.14Ga0.86As活性
層16、n−Al0.5Ga0.5Asクラッド層17
、n−GaAsコンタクト層18を順次結晶成長して図
5のような構造とする。以上のようにして作成した半導
体ウエハの表面と裏面にAu電極9を設けた後、ストラ
イプ方向に600μmストライプと直交する方向に30
0μmにウエハをへき開してレ−ザチップとする。アン
ド−プGaAsの不純物濃度は5x1016cm ̄3以
下となっており、本構造による電流ブロック層部分の接
合容量23は図2より50pF以下となる。このような
素子の高周波電流に対する等価回路は図3のようになり
、R1とR2はそれぞれ4Ω及び2Ωである。したがっ
て、700MHzの高周波電流の発光寄与率は70%と
なる。
Embodiment 3 Embodiment 3 of the present invention will be explained with reference to FIG. In this structure, first, a current blocking layer made of undoped GaAs 8 and n-GaAs 7 is formed on a p-GaAs substrate 13. Next, a striped groove 14 is formed in a part of the current blocking layer using a normal photolithography technique. Next, a p-Al0.5Ga0.5As cladding layer 15, an undoped Al0.14Ga0.86As active layer 16, and an n-Al0.5Ga0.5As cladding layer 17 are formed by liquid layer growth.
, the n-GaAs contact layer 18 is successively crystal-grown to form a structure as shown in FIG. After providing Au electrodes 9 on the front and back surfaces of the semiconductor wafer prepared as described above, 300 μm in the direction perpendicular to the 600 μm stripes in the stripe direction.
The wafer is cleaved to 0 μm to form a laser chip. The impurity concentration of the undoped GaAs is 5x1016 cm~3 or less, and the junction capacitance 23 of the current blocking layer portion with this structure is 50 pF or less as shown in FIG. The equivalent circuit for high frequency current of such an element is as shown in FIG. 3, where R1 and R2 are 4Ω and 2Ω, respectively. Therefore, the light emission contribution rate of the 700 MHz high frequency current is 70%.

【0015】実施例4 本発明の実施例4を図6に従い説明する。本実施例は本
発明の構造をAlGaInP系の半導体レ−ザに適応し
たものでまず、n−GaAs基板1上にn−(Al0.
5Ga0.5)0.5In0.5Pクラッド層19(1
.5μm厚)、アンド−プGa0.5In0.5P活性
層20(0.04μm厚)、p−(Al0.5Ga0.
5)0.5In0.5Pクラッド層21(1.5μm厚
)、p−GaAsコンタクト層22(0.3μm厚)を
順次結晶成長する。次に、SiO2膜のストライプ状の
パタンを形成し、このパタンをマスクとしてリッジ状に
p−(Al0.5Ga0.5)0.5In0.5Pクラ
ッド層21およびp−GaAsコンタクト層22を加工
し、さらにn−GaAs6(0.8μm厚)及びアンド
−プGaAs7(0.3μm厚)からなる電流ブロック
層を形成する。この時、SiO2パタンの上に結晶成長
の起こらないMOCVD法の特性のためにリッジ上部に
は電流ブロック層の成長は起こらない。最後にSiO2
パタンを取り除いた後、p−GaAs埋込層8(1.2
μm厚)を成長して図6のような構造とする。以上のよ
うにして作成した半導体ウエハの表面と裏面にAu電極
9を設けた後、ストライプ方向に600μmストライプ
と直交する方向に300μmにウエハをへき開してレ−
ザチップとする。アンド−プGaAs7の不純物濃度は
5x1016cm ̄3以下となっており、本構造による
電流ブロック層部分の接合容量23は図2より50pF
以下となる。このような素子の高周波電流に対する等価
回路は図3のようになり、R1とR2はそれぞれ8Ω及
び12Ωである。したがって、700MHzの高周波電
流の発光寄与率は70%となる。
Embodiment 4 Embodiment 4 of the present invention will be explained with reference to FIG. In this embodiment, the structure of the present invention is applied to an AlGaInP semiconductor laser. First, an n-(Al0.
5Ga0.5)0.5In0.5P cladding layer 19(1
.. 5 μm thick), undoped Ga0.5In0.5P active layer 20 (0.04 μm thick), p-(Al0.5Ga0.5P active layer 20 (0.04 μm thick),
5) A 0.5In0.5P cladding layer 21 (1.5 μm thick) and a p-GaAs contact layer 22 (0.3 μm thick) are successively crystal-grown. Next, a striped pattern of SiO2 film is formed, and using this pattern as a mask, the p-(Al0.5Ga0.5)0.5In0.5P cladding layer 21 and the p-GaAs contact layer 22 are processed into a ridge shape. Furthermore, a current blocking layer made of n-GaAs6 (0.8 μm thick) and undoped GaAs7 (0.3 μm thick) is formed. At this time, the current blocking layer does not grow on the upper part of the ridge due to the characteristics of the MOCVD method in which no crystal growth occurs on the SiO2 pattern. Finally, SiO2
After removing the pattern, p-GaAs buried layer 8 (1.2
.mu.m thick) to form a structure as shown in FIG. After providing Au electrodes 9 on the front and back surfaces of the semiconductor wafer prepared as described above, the wafer was cleaved to 600 μm in the stripe direction and 300 μm in the direction orthogonal to the stripes.
Let's call it The Chip. The impurity concentration of the undoped GaAs7 is less than 5x1016cm ̄3, and the junction capacitance 23 of the current blocking layer portion with this structure is 50pF from Figure 2.
The following is true. The equivalent circuit for high frequency current of such an element is as shown in FIG. 3, where R1 and R2 are 8Ω and 12Ω, respectively. Therefore, the light emission contribution rate of the 700 MHz high frequency current is 70%.

【0016】実施例5 本発明の実施例5を図7に従い説明する。本構造はまず
、n−GaAs基板1上にn−Al0.5Ga0.5A
sクラッド層2、アンド−プAl0.14Ga0.86
As活性層3、p−Al0.5Ga0.5Asクラッド
層4、p−GaAsコンタクト層5を順次結晶成長する
。次に、SiO2膜のストライプ状のパタンを形成し、
このパタンをマスクとしてリッジ状にp−Al0.5G
a0.5Asクラッド層4およびp−GaAsコンタク
ト層5を加工し、さらにn−GaAs6及びアンド−プ
GaAs7からなる電流ブロック層を形成する。この時
、SiO2パタンの上に結晶成長の起こらないMOCV
D法の特性のためにリッジ上部には電流ブロック層の成
長は起こらない。最後にSiO2パタンを取り除いて図
7のような構造とする。 以上のようにして作成した半導体ウエハの表面と裏面に
Au電極9を設けた後、ストライプ方向に600μmス
トライプと直交する方向に300μmにウエハをへき開
してレ−ザチップとする。アンド−プGaAs7の不純
物濃度は5x1016cm ̄3以下となっており、本構
造による電流ブロック層部分のショットキ−接合容量2
3は50pF以下となる。このような素子の高周波電流
に対する等価回路は図3のようになり、R1とR2はそ
れぞれ4Ω及び2Ωである。したがって、700MHz
の高周波電流の発光寄与率は70%となる。
Example 5 Example 5 of the present invention will be explained with reference to FIG. This structure first consists of n-Al0.5Ga0.5A on an n-GaAs substrate 1.
s cladding layer 2, undoped Al0.14Ga0.86
An As active layer 3, a p-Al0.5Ga0.5As cladding layer 4, and a p-GaAs contact layer 5 are successively crystal-grown. Next, a striped pattern of SiO2 film is formed,
Using this pattern as a mask, apply p-Al0.5G in a ridge shape.
The a0.5As cladding layer 4 and the p-GaAs contact layer 5 are processed, and a current blocking layer made of n-GaAs6 and undoped GaAs7 is formed. At this time, MOCV where no crystal growth occurs on the SiO2 pattern.
Due to the characteristics of the D method, no current blocking layer is grown above the ridge. Finally, the SiO2 pattern is removed to obtain a structure as shown in FIG. After providing Au electrodes 9 on the front and back surfaces of the semiconductor wafer prepared as described above, the wafer is cleaved to a length of 600 μm in the stripe direction and 300 μm in the direction perpendicular to the stripes to obtain laser chips. The impurity concentration of the undoped GaAs7 is less than 5x1016cm ̄3, and the Schottky junction capacitance of the current blocking layer portion with this structure is 2.
3 is 50 pF or less. The equivalent circuit for high frequency current of such an element is as shown in FIG. 3, where R1 and R2 are 4Ω and 2Ω, respectively. Therefore, 700MHz
The light emission contribution rate of the high frequency current is 70%.

【0017】[0017]

【発明の効果】本発明によれば、従来の半導体レ−ザお
いて問題であった高周波電流成分の漏れを防止でき、雑
音発生防止の為の高周波変調の効果が良好に機能する半
導体レ−ザが得られる。また、低不純物濃度半導体層の
不純物濃度と厚さを適当に選ぶことにより変調周波数以
上の周波数成分の電流を逃がすことができるので、サ−
ジ破壊の起こりにくい半導体レ−ザが得られる。しかも
、低不純物濃度半導体層の導入により、従来の半導体レ
−ザでみられた電流ブロック層の電流リ−クが原因とな
った早期劣化現象も防止でき、半導体レ−ザの不良率低
減の効果もある。
According to the present invention, it is possible to prevent leakage of high-frequency current components, which was a problem in conventional semiconductor lasers, and to provide a semiconductor laser in which the effect of high-frequency modulation for preventing noise generation functions well. The result is obtained. In addition, by appropriately selecting the impurity concentration and thickness of the low impurity concentration semiconductor layer, it is possible to release current with frequency components higher than the modulation frequency.
A semiconductor laser that is less susceptible to diode damage can be obtained. Moreover, by introducing a semiconductor layer with a low impurity concentration, it is possible to prevent the early deterioration phenomenon caused by current leakage in the current blocking layer that was observed in conventional semiconductor lasers, and it is possible to reduce the defective rate of semiconductor lasers. It's also effective.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例1の半導体レ−ザの断面構造図
である。
FIG. 1 is a cross-sectional structural diagram of a semiconductor laser according to a first embodiment of the present invention.

【図2】低不純物濃度GaAs層の不純物濃度と接合容
量の関係を示す図である。
FIG. 2 is a diagram showing the relationship between the impurity concentration of a low impurity concentration GaAs layer and the junction capacitance.

【図3】電流ブロック層を有する半導体レ−ザの等価回
路である。
FIG. 3 is an equivalent circuit of a semiconductor laser having a current blocking layer.

【図4】本発明の実施例2の半導体レ−ザの断面構造図
である。
FIG. 4 is a cross-sectional structural diagram of a semiconductor laser according to a second embodiment of the present invention.

【図5】本発明の実施例3の半導体レ−ザの断面構造図
である。
FIG. 5 is a cross-sectional structural diagram of a semiconductor laser according to Example 3 of the present invention.

【図6】本発明の実施例4の半導体レ−ザの断面構造図
である。
FIG. 6 is a cross-sectional structural diagram of a semiconductor laser according to a fourth embodiment of the present invention.

【図7】本発明の実施例5の半導体レ−ザの断面構造図
である。
FIG. 7 is a cross-sectional structural diagram of a semiconductor laser according to Example 5 of the present invention.

【図8】本発明の半導体レ−ザの接合容量と発光寄与率
の関係を示す図である。
FIG. 8 is a diagram showing the relationship between junction capacitance and light emission contribution rate of the semiconductor laser of the present invention.

【図9】従来の半導体レ−ザの断面構造図である。FIG. 9 is a cross-sectional structural diagram of a conventional semiconductor laser.

【符号の説明】[Explanation of symbols]

1…n−GaAs基板、2…n−Al0.5Ga0.5
Asクラッド層、3…アンド−プAl0.14Ga0.
86As活性層、4…p−Al0.5Ga0.5Asク
ラッド層、5…p−GaAsコンタクト層、6…n−G
aAs、7…アンド−プGaAs、8…p−GaAs埋
込層、9…Au電極、12…量子井戸構造活性層、13
…p−GaAs基板、14…ストライプ状の溝、15…
p−Al0.5Ga0.5Asクラッド層、16…アン
ド−プAl0.14Ga0.86As活性層、17…n
−Al0.5Ga0.5Asクラッド層、18…n−G
aAsコンタクト層、19…n−(Al0.5Ga0.
5)0.5In0.5Pクラッド層、20…アンド−プ
Ga0.5In0.5P活性層、21…p−(Al0.
5Ga0.5)0.5In0.5Pクラッド層、22…
p−GaAsコンタクト層。
1...n-GaAs substrate, 2...n-Al0.5Ga0.5
As cladding layer, 3... undoped Al0.14Ga0.
86As active layer, 4...p-Al0.5Ga0.5As cladding layer, 5...p-GaAs contact layer, 6...n-G
aAs, 7... Undoped GaAs, 8... p-GaAs buried layer, 9... Au electrode, 12... quantum well structure active layer, 13
...p-GaAs substrate, 14...stripe-shaped groove, 15...
p-Al0.5Ga0.5As cladding layer, 16... undoped Al0.14Ga0.86As active layer, 17...n
-Al0.5Ga0.5As cladding layer, 18...n-G
aAs contact layer, 19...n-(Al0.5Ga0.
5) 0.5In0.5P cladding layer, 20... undoped Ga0.5In0.5P active layer, 21...p-(Al0.
5Ga0.5)0.5In0.5P cladding layer, 22...
p-GaAs contact layer.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】活性層中のストライプ領域のみに通電する
ためのPN接合電流ブロック構造を有する半導体レ−ザ
において、上記PN接合電流ブロック構造の構成要素で
ある電流ブロック層は少なくとも該層に対し上記活性層
側に在る層とPN接合を構成しており、少なくとも1つ
の上記PN接合の界面に該PN接合構成層より不純物濃
度が小さい低不純物濃度半導体層が形成されていること
を特徴とする半導体レ−ザ。
1. A semiconductor laser having a PN junction current blocking structure for conducting current only to a striped region in an active layer, wherein the current blocking layer, which is a component of the PN junction current blocking structure, has a current blocking layer that is a component of the PN junction current blocking structure. A PN junction is formed with a layer on the active layer side, and a low impurity concentration semiconductor layer having a lower impurity concentration than the PN junction constituting layer is formed at the interface of at least one of the PN junctions. semiconductor laser.
【請求項2】上記低不純物濃度半導体層は上記活性層側
のPN接合の界面に形成されている請求項1記載の半導
体レ−ザ。
2. A semiconductor laser according to claim 1, wherein said low impurity concentration semiconductor layer is formed at an interface of a PN junction on said active layer side.
【請求項3】上記低不純物濃度半導体層は上記活性層に
対し反対側のPN接合の界面に形成されている請求項1
記載の半導体レ−ザ。
3. The low impurity concentration semiconductor layer is formed at the interface of the PN junction on the opposite side to the active layer.
The semiconductor laser described above.
【請求項4】上記半導体レ−ザはn−GaAs基板上に
この順序で形成されたn−AlGaAsクラッド層、ア
ンド−プAl0.14Ga0.86As活性層およびp
−Al0.5Ga0.5Asクラッド層を有しており、
上記p−Al0.5Ga0.5Asクラッド層はリッジ
状のストライプを有し、かつ該ストライプの両側の上記
p−Al0.5Ga0.5Asクラッド層上にはn−G
aAs電流ブロック層およびアンド−プGaAs低不純
物濃度半導体層がこの順序で形成されている請求項2又
は3記載の半導体レ−ザ。
4. The semiconductor laser includes an n-AlGaAs cladding layer, an undoped Al0.14Ga0.86As active layer, and a p-type Al0.14Ga0.86As active layer, which are formed in this order on an n-GaAs substrate.
- has an Al0.5Ga0.5As cladding layer,
The p-Al0.5Ga0.5As cladding layer has a ridge-like stripe, and the p-Al0.5Ga0.5As cladding layer on both sides of the stripe has an n-G
4. A semiconductor laser according to claim 2, wherein the aAs current blocking layer and the undoped GaAs low impurity concentration semiconductor layer are formed in this order.
【請求項5】上記低不純物濃度半導体層の厚さおよび不
純物濃度は、半導体レ−ザ使用時に印加される高周波電
流が発光に有効に寄与し、上記高周波電流より高い周波
数の電流成分が発光に寄与しないように設定されている
請求項1乃至4のいずれかに記載の半導体レ−ザ。
5. The thickness and impurity concentration of the low impurity concentration semiconductor layer are such that a high frequency current applied when using a semiconductor laser effectively contributes to light emission, and a current component with a higher frequency than the high frequency current contributes to light emission. 5. The semiconductor laser according to claim 1, wherein the semiconductor laser is set not to contribute.
JP07491291A 1991-04-08 1991-04-08 Semiconductor laser Expired - Lifetime JP3179511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07491291A JP3179511B2 (en) 1991-04-08 1991-04-08 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07491291A JP3179511B2 (en) 1991-04-08 1991-04-08 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPH04309278A true JPH04309278A (en) 1992-10-30
JP3179511B2 JP3179511B2 (en) 2001-06-25

Family

ID=13561075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07491291A Expired - Lifetime JP3179511B2 (en) 1991-04-08 1991-04-08 Semiconductor laser

Country Status (1)

Country Link
JP (1) JP3179511B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5495493A (en) * 1993-01-20 1996-02-27 Kabushiki Kaisha Toshiba Semiconductor laser device
JPH11220205A (en) * 1998-01-30 1999-08-10 Sharp Corp Semiconductor laser element and manufacture thereof
JP2001244551A (en) * 2000-02-28 2001-09-07 Sony Corp Pulsation laser
JP2001251012A (en) * 2000-03-03 2001-09-14 Sony Corp Pulsation laser
KR20030045474A (en) * 2001-12-04 2003-06-11 엘지이노텍 주식회사 Manufacture method for semiconductor laser diode
US6865202B2 (en) 2001-06-15 2005-03-08 Sharp Kabushiki Kaisha Semiconductor laser element
JP2011249767A (en) * 2010-04-27 2011-12-08 Sumitomo Electric Device Innovations Inc Method for manufacturing optical semiconductor device
DE102010046793B4 (en) 2010-09-28 2024-05-08 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Edge-emitting semiconductor laser diode and method for its manufacture

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5495493A (en) * 1993-01-20 1996-02-27 Kabushiki Kaisha Toshiba Semiconductor laser device
JPH11220205A (en) * 1998-01-30 1999-08-10 Sharp Corp Semiconductor laser element and manufacture thereof
JP2001244551A (en) * 2000-02-28 2001-09-07 Sony Corp Pulsation laser
JP2001251012A (en) * 2000-03-03 2001-09-14 Sony Corp Pulsation laser
US6865202B2 (en) 2001-06-15 2005-03-08 Sharp Kabushiki Kaisha Semiconductor laser element
KR20030045474A (en) * 2001-12-04 2003-06-11 엘지이노텍 주식회사 Manufacture method for semiconductor laser diode
JP2011249767A (en) * 2010-04-27 2011-12-08 Sumitomo Electric Device Innovations Inc Method for manufacturing optical semiconductor device
DE102010046793B4 (en) 2010-09-28 2024-05-08 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Edge-emitting semiconductor laser diode and method for its manufacture

Also Published As

Publication number Publication date
JP3179511B2 (en) 2001-06-25

Similar Documents

Publication Publication Date Title
CA1197001A (en) Double-channel planar heterostructure semiconductor laser
JPS61190993A (en) Manufacture of semiconductor laser element
JPH04309278A (en) Semiconductor laser
US5394421A (en) Semiconductor laser device including a step electrode in a form of eaves
CA2106596C (en) Semiconductor laser device
JPS6243357B2 (en)
JPH08250801A (en) Semiconductor laser device and its manufacture
JPS62282482A (en) Semiconductor laser device
JP2624881B2 (en) Semiconductor laser device and method of manufacturing the same
JPH03133189A (en) Highly resistive semiconductor layer buried type semiconductor laser
JP3229085B2 (en) Semiconductor laser device and method of manufacturing the same
JPH07106687A (en) Semiconductor laser
JPS62279688A (en) Manufacture of semiconductor laser element
KR100255694B1 (en) Semiconductor laser diode
JPS5956783A (en) Semiconductor laser
JPH03203282A (en) Semiconductor laser diode
JPS6174383A (en) Semiconductor laser array device and manufacture thereof
JPH0992926A (en) Semiconductor laser and its manufacture
JPS60258987A (en) Semiconductor laser device and manufacture thereof
JPH0314279A (en) Semiconductor laser device
JPH05226775A (en) Semiconductor laser element
JPH11168256A (en) Light-emitting element and its manufacturing method
JPS63153883A (en) Quantum well type semiconductor light-emitting element
JPH0382184A (en) High resistance buried semiconductor laser and manufacture thereof
JP2001274509A (en) Semiconductor laser

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 10

EXPY Cancellation because of completion of term