JPH04306290A - Production of composite grinding grain - Google Patents

Production of composite grinding grain

Info

Publication number
JPH04306290A
JPH04306290A JP3098234A JP9823491A JPH04306290A JP H04306290 A JPH04306290 A JP H04306290A JP 3098234 A JP3098234 A JP 3098234A JP 9823491 A JP9823491 A JP 9823491A JP H04306290 A JPH04306290 A JP H04306290A
Authority
JP
Japan
Prior art keywords
abrasive grains
acid
abrasive
composite abrasive
producing composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3098234A
Other languages
Japanese (ja)
Other versions
JP3088124B2 (en
Inventor
Susumu Hiyama
桧山 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seimi Chemical Co Ltd
Original Assignee
Seimi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seimi Chemical Co Ltd filed Critical Seimi Chemical Co Ltd
Priority to JP03098234A priority Critical patent/JP3088124B2/en
Publication of JPH04306290A publication Critical patent/JPH04306290A/en
Application granted granted Critical
Publication of JP3088124B2 publication Critical patent/JP3088124B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To provide the subject method for production of composite abrasion grain for magnetic grinding, having improved grinding effect and durability. CONSTITUTION:Magnetic metal particles such as iron and grinding material particles such as chromium oxide are blended with stirring together with an acid such as nitric acid in a ball mill. The resultant mixture is then dried or calcined to fix the grinding material to the surface of the magnetic metal particles.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は複合砥粒の製造方法、特
に酸を利用した磁気研磨用の複合砥粒の製造法に関する
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing composite abrasive grains, and more particularly to a method for producing composite abrasive grains for magnetic polishing using acid.

【0002】0002

【従来の技術】最近、磁気研磨法と呼ばれる新しい研磨
法が開発され、注目を集めている。この方法は部品のバ
リ取りや、円筒部品、平面部品、部品内面、球面の様な
複雑形状部品、金型自由曲面の研磨加工、各種形状部品
のエッジ仕上げ、さらにセラミックスやシリコンウエハ
などの硬脆材料の精密仕上げ加工に至るまで、幅広く応
用できる。この場合の磁気研磨砥粒粒子は、磁性と共に
研磨効果を合せ持つ、いわゆる複合砥粒であり、強磁性
と高研削性を合せもつことが要求される。
2. Description of the Related Art Recently, a new polishing method called magnetic polishing method has been developed and is attracting attention. This method is used for deburring parts, polishing cylindrical parts, flat parts, inner surfaces of parts, complex-shaped parts such as spherical surfaces, free-form mold surfaces, edge finishing of various shaped parts, and hard and brittle parts such as ceramics and silicon wafers. It can be widely applied to precision finishing of materials. The magnetic polishing abrasive particles in this case are so-called composite abrasive particles that have both magnetism and polishing effect, and are required to have both ferromagnetism and high grindability.

【0003】従来、このような複合砥粒粒子の作り方は
、鉄と高研削研磨材の微粉を加圧成形後、雰囲気炉で焼
結させるか、熱間で加圧焼結する方法、金属合金を内部
窒化する方法、金属合金と炭素の融解物から炭素物を生
成させる方法、炭素とチタンの発熱反応を利用して、炭
化チタンと鉄の複合化合物をつくる方法(A.B.Ly
ashehenko 他Poroshkovaya M
etallurgiya 9  44〜48(1983
)) 、鉄とアルミナを混合し不活性ガス雰囲気下で加
熱してつくる方法(特公昭61−250084号公報)
、鉄と研磨材の混合物をプラズマ加熱により熔融して複
合砥粒をつくる方法(安斉正博他、砥粒加工学会誌33
,4,p34(1989))、無電解メッキで鉄とダイ
ヤモンドをつける方法などが提案されている。
[0003] Conventionally, such composite abrasive particles have been made by press-forming fine powders of iron and high-grind abrasive material, and then sintering them in an atmosphere furnace, hot pressure sintering, or using metal alloys. A method for internally nitriding carbon, a method for producing carbon materials from a melt of metal alloy and carbon, and a method for producing a composite compound of titanium carbide and iron by utilizing an exothermic reaction between carbon and titanium (A.B.Ly
ashehenko and other Poroshkovaya M
etallurgiya 9 44-48 (1983
)), a method in which iron and alumina are mixed and heated in an inert gas atmosphere (Japanese Patent Publication No. 61-250084)
, a method of creating composite abrasive grains by melting a mixture of iron and abrasive material by plasma heating (Masahiro Anzai et al., Journal of the Abrasive Processing Society 33)
, 4, p. 34 (1989)), a method of attaching iron and diamond by electroless plating has been proposed.

【0004】しかしながら、高価な雰囲気炉、粉砕機、
プラズマ発生装置や高価な薬品を必要としているにもか
かわらず、生産性が低く、研削力、加工効率も低く、経
済的な方法ではない欠点を有していた。
However, expensive atmosphere furnaces, crushers,
Although it requires a plasma generator and expensive chemicals, it has the drawbacks of low productivity, low grinding power, and low processing efficiency, making it not an economical method.

【0005】[0005]

【発明が解決しようとする課題】磁気研磨砥粒に求めら
れている性能は、研削力、表面仕上げ性、砥粒の耐久性
、巾広い応用性の点でかつ安価に、量産化できることで
ある。従来法で得られている砥粒には、これらすべての
点を十分満たすものはない。本発明の目的は、上記のす
べての点を満足させる優れた磁気研磨用砥粒粒子を得る
ことにある。
[Problem to be solved by the invention] The performance required of magnetic abrasive grains is that they can be mass-produced at low cost, in terms of grinding power, surface finish, durability of the abrasive grains, and wide applicability. . There is no abrasive grain obtained by conventional methods that fully satisfies all of these points. An object of the present invention is to obtain excellent magnetic polishing abrasive grains that satisfy all of the above points.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
鋭意研究の結果、鉄等の磁性金属の粉末粒子や研磨材を
水溶液中又は有機溶媒中で種々の酸と作用させることに
より磁性金属の表面に研磨材が強固に固着されることを
見出し、本発明を達成するに至った。
[Means for Solving the Problems] In order to achieve the above object, as a result of intensive research, we have developed a method for producing magnetic metals by interacting powder particles of magnetic metals such as iron and abrasive materials with various acids in an aqueous solution or an organic solvent. It was discovered that the abrasive material is firmly fixed to the surface, and the present invention was achieved.

【0007】かくして本発明は、磁性金属粒子の表面に
金属の酸化物、窒化物、炭化物、ダイヤモンド等の研磨
材を酸と作用せしめることにより固着することを特徴と
する複合砥粒粒子の合成方法である。
[0007] Thus, the present invention provides a method for synthesizing composite abrasive particles, which is characterized in that an abrasive such as a metal oxide, nitride, carbide, or diamond is fixed to the surface of magnetic metal particles by interacting with an acid. It is.

【0008】本発明において、用いられる磁性金属とし
ては、例えば、鉄、コバルト、ニッケル、またはそれら
を含む合金等であり、その大きさは0.5〜5000μ
m、好ましくは20〜600μm程度が適当である。
In the present invention, the magnetic metal used is, for example, iron, cobalt, nickel, or an alloy containing these, and the size thereof is 0.5 to 5000 μm.
m, preferably about 20 to 600 μm.

【0009】大きさが0.5μより小さい場合には磁性
が弱くなり研削力の低下となり、逆に5000μmより
大きい場合には磁性が強くなり表面仕上げ性が悪くなる
ので何れも好ましくない。さらにこれは針状体でも用い
られ、その場合の大きさは直径5〜2000μm、好ま
しくは30〜200μm、長さが1〜20mm、好まし
くは3〜6mm程度が適当である。
If the size is smaller than 0.5 μm, the magnetism will be weak and the grinding force will be reduced, and if it is larger than 5000 μm, the magnetism will be strong and the surface finish will be poor, which is not preferable. Furthermore, it can also be used as a needle-shaped body, in which case the appropriate size is approximately 5 to 2000 μm in diameter, preferably 30 to 200 μm, and 1 to 20 mm in length, preferably 3 to 6 mm.

【0010】直径が5μより小さい場合には針状体がか
らみあい研削が困難となり、逆に2000μmより大き
い場合には、全体の表面積が極端に小さくなり研削力の
低下となるので何れも好ましくない。
If the diameter is smaller than 5 μm, the needles become entangled and grinding becomes difficult, while if it is larger than 2000 μm, the overall surface area becomes extremely small and the grinding force decreases, which is not preferable.

【0011】研磨材としては例えば酸化クロム、酸化セ
リウム、酸化ジルコニウム等の金属の酸化物、窒化ケイ
素、窒化ニオブ、窒化タングステン等の金属の窒化物、
炭化ケイ素、炭化ニオブ、炭化チタン、炭化クロム等の
金属の炭化物、ダイヤモンド等を適宜用い得る。
Examples of the abrasive include metal oxides such as chromium oxide, cerium oxide, and zirconium oxide; metal nitrides such as silicon nitride, niobium nitride, and tungsten nitride;
Metal carbides such as silicon carbide, niobium carbide, titanium carbide, and chromium carbide, diamond, and the like may be used as appropriate.

【0012】こうした研磨材の大きさは0.01〜20
0μm、好ましくは0.1〜20μm程度が適当である
。大きさが0.01μmより小さい場合には研削力の低
下となり、逆に200μmより大きい場合には粒径の粗
さにより表面仕上げ性が悪くなるので、何れも好ましく
ない。
[0012] The size of such abrasive material is 0.01 to 20
Appropriately, the thickness is about 0 μm, preferably about 0.1 to 20 μm. If the particle size is smaller than 0.01 .mu.m, the grinding force will be reduced, and if it is larger than 200 .mu.m, the surface finish will be poor due to the roughness of the particle size, which is not preferable.

【0013】磁性金属へ固着される研磨材の量は、複合
砥粒全量に対し、0.01〜50%、好ましくは0.1
〜30%程度を採用するのが適当である。研磨材の量が
0.01%より少ない場合には研削力が極端に低下する
こととなり、逆に50%より多い場合には研磨材の付着
性が悪く脱離しやすくなるので、何れも好ましくない。
The amount of abrasive fixed to the magnetic metal is 0.01 to 50%, preferably 0.1%, based on the total amount of composite abrasive grains.
It is appropriate to adopt about 30%. If the amount of abrasive is less than 0.01%, the grinding force will be extremely reduced, and if it is more than 50%, the adhesion of the abrasive will be poor and it will easily come off, so both are not preferable. .

【0014】磁性金属へ研磨材を固着する手段としては
、例えば磁性金属と研磨材と酸とをステンレス製又はポ
リアミド樹脂等で内貼りされたボールミル中において5
〜100rpm程度の回転速度で0.5〜25時間程度
回転させることによって固着せしめる手段、あるいは、
撹拌器付きのステンレス製、FRP製、ガラスライニン
グされたタンク内において5〜100rpm程度の回転
速度で0.5〜25時間程度回転させることによって固
着せしめる等の手段を適宜採用し得る。
As a means of fixing the abrasive material to the magnetic metal, for example, the magnetic metal, the abrasive material, and an acid are placed in a ball mill lined with stainless steel or polyamide resin, etc.
A means for fixing by rotating at a rotation speed of about 100 rpm for about 0.5 to 25 hours, or
Appropriate means may be employed, such as fixing by rotating at a rotation speed of about 5 to 100 rpm for about 0.5 to 25 hours in a stainless steel, FRP, or glass-lined tank equipped with a stirrer.

【0015】本発明に用いる酸としては、例えば硝酸、
塩酸、硫酸、リン酸等の鉱酸、酢酸、ギ酸、クエン酸、
シュウ酸、酒石酸等の有機カルボン酸等が適当である。 このうち鉱酸を用いると、特に固着の力が強く、また持
続性もあるので好ましい。用いられる酸の濃度は0.0
01〜2N、好ましくは0.1〜0.3Nが適当である
[0015] Examples of acids used in the present invention include nitric acid,
Mineral acids such as hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid, formic acid, citric acid,
Organic carboxylic acids such as oxalic acid and tartaric acid are suitable. Among these, it is preferable to use mineral acids because they have particularly strong fixing power and are durable. The concentration of acid used is 0.0
01-2N, preferably 0.1-0.3N is suitable.

【0016】酸の濃度が0.001Nより小さい場合に
は研磨材の磁性金属表面への固着が不完全となり、逆に
2Nより高い場合には磁性金属との反応が激しすぎて、
充分研磨材が固着されなくなるので、何れも好ましくな
い。磁性金属へ研磨材を固着する際用いられる酸の温度
は、0〜100℃好ましくは20〜40℃が適当である
If the acid concentration is less than 0.001N, the adhesion of the abrasive to the magnetic metal surface will be incomplete, and if it is higher than 2N, the reaction with the magnetic metal will be too intense.
Neither of these is preferable because the abrasive will not be sufficiently fixed. The temperature of the acid used to fix the abrasive to the magnetic metal is suitably 0 to 100°C, preferably 20 to 40°C.

【0017】温度が0℃より低い場合には、酸の反応性
が低下し研磨材の固着が不完全となり、逆に100℃よ
り高い場合には、例えば酸を含んだ溶液が突沸したりし
て、研磨材の固着が不完全となるので、何れも好ましく
ない。かくして固着された磁性金属と研磨材は酸から分
離され、更に強固に固着するために乾燥または焼成され
る。
[0017] When the temperature is lower than 0°C, the reactivity of the acid decreases and the adhesion of the abrasive material becomes incomplete.On the other hand, when the temperature is higher than 100°C, for example, a solution containing an acid may bump. Both are undesirable because the adhesion of the abrasive material becomes incomplete. The thus fixed magnetic metal and abrasive material are separated from the acid and dried or fired to further firmly bond them.

【0018】乾燥または焼成に要する温度は80〜10
00℃、好ましくは110〜500℃を採用するのが適
当である。温度が80℃より低い場合には固着された研
磨材が脱離しやすくなり、1000℃より高い場合には
、磁性金属表面の酸化が促進され研磨材が脱離しやすく
なるので、何れも好ましくない。
[0018] The temperature required for drying or firing is 80 to 10
It is appropriate to employ a temperature of 00°C, preferably 110 to 500°C. If the temperature is lower than 80° C., the fixed abrasive material will easily come off, and if the temperature is higher than 1000° C., oxidation of the magnetic metal surface will be promoted and the abrasive material will be easy to come off, so both are not preferred.

【0019】本発明において酸処理により合成された複
合砥粒粒子あるいは複合砥粒針の研磨材の固着機構は必
ずしも明確でないが、粉末X線回折データの結果から推
測すると、酸の作用で磁性金属の表面がイオン化され、
例えば表面にγ−FeOOH相が生成する際に研磨材粒
子がこれによって固定され、乾燥または焼成することに
より、両者が一体となってより強く固着するものと思わ
れる。
Although the mechanism of adhesion of the abrasive to the composite abrasive particles or composite abrasive needles synthesized by acid treatment in the present invention is not necessarily clear, it is estimated from the powder X-ray diffraction data that magnetic metals are bonded by the action of the acid. the surface of is ionized,
For example, when a γ-FeOOH phase is generated on the surface, the abrasive particles are fixed by this, and by drying or baking, it is thought that the two become more strongly fixed together.

【0020】本発明において得られた複合砥粒は研磨材
の付着量が20〜30%と多く、高い研削力と表面仕上
げ性、耐久性を有する。したがって従来の熱間加圧成形
法、合金窒化法、融解炭化法、鉄−アルミナ加熱法、プ
ラズマ加熱法、無電解メッキ法等に比べ、本発明の合成
法によって得られた複合砥粒粒子は磁気研磨用として極
めて優れている。
The composite abrasive grains obtained in the present invention have a large amount of abrasive adhesion of 20 to 30%, and have high grinding power, surface finish, and durability. Therefore, compared to conventional hot pressing methods, alloy nitriding methods, fusion carbonization methods, iron-alumina heating methods, plasma heating methods, electroless plating methods, etc., the composite abrasive particles obtained by the synthesis method of the present invention are Extremely excellent for magnetic polishing.

【0021】[0021]

【実施例】【Example】

[実施例1]鉄粉(70〜80μm)90gと酸化クロ
ム(1〜2μm)10gを0.3Nの硝酸40ccに分
散させ、その混合液をボールミル(ガス板穴付、内容器
200cc、ポリアミド樹脂)で1〜2時間回転混合し
た。研磨材粒子を固着後、混合液を減圧濾過し水洗した
。固着させた酸化クロム粒子を110℃で乾燥させ、酸
化クロム10%を含む100gの複合砥粒粒子が得られ
た。得られた研磨砥粒の研削力は通常使用されているも
のに比べて約2倍、耐久性についても通常品に比較して
約2倍の能力を示した。
[Example 1] 90 g of iron powder (70-80 μm) and 10 g of chromium oxide (1-2 μm) were dispersed in 40 cc of 0.3N nitric acid, and the mixed solution was milled in a ball mill (with gas plate hole, inner container 200 cc, polyamide resin). ) for 1 to 2 hours. After fixing the abrasive particles, the mixed solution was filtered under reduced pressure and washed with water. The fixed chromium oxide particles were dried at 110° C. to obtain 100 g of composite abrasive particles containing 10% chromium oxide. The abrasive grains obtained had about twice the grinding power of commonly used abrasive grains, and about twice the durability of conventional abrasive grains.

【0022】[実施例2]鉄粉(10〜20μm)70
gと酸化クロム(1〜2μm)30gを0.2Nの硝酸
70ccに分散し、以下実施例1と同様にして、酸化ク
ロム30%を含む100gの複合砥粒粒子が得られた。 得られた研磨砥粒の研削力は通常使用されているものに
比べて約2倍、耐久性についても通常品に比較して約2
倍の能力を示した。
[Example 2] Iron powder (10-20 μm) 70
g and 30 g of chromium oxide (1 to 2 μm) were dispersed in 70 cc of 0.2N nitric acid, and in the same manner as in Example 1, 100 g of composite abrasive particles containing 30% chromium oxide were obtained. The grinding power of the obtained abrasive grains is approximately twice that of commonly used abrasive grains, and the durability is also approximately 2 times that of regular products.
It showed double the ability.

【0023】[実施例3]鉄粉(70〜80μm)90
gとダイヤモンド(2〜4μm)10gを0.3Nの硝
酸40ccに分散し、以下実施例1と同様にしてダイヤ
モンド10%を含む100gの複合砥粒粒子が得られた
。得られた研磨砥粒の研削力は通常使用されているもの
に比べて約3倍、耐久性についても通常品に比較して約
2倍の能力を示した。
[Example 3] Iron powder (70-80 μm) 90
In the same manner as in Example 1, 100 g of composite abrasive grains containing 10% diamond were obtained by dispersing 10 g of diamond (2 to 4 μm) in 40 cc of 0.3N nitric acid. The abrasive grains obtained had a grinding power about three times that of commonly used abrasive grains, and a durability about twice that of conventional products.

【0024】[実施例4]鉄粉(800〜2000μm
)97gにダイヤモンド(2〜4μm)3gを0.3N
の硝酸30ccに分散し、以下実施例1と同様にしてダ
イヤモンド3%を含む100gの複合砥粒粒子が得られ
た。得られた研磨砥粒の研削力は通常使用されているも
のに比べて約3倍、耐久性についても通常品に比較して
約2倍の能力を示した。
[Example 4] Iron powder (800 to 2000 μm
) 97g and 3g of diamond (2-4μm) at 0.3N
100 g of composite abrasive grains containing 3% diamond were obtained in the same manner as in Example 1. The abrasive grains obtained had a grinding power about three times that of commonly used abrasive grains, and a durability about twice that of conventional products.

【0025】[実施例5]鉄粉(200〜300μm)
95gにダイヤモンド(8〜16μm)5gを0.3N
の硝酸40ccに分散し、以下実施例1と同様にして、
ダイヤモンド5%を含む複合砥粒粒子100gが得られ
た。得られた研磨砥粒の研削力は通常使用されているも
のに比べて約3倍、耐久性についても通常品に比較して
約2倍の能力を示した。
[Example 5] Iron powder (200-300 μm)
95g and 5g of diamond (8-16μm) at 0.3N
Dispersed in 40 cc of nitric acid, and then in the same manner as in Example 1,
100 g of composite abrasive particles containing 5% diamond were obtained. The abrasive grains obtained had a grinding power about three times that of commonly used abrasive grains, and a durability about twice that of conventional products.

【0026】[実施例6]鉄粉(70〜80μm)80
gにアルミナ(WA#4000,3μm)20gを0.
3Nの硝酸40ccに分散し、以下実施例1と同様にし
てアルミナ20%を含む複合砥粒粒子100gが得られ
た。得られた研磨砥粒の研削力は通常使用されているも
のに比べて約2倍、耐久性についても通常品に比較して
約2倍の能力を示した。
[Example 6] Iron powder (70-80 μm) 80
20g of alumina (WA#4000, 3μm) was added to 0.g.
After dispersing in 40 cc of 3N nitric acid, 100 g of composite abrasive particles containing 20% alumina were obtained in the same manner as in Example 1. The abrasive grains obtained had about twice the grinding power of commonly used abrasive grains, and about twice the durability of conventional abrasive grains.

【0027】[実施例7]鉄粉(200〜300μm)
94gにアルミナ(WA#1200,12μm)6gを
0.3Nの塩酸40ccに分散し、以下実施例1と同様
にして、アルミナ6%を含む複合砥粒粒子100gが得
られた。得られた研磨砥粒の研削力は通常使用されてい
るものに比べて約2倍、耐久性についても通常品に比較
して約2倍の能力を示した。
[Example 7] Iron powder (200-300 μm)
6 g of alumina (WA #1200, 12 μm) was dispersed in 40 cc of 0.3N hydrochloric acid and the same procedure as in Example 1 was carried out to obtain 100 g of composite abrasive particles containing 6% alumina. The abrasive grains obtained had about twice the grinding power of commonly used abrasive grains, and about twice the durability of conventional abrasive grains.

【0028】[実施例8]鉄粉(70〜80μm)85
gに、酸化セリウム(ルミノックスEH,1〜2μ)1
5gを0.3Nの硝酸40ccに分散し、以下実施例1
と同様にして、15%の酸化セリウムを含む複合砥粒粒
子100gが得られた。得られた研磨砥粒の研削力は通
常使用されているものに比べて約2倍、耐久性について
も通常品に比較して約2倍の能力を示した。
[Example 8] Iron powder (70-80 μm) 85
g, cerium oxide (Luminox EH, 1-2μ) 1
5g was dispersed in 40cc of 0.3N nitric acid, and the following Example 1 was prepared.
In the same manner as above, 100 g of composite abrasive particles containing 15% cerium oxide were obtained. The abrasive grains obtained had about twice the grinding power of commonly used abrasive grains, and about twice the durability of conventional abrasive grains.

【0029】[実施例9]鉄粉(70〜80μm)90
gに窒素ケイ素(2〜3μ)10gを0.3Nの硫酸4
0ccに分散し、以下実施例1と同様にして10%窒化
ケイ素を含む複合砥粒粒子100gが得られた。得られ
た研磨砥粒の研削力は通常使用されているものに比べて
約2倍、耐久性についても通常品に比較して約2倍の能
力を示した。
[Example 9] Iron powder (70-80 μm) 90
10g of nitrogen silicon (2-3μ) in 4g of 0.3N sulfuric acid
100 g of composite abrasive particles containing 10% silicon nitride were obtained in the same manner as in Example 1. The abrasive grains obtained had about twice the grinding power of commonly used abrasive grains, and about twice the durability of conventional abrasive grains.

【0030】[実施例10]鉄粉(70〜80μm)9
0gに酸化ジルコニウム(0.5〜1μm)10gを0
.3Nの酢酸40ccに分散し、以下実施例1と同様に
して、10%酸化ジルコニウムを含む複合砥粒粒子10
0gが得られた。得られた研磨砥粒の研削力は通常使用
されているものに比べて約2倍、耐久性についても通常
品に比較して約2倍の能力を示した。
[Example 10] Iron powder (70-80 μm) 9
Add 10 g of zirconium oxide (0.5 to 1 μm) to 0 g.
.. Composite abrasive particles 10 containing 10% zirconium oxide were dispersed in 40 cc of 3N acetic acid and prepared in the same manner as in Example 1.
0 g was obtained. The abrasive grains obtained had about twice the grinding power of commonly used abrasive grains, and about twice the durability of conventional abrasive grains.

【0031】[実施例11]鉄針(90μmφ、3mm
L)96gにダイヤモンド(1〜2μm)4gを0.3
Nの硝酸40ccに分離し、以下実施例1と同様にして
4%のダイヤモンドを含む複合砥粒粒子100gが得ら
れた。得られた研磨砥粒の研削力は通常使用されている
ものに比べて約2倍、耐久性についても通常品に比較し
て約2倍の能力を示した。
[Example 11] Iron needle (90 μmφ, 3 mm
L) 96g and 4g of diamond (1-2μm) 0.3
The mixture was separated into 40 cc of N nitric acid, and the same procedure as in Example 1 was carried out to obtain 100 g of composite abrasive particles containing 4% diamond. The abrasive grains obtained had about twice the grinding power of commonly used abrasive grains, and about twice the durability of conventional abrasive grains.

【0032】[実施例12]鉄針(50μmφ、3mm
L)95gにアルミナ(WA#4000,3μ)5gを
0.3Nの硝酸40ccに分散し、以下実施例1と同様
にして5%のアルミナを含む複合砥粒粒子100gが得
られた。得られた研磨砥粒の研削力は通常使用されてい
るものに比べて約2倍、耐久性についても通常品に比較
して約2倍の能力を示した。
[Example 12] Iron needle (50 μmφ, 3 mm
5 g of alumina (WA#4000, 3μ) was dispersed in 40 cc of 0.3N nitric acid and 100 g of composite abrasive particles containing 5% alumina were obtained in the same manner as in Example 1. The abrasive grains obtained had about twice the grinding power of commonly used abrasive grains, and about twice the durability of conventional abrasive grains.

【0033】[比較例1]鉄粉(70〜80μm)70
gとアルミナ(WA#4000,3μ)30gを良く混
合させ、その混合粉を4000kg/cm2 圧で90
0℃にてホットプレスし、径20mm、厚さ10mmの
ペレット5ケ、計90gが得られた。ペレットをジョー
クラッシャ、ローラーミルで粉砕し80〜150μmの
複合砥粒粒子75gが得られた。
[Comparative Example 1] Iron powder (70-80 μm) 70
g and 30g of alumina (WA#4000, 3μ) were mixed well, and the mixed powder was heated to 90% at a pressure of 4000kg/cm2.
Hot pressing was carried out at 0°C to obtain 5 pellets each having a diameter of 20 mm and a thickness of 10 mm, totaling 90 g. The pellets were crushed using a jaw crusher and a roller mill to obtain 75 g of composite abrasive particles with a diameter of 80 to 150 μm.

【0034】[比較例2]鉄粉(70〜80μm)70
gと炭化ニオブ(3μm)30gを良く混合し、その混
合粉を以下比較例1と同様にして80〜150μmの複
合砥粒75gが得られた。
[Comparative Example 2] Iron powder (70-80 μm) 70
g and 30 g of niobium carbide (3 μm) were thoroughly mixed, and the mixed powder was treated in the same manner as in Comparative Example 1 to obtain 75 g of composite abrasive grains of 80 to 150 μm.

【0035】上記実施例1〜12、比較例1、2で得ら
れた、複合砥粒粒子について、研削力、表面仕上げ性、
耐久性について調べ測定結果を表1に示す。比較のため
高強度と言われている市販の電着ダイヤモンド複合砥粒
(比較例3)と単なる鉄針(90μmφ、3mmL)(
比較例4)についても試験を行った。
[0035] Regarding the composite abrasive grains obtained in Examples 1 to 12 and Comparative Examples 1 and 2, the grinding force, surface finish,
The durability was investigated and the measurement results are shown in Table 1. For comparison, a commercially available electrodeposited diamond composite abrasive grain (Comparative Example 3), which is said to have high strength, and a simple iron needle (90 μmφ, 3 mmL) (
Comparative Example 4) was also tested.

【0036】[0036]

【表1】[Table 1]

【0037】本発明の複合砥粒の研削力、表面仕上げ、
耐久性を調べるためのテスト条件は被削材として16m
mφ、10mmLの窒化ケイ素セラミックス棒(面粗さ
1.5mm)、磁気研磨機としては東洋研磨材工業(株
)製TMX101型機を用い、回転外周速度60m/s
、励磁電流2A(磁束密度1.2テラス)で10分間行
った。研削力は、被削材の研磨量(mg)、表面仕上げ
性は、表面粗さ最大Rmax (mm)を測定した。耐
久性については、60分間隔で合計9時間テストを行な
い、表面のダイヤモンド、アルミナの量をX線回折法で
定量し、その付着率で表わした。
[0037] Grinding power and surface finish of the composite abrasive grain of the present invention,
The test conditions for examining durability were 16 m as the work material.
mφ, 10 mmL silicon nitride ceramic rod (surface roughness 1.5 mm), magnetic polisher used was TMX101 manufactured by Toyo Abrasive Industry Co., Ltd., and peripheral rotational speed was 60 m/s.
, for 10 minutes at an excitation current of 2 A (magnetic flux density: 1.2 terraces). The grinding force was measured by the amount of polishing of the workpiece (mg), and the surface finish was measured by the maximum surface roughness Rmax (mm). As for durability, tests were conducted at 60 minute intervals for a total of 9 hours, and the amount of diamond and alumina on the surface was determined by X-ray diffraction and expressed as the adhesion rate.

【0038】[0038]

【発明の効果】本発明による研磨砥粒は、研削力及び耐
久性共、従来のものに比べて約2倍を有しており、効率
よくしかも耐久性においても優れている。
[Effects of the Invention] The abrasive grains according to the present invention have both grinding power and durability approximately twice as high as those of conventional abrasive grains, and are efficient and excellent in durability.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】磁性金属粒子の表面に、酸と作用せしめる
ことにより研磨材を固着することを特徴とする複合砥粒
の製造方法。
1. A method for producing composite abrasive grains, which comprises fixing an abrasive material to the surface of magnetic metal particles by interacting with an acid.
【請求項2】磁性金属が、鉄、コバルト、ニッケル、ま
たはそれらを含む合金である請求項1の複合砥粒の製造
方法。
2. The method for producing composite abrasive grains according to claim 1, wherein the magnetic metal is iron, cobalt, nickel, or an alloy containing these.
【請求項3】酸が、硝酸、塩酸、硫酸、リン酸、酢酸、
ギ酸、クエン酸、シュウ酸、または酒石酸である請求項
1の複合砥粒の製造方法。
Claim 3: The acid is nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid,
The method for producing composite abrasive grains according to claim 1, wherein the abrasive is formic acid, citric acid, oxalic acid, or tartaric acid.
【請求項4】磁性金属の粒子の径が、0.5〜5000
μmである請求項1の複合砥粒の製造方法。
4. The magnetic metal particles have a diameter of 0.5 to 5000.
The method for producing composite abrasive grains according to claim 1, wherein the composite abrasive grains have a particle size of μm.
【請求項5】研磨材が、金属の酸化物、窒化物、炭化物
またはダイヤモンドである請求項1の複合砥粒の製造方
法。
5. The method for producing composite abrasive grains according to claim 1, wherein the abrasive is a metal oxide, nitride, carbide, or diamond.
【請求項6】研磨材の大きさが、0.01〜200μm
である請求項1の複合砥粒の製造方法。
[Claim 6] The size of the abrasive material is 0.01 to 200 μm.
The method for producing composite abrasive grains according to claim 1.
【請求項7】研磨材の使用量が、複合砥粒全量に対し0
.01〜50%である請求項1の複合砥粒の製造方法。
Claim 7: The amount of abrasive used is 0 based on the total amount of composite abrasive grains.
.. 2. The method for producing composite abrasive grains according to claim 1, wherein the content of the composite abrasive grains is 01 to 50%.
【請求項8】酸の濃度が、0.001〜2Nである請求
項1の複合砥粒の製造方法。
8. The method for producing composite abrasive grains according to claim 1, wherein the acid concentration is 0.001 to 2N.
JP03098234A 1991-04-03 1991-04-03 Manufacturing method of composite abrasive Expired - Fee Related JP3088124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03098234A JP3088124B2 (en) 1991-04-03 1991-04-03 Manufacturing method of composite abrasive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03098234A JP3088124B2 (en) 1991-04-03 1991-04-03 Manufacturing method of composite abrasive

Publications (2)

Publication Number Publication Date
JPH04306290A true JPH04306290A (en) 1992-10-29
JP3088124B2 JP3088124B2 (en) 2000-09-18

Family

ID=14214274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03098234A Expired - Fee Related JP3088124B2 (en) 1991-04-03 1991-04-03 Manufacturing method of composite abrasive

Country Status (1)

Country Link
JP (1) JP3088124B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011526954A (en) * 2008-07-03 2011-10-20 スリーエム イノベイティブ プロパティズ カンパニー Fixed abrasive particles and articles made therefrom
CN103769278A (en) * 2014-01-08 2014-05-07 太原理工大学 High-energy ball-milling preparation method for magnetic abrasive particles
CN107312499A (en) * 2017-07-18 2017-11-03 洛阳理工学院 A kind of ball mill metal and Ceramic Composite abrasive media and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011526954A (en) * 2008-07-03 2011-10-20 スリーエム イノベイティブ プロパティズ カンパニー Fixed abrasive particles and articles made therefrom
CN103769278A (en) * 2014-01-08 2014-05-07 太原理工大学 High-energy ball-milling preparation method for magnetic abrasive particles
CN107312499A (en) * 2017-07-18 2017-11-03 洛阳理工学院 A kind of ball mill metal and Ceramic Composite abrasive media and preparation method thereof

Also Published As

Publication number Publication date
JP3088124B2 (en) 2000-09-18

Similar Documents

Publication Publication Date Title
JP5226522B2 (en) Cubic boron nitride compact
CN1101859C (en) Metal powders based on tungsten and/or molybdenum and three-dimension metals
JP2009001908A (en) Method for producing sinter-active metal powder or alloy powder for powder metallurgy application
JPH04146987A (en) Alumina-zirconia lapping compound, production thereof, and composition for abrasion
JP2004506094A (en) Manufacturing method of polishing products containing cubic boron nitride
JPH07286229A (en) High pressure phase boron nitride sintered body for cutting tool and its production
JPS61250084A (en) Composite whetstone particle for magnetic abrasion and production thereof
WO2002014452A1 (en) Diamond abrasive material particles and production method therefor
JPH04306290A (en) Production of composite grinding grain
JPS63134644A (en) Metal-ceramics monolithic composite
JP2001293603A (en) Cutting tool coated with vapor phase synthetic diamond
JP3717046B2 (en) Diamond polishing wheel, diamond polishing method, and diamond polishing composite wheel
CN109732496A (en) Iron-binding agent fused alumina zirconia grinding wheel and preparation method thereof for railway track reconditioning
US2653107A (en) Fused reduced titania-zirconia product and method
JP3513547B2 (en) Grinding stone for polishing single crystal diamond or diamond sintered body and polishing method thereof
JP2008006559A (en) Mirror-finishing method and machining body for mirror-finishing
JPS63267157A (en) Barrel polishing medium and its manufacture
JP5411210B2 (en) Method for producing metal-supported diamond fine powder and metal-supported diamond fine powder
JP2003509579A (en) Al2O3 / SiC-nanocomposite abrasive particles, their production and use
JP2006291216A (en) Cubic boron nitride abrasive grain and process for producing cubic boron nitride abrasive grain
JPH09104939A (en) Cobalt binder metal alloy of high-hardness alloy used for high-hardness metal tool, especially cutting tool and high-hardness tool containing this alloy
JP2002220628A (en) Diamond-metal composite with mirror plane, and artificial joint, dice, roll or mold therewith, and method for manufacturing diamond-metal composite
Luzan et al. Composite material for surfacing, obtained by self-propagating high-temperature synthesis
JP3210977B2 (en) Whetstone for diamond polishing, diamond polishing method and diamond-polished body
JP2958851B2 (en) Method for producing fine chromium carbide

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees