JP3088124B2 - Manufacturing method of composite abrasive - Google Patents

Manufacturing method of composite abrasive

Info

Publication number
JP3088124B2
JP3088124B2 JP03098234A JP9823491A JP3088124B2 JP 3088124 B2 JP3088124 B2 JP 3088124B2 JP 03098234 A JP03098234 A JP 03098234A JP 9823491 A JP9823491 A JP 9823491A JP 3088124 B2 JP3088124 B2 JP 3088124B2
Authority
JP
Japan
Prior art keywords
acid
abrasive
abrasive particles
abrasive grains
composite abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03098234A
Other languages
Japanese (ja)
Other versions
JPH04306290A (en
Inventor
進 桧山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seimi Chemical Co Ltd
Original Assignee
Seimi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seimi Chemical Co Ltd filed Critical Seimi Chemical Co Ltd
Priority to JP03098234A priority Critical patent/JP3088124B2/en
Publication of JPH04306290A publication Critical patent/JPH04306290A/en
Application granted granted Critical
Publication of JP3088124B2 publication Critical patent/JP3088124B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は複合砥粒の製造方法、特
に酸を利用した、磁気研磨用の複合砥粒の製造法に関
する。
METHOD for FIELD THE INVENTION The present invention production of a composite abrasive grain, in particular using an acid, a composite abrasive manufacturing how for magnetic abrasive.

【0002】[0002]

【従来の技術】最近、磁気研磨法と呼ばれる新しい研磨
法が開発され、注目を集めている。この方法は部品のバ
リ取りや、円筒部品、平面部品、部品内面、球面のよう
な複雑形状部品、金型自由曲面の研磨加工、各種形状部
品のエッジ仕上げ、さらにセラミックスやシリコンウエ
ハなどの硬脆材料の精密仕上げ加工に至るまで、幅広く
応用できる。この場合の磁気研磨砥粒粒子は、磁性とと
もに研磨効果を合せ持つ、いわゆる複合砥粒であり、強
磁性と高研削性を合せ持つことが要求される。
2. Description of the Related Art Recently, a new polishing method called a magnetic polishing method has been developed and attracts attention. This method is used for deburring parts, polishing cylindrical parts, flat parts, inner surfaces of parts, complicated shapes such as spherical surfaces, grinding of free-form surfaces of molds, edge finishing of various shapes, and hard and brittle parts such as ceramics and silicon wafers. It can be widely applied to precision finishing of materials. The magnetic abrasive grains in this case are so-called composite abrasive grains having both a magnetism and a polishing effect, and are required to have both ferromagnetism and high grindability.

【0003】従来、このような複合砥粒粒子の作り方
は、鉄と高研削研磨材の微粉を加圧成形後、雰囲気炉で
焼結させるか、熱間で加圧焼結する方法、金属合金を内
部窒化する方法、金属合金と炭素の融解物から炭素物を
生成させる方法、炭素とチタンの発熱反応を利用して、
炭化チタンと鉄の複合化合物をつくる方法(A.B.Lyashe
henko 他、Poroshkovaya Metallurgiya,9,44〜48
(1983))、鉄とアルミナを混合し不活性ガス雰囲
気下で加熱してつくる方法(特開昭61−250084
号公報)、鉄と研磨材の混合物をプラズマ加熱により熔
融して複合砥粒をつくる方法(安斉正博他、砥粒加工学
会誌,33(4),34(1989))、無電解メッキ
で鉄とダイヤモンドをつける方法などが提案されてい
る。
[0003] Conventionally, such composite abrasive grains are produced by a method in which iron and fine powder of a high-grinding abrasive are press-formed and then sintered in an atmosphere furnace or hot-pressed and sintered. Using a method of internally nitriding, a method of generating a carbon material from a molten metal alloy and carbon, and an exothermic reaction of carbon and titanium,
How to make a composite compound of titanium carbide and iron (ABLyashe
henko et al., Poroshkovaya Metallurgiya, 9, 44-48
(1983)), a method of mixing iron and alumina and heating them under an inert gas atmosphere (Japanese Patent Application Laid-Open No. 61-250084).
), A method of forming a composite abrasive by melting a mixture of iron and an abrasive by plasma heating (Masahiro Anzai et al., Journal of the Japan Society for Abrasive Processing, 33 (4), 34 (1989)), and iron by electroless plating. And a method of attaching a diamond have been proposed.

【0004】しかしながら、高価な雰囲気炉、粉砕機、
プラズマ発生装置や高価な薬品を必要としているにもか
かわらず、生産性が低く、研削力、加工効率も低く、経
済的な方法ではない欠点を有していた。
However, expensive atmosphere furnaces, crushers,
Despite the need for a plasma generator and expensive chemicals, it has low productivity, low grinding power and low processing efficiency, and has disadvantages that are not economical.

【0005】[0005]

【発明が解決しようとする課題】磁気研磨砥粒に求めら
れている性能は、研削力、表面仕上げ性、砥粒の耐久
性、巾広い応用性の点でかつ安価に、量産化できること
である。従来法で得られている砥粒には、これらすべて
の点を十分満たすものはない。本発明の目的は、上記の
すべての点を満足させる優れた磁気研磨用砥粒粒子を得
ることにある。
The performance required of magnetic abrasive grains is that they can be mass-produced at low cost in terms of grinding power, surface finish, durability of abrasive grains, and wide applicability. . None of the abrasives obtained by the conventional method sufficiently satisfies all of these points. An object of the present invention is to obtain excellent magnetic polishing abrasive particles satisfying all the above points.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
鋭意研究の結果、鉄等の磁性金属の粉末粒子と研磨材粒
子を水溶液中で種々の酸と作用させることにより、磁性
金属の表面に研磨材粒子が強固に固着されることを見出
し、本発明に至った。
Means for Solving the Problems As a result of diligent research to achieve the above object, powder particles of a magnetic metal such as iron and abrasive particles are allowed to act with various acids in an aqueous solution so that the surface of the magnetic metal can be treated. The present inventors have found that abrasive particles are firmly fixed, and have reached the present invention.

【0007】かくして本発明は、磁性金属粒子と研磨材
粒子を、鉱酸または有機カルボン酸の水溶液中で撹拌混
合し、次いで乾燥または焼成し、磁性金属粒子の表面に
研磨材粒子を固着せしめることを特徴とする複合砥粒の
製造方法である。
[0007] Thus, the present invention is to stir and mix magnetic metal particles and abrasive particles in an aqueous solution of a mineral acid or an organic carboxylic acid, and then dry or calcine them to fix the abrasive particles on the surfaces of the magnetic metal particles. This is a method for producing composite abrasive grains.

【0008】本発明において、用いられる磁性金属とし
ては、例えば、鉄、コバルト、ニッケル、またはそれら
を含む合金等であり、その粒子の径は0.5〜5000
μm、好ましくは20〜600μm程度が適当である。
[0008] In the present invention, the magnetic metal used is, for example, iron, cobalt, nickel or an alloy containing them, and the particle diameter is 0.5 to 5000.
μm, preferably about 20 to 600 μm.

【0009】粒子の径が0.5μmより小さい場合には
磁性が弱くなり研削力の低下となり、逆に5000μm
より大きい場合には磁性が強くなり表面仕上げ性が悪く
なるので何れも好ましくない。さらにこれは針状体でも
用いられ、その場合の大きさは直径5〜2000μm、
好ましくは30〜200μm、長さが1〜20mm、好
ましくは3〜6mm程度が適当である。
When the particle diameter is smaller than 0.5 μm, the magnetism is weakened and the grinding force is reduced.
If it is larger, the magnetism becomes stronger and the surface finish becomes worse. It is also used in needles, in which case the size is 5 to 2000 μm in diameter,
The thickness is suitably 30 to 200 μm, the length is 1 to 20 mm, and preferably about 3 to 6 mm.

【0010】直径が5μmより小さい場合には針状体が
からみあい研削が困難となり、逆に2000μmより大
きい場合には、全体の表面積が極端に小さくなり研削力
の低下となるので何れも好ましくない。
When the diameter is smaller than 5 μm, the needle-like body is difficult to entangle and grind. On the other hand, when the diameter is larger than 2000 μm, the whole surface area becomes extremely small and the grinding force is reduced, which is not preferable.

【0011】研磨材としては例えば酸化クロム、酸化セ
リウム、酸化ジルコニウム等の金属の酸化物、窒化ケイ
素、窒化ニオブ、窒化タングステン等の金属の窒化物、
炭化ケイ素、炭化ニオブ、炭化チタン、炭化クロム等の
金属の炭化物、ダイヤモンド等を適宜用い得る。
Examples of the abrasive include oxides of metals such as chromium oxide, cerium oxide and zirconium oxide; nitrides of metals such as silicon nitride, niobium nitride and tungsten nitride;
Metal carbides such as silicon carbide, niobium carbide, titanium carbide and chromium carbide, diamond and the like can be used as appropriate.

【0012】こうした研磨材粒子の大きさは0.01〜
200μm、好ましくは0.1〜20μm程度が適当で
ある。大きさが0.01μmより小さい場合には研削力
の低下となり、逆に200μmより大きい場合には粒径
の粗さにより表面仕上げ性が悪くなるので、何れも好ま
しくない。
The size of such abrasive particles is 0.01 to
200 μm, preferably about 0.1 to 20 μm is appropriate. When the size is smaller than 0.01 μm, the grinding force is reduced. On the other hand, when the size is larger than 200 μm, the surface finish is deteriorated due to the roughness of the particle size.

【0013】磁性金属粒子へ固着される研磨材粒子の量
は、複合砥粒全量に対し、0.01〜50重量%、好ま
しくは0.1〜30重量%程度を採用するのが適当であ
る。研磨材粒子の量が0.01重量%より少ない場合に
は研削力が極端に低下することとなり、逆に50重量%
より多い場合には研磨材粒子の付着性が悪く脱離しやす
くなるので、何れも好ましくない。
The amount of the abrasive particles fixed to the magnetic metal particles is suitably 0.01 to 50% by weight, preferably about 0.1 to 30% by weight, based on the total amount of the composite abrasive grains. . If the amount of the abrasive particles is less than 0.01% by weight, the grinding power will be extremely reduced, and conversely 50% by weight.
If the amount is larger, the abrasive particles have poor adhesion and tend to be detached.

【0014】磁性金属粒子へ研磨材粒子を固着する手段
としては、例えば磁性金属粒子と研磨材粒子と鉱酸また
は有機カルボン酸の水溶液とを、ステンレス製又はポリ
アミド樹脂等で内貼りされたボールミル中において5〜
100rpm程度の回転速度で0.5〜25時間程度回
転させることによって固着せしめる手段、あるいは、撹
拌器付きのステンレス製、FRP製、ガラスライニング
されたタンク内において5〜100rpm程度の回転速
度で0.5〜25時間程度回転させることによって固着
せしめる等の手段を適宜採用し得る。
Means for fixing the abrasive particles to the magnetic metal particles include, for example, magnetic metal particles, abrasive particles, mineral acid,
And an aqueous solution of an organic carboxylic acid in a ball mill internally coated with stainless steel or polyamide resin or the like for 5 to 5 minutes.
Means for fixing by rotating at a rotational speed of about 100 rpm for about 0.5 to 25 hours, or at a rotational speed of about 5 to 100 rpm in a stainless steel, FRP, or glass lined tank with a stirrer. Means such as fixing by rotating about 5 to 25 hours may be appropriately employed.

【0015】本発明に用いる鉱酸としては、例えば硝
酸、塩酸、硫酸、リン酸等が適当であり、有機カルボン
酸としては、例えば酢酸、ギ酸、クエン酸、シュウ酸、
酒石酸等が適当である。このうち鉱酸を用いると、特に
固着の力が強く、また持続性もあるので好ましい。用い
られる鉱酸または有機カルボン酸の水溶液の濃度は0.
001〜2N、好ましくは0.1〜0.3Nが適当であ
る。
As the mineral acid used in the present invention, for example, nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid and the like are suitable.
As the acid, For example acetic acid, formic acid, citric acid, oxalic acid,
Such as tartaric acid is suitable. Of these, the use of a mineral acid is preferred because it has a particularly strong fixing power and is persistent. The concentration of the aqueous solution of the mineral acid or the organic carboxylic acid used is 0.
001 to 2N, preferably 0.1 to 0.3N is suitable.

【0016】鉱酸または有機カルボン酸の水溶液の濃度
が0.001Nより小さい場合には研磨材粒子の磁性金
属粒子表面への固着が不完全となり、逆に2Nより高い
場合には磁性金属との反応が激しすぎて、充分研磨材粒
子が固着されなくなるので、何れも好ましくない。磁性
金属粒子へ研磨材粒子を固着する際用いられる上記水溶
の温度は0〜100℃、好ましくは20〜40℃が適
当である。
When the concentration of the aqueous solution of a mineral acid or an organic carboxylic acid is less than 0.001N, the abrasive particles are not completely fixed to the surface of the magnetic metal particles. Since the reaction is too vigorous and the abrasive particles are not sufficiently fixed, none of them is preferable. The above aqueous solution used when fixing abrasive particles to magnetic metal particles
The temperature of the solution is suitably from 0 to 100 ° C, preferably from 20 to 40 ° C.

【0017】温度が0℃より低い場合には、上記酸の反
応性が低下し研磨材粒子の固着が不完全となり、逆に1
00℃より高い場合には、例えば上記酸を含んだ溶液
が突沸したりして、研磨材粒子の固着が不完全となるの
で、何れも好ましくない。かくして固着された磁性金属
と研磨材粒子は上記酸から分離され、更に強固に固着す
るために乾燥または焼成される。
[0017] If the temperature is lower than 0 ℃ it is sticking abrasive particles reactive the acid is reduced is incomplete, 1 conversely
If 00 higher than ℃, for example, water solution containing the acid or bumping, because the fixation of the abrasive particles be incomplete, both undesirable. Thus the abrasive particles secured to the magnetic metal is separated from the acid, is dried or calcined to further firmly fixed.

【0018】乾燥または焼成に要する温度は80〜10
00℃、好ましくは110〜500℃を採用するのが適
当である。温度が80℃より低い場合には、固着された
研磨材粒子が脱離しやすくなり、1000℃より高い場
合には、磁性金属表面の酸化が促進され研磨材粒子が脱
離しやすくなるので、何れも好ましくない。
The temperature required for drying or firing is 80 to 10
It is appropriate to employ 00C, preferably 110-500C. When the temperature is lower than 80 ° C., the adhered abrasive particles are easily released. When the temperature is higher than 1000 ° C., the oxidation of the magnetic metal surface is promoted and the abrasive particles are easily released. Not preferred.

【0019】本発明において上記酸処理により製造され
た複合砥粒粒子あるいは複合砥粒針における研磨材粒子
の固着機構は必ずしも明確でないが、粉末X線回折デー
タの結果から推測すると、酸の作用で磁性金属の表面が
イオン化され、例えば表面にγ−FeOOH相が生成す
る際に研磨材粒子がこれによって固定され、乾燥または
焼成することにより、両者が一体となってより強く固着
するものと思われる。
In the present invention, the fixing mechanism of the abrasive particles in the composite abrasive particles or the composite abrasive needles produced by the above-mentioned acid treatment is not always clear, but it is inferred from the result of the powder X-ray diffraction data that The surface of the magnetic metal is ionized, and for example, when the γ-FeOOH phase is generated on the surface, the abrasive particles are fixed by this, and by drying or firing, it is thought that the two are united and strongly adhered. .

【0020】本発明において得られた複合砥粒は、高い
研削力と表面仕上げ性、耐久性を有する。したがって従
来の熱間加圧成形法、合金窒化法、融解炭化法、鉄−ア
ルミナ加熱法、プラズマ加熱法、無電解メッキ法等に比
べ、本発明の製造法によって得られた複合砥粒粒子は
磁気研磨用として極めて優れている。
The composite abrasive obtained in the present invention has high grinding power, surface finish, and durability. Thus among conventional hot press molding method, an alloy nitriding method, melting carbide method, iron - alumina heating method, a plasma heating method, compared to an electroless plating method, or the like, the composite abrasive particles obtained by the production how the present invention Is extremely excellent for magnetic polishing.

【0021】[0021]

【実施例】[実施例1] 鉄粉(粒径70〜80μm;以下、括弧内の数値は、特
に断りのない限り粒径を表す。)90gと酸化クロム
(1〜2μm)10gを0.3Nの硝酸40ccに分散
させ、その混合液をボールミル(ガス板穴付、内容積2
00cc、ポリアミド樹脂製)で1〜2時間回転混合し
た。研磨材粒子を固着後、混合液を減圧濾過し水洗し
た。得られた濾滓を110℃で乾燥させ、酸化クロム1
0重量%を含む100gの複合砥粒粒子が得られた。得
られた研磨砥粒の研削力は通常使用されているものに比
べて約2倍、耐久性についても通常品に比較して約2倍
の能力を示した。
EXAMPLES Example 1 90 g of iron powder (particle size: 70 to 80 μm; hereinafter, the values in parentheses represent the particle size unless otherwise specified) and 10 g of chromium oxide (1 to 2 μm). Disperse in 40 cc of 3N nitric acid, and mix the mixture with a ball mill (with gas plate holes, internal volume 2).
(00 cc, made of polyamide resin). After the abrasive particles were fixed, the mixture was filtered under reduced pressure and washed with water. The obtained cake was dried at 110 ° C.
100 g of composite abrasive particles containing 0% by weight were obtained. The grinding power of the obtained abrasive grains was about twice as high as that of a commonly used abrasive, and the durability was about twice as high as that of a normal product.

【0022】[実施例2] 鉄粉(10〜20μm)70gと酸化クロム(1〜2μ
m)30gを0.2Nの硝酸70ccに分散し、以下実
施例1と同様にして、酸化クロム30重量%を含む10
0gの複合砥粒粒子が得られた。得られた研磨砥粒の研
削力は通常使用されているものに比べて約2倍、耐久性
についても通常品に比較して約2倍の能力を示した。
Example 2 70 g of iron powder (10 to 20 μm) and chromium oxide (1 to 2 μm)
m) Disperse 30 g in 70 cc of 0.2 N nitric acid, and prepare 30% chromium oxide containing 30% by weight in the same manner as in Example 1 below.
0 g of composite abrasive particles were obtained. The grinding power of the obtained abrasive grains was about twice as high as that of a commonly used abrasive, and the durability was about twice as high as that of a normal product.

【0023】[実施例3] 鉄粉(70〜80μm)90gとダイヤモンド(2〜4
μm)10gを0.3Nの硝酸40ccに分散し、以下
実施例1と同様にしてダイヤモンド10重量%を含む1
00gの複合砥粒粒子が得られた。得られた研磨砥粒の
研削力は通常使用されているものに比べて約3倍、耐久
性についても通常品に比較して約2倍の能力を示した。
Example 3 90 g of iron powder (70 to 80 μm) and diamond (2 to 4)
μm) is dispersed in 40 cc of 0.3 N nitric acid, and the same as in Example 1 except that
00 g of composite abrasive particles were obtained. The grinding power of the obtained abrasive grains was about three times that of a commonly used abrasive grain, and the durability was about twice that of a normal product.

【0024】[実施例4] 鉄粉(800〜2000μm)97gとダイヤモンド
(2〜4μm)3gを0.3Nの硝酸30ccに分散
し、以下実施例1と同様にしてダイヤモンド3重量%を
含む100gの複合砥粒粒子が得られた。得られた研磨
砥粒の研削力は通常使用されているものに比べて約3
倍、耐久性についても通常品に比較して約2倍の能力を
示した。
Example 4 97 g of iron powder (800 to 2000 μm) and 3 g of diamond (2 to 4 μm) were dispersed in 30 cc of 0.3 N nitric acid, and 100 g containing 3% by weight of diamond was prepared in the same manner as in Example 1. Was obtained. The grinding power of the obtained abrasive grains is about 3 times that of the usual one.
As for the durability and the durability, the performance was about twice that of the normal product.

【0025】[実施例5] 鉄粉(200〜300μm)95gとダイヤモンド(8
〜16μm)5gを0.3Nの硝酸40ccに分散し、
以下実施例1と同様にして、ダイヤモンド5重量%を含
む複合砥粒粒子100gが得られた。得られた研磨砥粒
の研削力は通常使用されているものに比べて約3倍、耐
久性についても通常品に比較して約2倍の能力を示し
た。
Example 5 95 g of iron powder (200 to 300 μm) and diamond (8
1616 μm) 5 g was dispersed in 40 cc of 0.3 N nitric acid,
Thereafter, in the same manner as in Example 1, 100 g of composite abrasive grains containing 5% by weight of diamond were obtained. The grinding power of the obtained abrasive grains was about three times that of a commonly used abrasive grain, and the durability was about twice that of a normal product.

【0026】[実施例6] 鉄粉(70〜80μm)80gとアルミナ(WA#40
00((株)フジミインコーポレーテッド製)、3μ
m)20gを0.3Nの硝酸40ccに分散し、以下実
施例1と同様にしてアルミナ20重量%を含む複合砥粒
粒子100gが得られた。得られた研磨砥粒の研削力は
通常使用されているものに比べて約2倍、耐久性につい
ても通常品に比較して約2倍の能力を示した。
Example 6 80 g of iron powder (70 to 80 μm) and alumina (WA # 40)
00 (manufactured by Fujimi Incorporated), 3μ
m) 20 g were dispersed in 40 cc of 0.3N nitric acid, and 100 g of composite abrasive particles containing 20% by weight of alumina were obtained in the same manner as in Example 1 below. The grinding power of the obtained abrasive grains was about twice as high as that of a commonly used abrasive, and the durability was about twice as high as that of a normal product.

【0027】[実施例7] 鉄粉(200〜300μm)94gとアルミナ(WA#
1200((株)フジミインコーポレーテッド製)、1
2μm)6gを0.3Nの塩酸40ccに分散し、以下
実施例1と同様にして、アルミナ6重量%を含む複合砥
粒粒子100gが得られた。得られた研磨砥粒の研削力
は通常使用されているものに比べて約2倍、耐久性につ
いても通常品に比較して約2倍の能力を示した。
Example 7 94 g of iron powder (200 to 300 μm) and alumina (WA #)
1200 (manufactured by Fujimi Incorporated), 1
6 g of 2 μm) was dispersed in 40 cc of 0.3N hydrochloric acid, and 100 g of composite abrasive particles containing 6% by weight of alumina were obtained in the same manner as in Example 1 below. The grinding power of the obtained abrasive grains was about twice as high as that of a commonly used abrasive, and the durability was about twice as high as that of a normal product.

【0028】[実施例8] 鉄粉(70〜80μm)85gと酸化セリウム(ルミノ
ックスEH(セイミケミカル(株)製)、1〜2μm)
15gを0.3Nの硝酸40ccに分散し、以下実施例
1と同様にして、15重量%の酸化セリウムを含む複合
砥粒粒子100gが得られた。得られた研磨砥粒の研削
力は通常使用されているものに比べて約2倍、耐久性に
ついても通常品に比較して約2倍の能力を示した。
Example 8 85 g of iron powder (70-80 μm) and cerium oxide (Luminox EH (manufactured by Seimi Chemical Co., Ltd.), 1-2 μm)
15 g was dispersed in 40 cc of 0.3 N nitric acid, and 100 g of composite abrasive particles containing 15% by weight of cerium oxide were obtained in the same manner as in Example 1 below. The grinding power of the obtained abrasive grains was about twice as high as that of a commonly used abrasive, and the durability was about twice as high as that of a normal product.

【0029】[実施例9] 鉄粉(70〜80μm)90gと窒化ケイ素(2〜3μ
m)10gを0.3Nの硫酸40ccに分散し、以下実
施例1と同様にして、10重量%の窒化ケイ素を含む複
合砥粒粒子100gが得られた。得られた研磨砥粒の研
削力は通常使用されているものに比べて約2倍、耐久性
についても通常品に比較して約2倍の能力を示した。
Example 9 90 g of iron powder (70 to 80 μm) and silicon nitride (2 to 3 μm)
m) 10 g was dispersed in 40 cc of 0.3 N sulfuric acid, and 100 g of composite abrasive particles containing 10% by weight of silicon nitride were obtained in the same manner as in Example 1 below. The grinding power of the obtained abrasive grains was about twice as high as that of a commonly used abrasive, and the durability was about twice as high as that of a normal product.

【0030】[実施例10] 鉄粉(70〜80μm)90gと酸化ジルコニウム
(0.5〜1μm)10gを0.3Nの酢酸40ccに
分散し、以下実施例1と同様にして、10重量%の酸化
ジルコニウムを含む複合砥粒粒子100gが得られた。
得られた研磨砥粒の研削力は通常使用されているものに
比べて約2倍、耐久性についても通常品に比較して約2
倍の能力を示した。
Example 10 90 g of iron powder (70 to 80 μm) and 10 g of zirconium oxide (0.5 to 1 μm) were dispersed in 40 cc of 0.3 N acetic acid. Thus, 100 g of composite abrasive particles containing zirconium oxide were obtained.
The grinding power of the obtained abrasive grains is about twice as large as that of ordinary products, and the durability is about 2 times that of ordinary products.
Showed twice the capacity.

【0031】[実施例11] 鉄針(直径90μm、長さ3mm)96gとダイヤモン
ド(1〜2μm)4gを0.3Nの硝酸40ccに分散
し、以下実施例1と同様にして4重量%のダイヤモンド
を含む複合砥粒粒子100gが得られた。得られた研磨
砥粒の研削力は通常使用されているものに比べて約2
倍、耐久性についても通常品に比較して約2倍の能力を
示した。
Example 11 96 g of an iron needle (90 μm in diameter, 3 mm in length) and 4 g of diamond (1-2 μm) were dispersed in 40 cc of 0.3 N nitric acid. 100 g of composite abrasive grains containing diamond were obtained. The grinding power of the obtained abrasive grains is about 2 times that of ordinary ones.
As for the durability and the durability, the performance was about twice that of the normal product.

【0032】[実施例12] 鉄針(直径50μm、長さ3mm)95gとアルミナ
(WA#4000(同上)、3μm)5gを0.3Nの
硝酸40ccに分散し、以下実施例1と同様にして5重
量%のアルミナを含む複合砥粒粒子100gが得られ
た。得られた研磨砥粒の研削力は通常使用されているも
のに比べて約2倍、耐久性についても通常品に比較して
約2倍の能力を示した。
Example 12 95 g of an iron needle (50 μm in diameter, 3 mm in length) and 5 g of alumina (WA # 4000 (same as above), 3 μm) were dispersed in 40 cc of 0.3 N nitric acid. As a result, 100 g of composite abrasive particles containing 5% by weight of alumina were obtained. The grinding power of the obtained abrasive grains was about twice as high as that of a commonly used abrasive, and the durability was about twice as high as that of a normal product.

【0033】[比較例1] 鉄粉(70〜80μm)70gとアルミナ(WA#40
00(同上)、3μm)30gを良く混合させ、その混
合粉を4000kg/cm2 圧で900℃にてホットプ
レスし、径20mm、厚さ10mmのペレット5ケ、計
90gが得られた。ペレットをジョークラッシャ、ロー
ラーミルで粉砕し粒径80〜150μmの複合砥粒粒子
75gが得られた。
Comparative Example 1 70 g of iron powder (70 to 80 μm) and alumina (WA # 40)
00 (same as above), 3 μm) were mixed well, and the mixed powder was hot-pressed at 900 ° C. under 4000 kg / cm 2 pressure to obtain a total of 90 g of 5 pellets having a diameter of 20 mm and a thickness of 10 mm. The pellets were pulverized with a jaw crusher and a roller mill to obtain 75 g of composite abrasive particles having a particle size of 80 to 150 μm.

【0034】[比較例2] 鉄粉(70〜80μm)70gと炭化ニオブ(3μm)
30gを良く混合し、その混合粉を以下比較例1と同様
にして粒径80〜150μmの複合砥粒粒子75gが得
られた。
Comparative Example 2 70 g of iron powder (70 to 80 μm) and niobium carbide (3 μm)
30 g were mixed well, and the mixed powder was used in the same manner as in Comparative Example 1 to obtain 75 g of composite abrasive particles having a particle size of 80 to 150 μm.

【0035】上記実施例1〜12、比較例1、2で得ら
れた複合砥粒粒子について、研削力、表面仕上げ性、耐
久性について調べた。その測定結果を表1に示す。比較
のため高強度と言われている市販の電着ダイヤモンド複
合砥粒(比較例3)と単なる鉄針(直径90μm、長さ
3mm)(比較例4)についても試験を行った。
The composite abrasive particles obtained in Examples 1 to 12 and Comparative Examples 1 and 2 were examined for grinding power, surface finish, and durability. Table 1 shows the measurement results. For comparison, tests were also conducted on commercially available electrodeposited diamond composite abrasive grains (Comparative Example 3), which are said to have high strength, and simple iron needles (diameter 90 μm, length 3 mm) (Comparative Example 4).

【0036】[0036]

【表1】 [Table 1]

【0037】本発明の複合砥粒の研削力、表面仕上げ、
耐久性を調べるためのテスト条件は被削材として直径1
6mm、長さ10mmの円柱状の窒化ケイ素セラミック
ス棒(表面粗さRmax 1.5μm)、磁気研磨機として
は東洋研磨材工業(株)製TMX101型機を用い、回
転外周速度60m/s、励磁電流2A(磁束密度1.2
テスラ)で研磨を10分間行った。研削力は、被削材の
研磨量(mg)、表面仕上げ性は、表面粗さRmax (μ
m)を測定した。耐久性については、上記の条件下、6
0分間隔で合計9時間テストを行ない、表面に残存する
ダイヤモンド、アルミナなどの研磨材粒子の量をX線回
折法で定量し、テスト後における研磨材粒子の残存固着
率(%)で表わした。
The grinding power and surface finish of the composite abrasive of the present invention,
The test conditions for examining durability are as follows:
A cylindrical silicon nitride ceramic rod having a length of 6 mm and a length of 10 mm (surface roughness Rmax 1.5 μm), a magnetic polishing machine using a TMX101 type machine manufactured by Toyo Abrasives Co., Ltd., a rotation peripheral speed of 60 m / s, and excitation. Current 2A (flux density 1.2
Polishing was performed with Tesla for 10 minutes. The grinding force is the amount of polishing (mg) of the work material, and the surface finish is the surface roughness Rmax (μ
m) was measured. Regarding the durability, under the above conditions, 6
The test was performed at intervals of 0 minutes for a total of 9 hours, and the amount of abrasive particles such as diamond and alumina remaining on the surface was quantified by X-ray diffraction, and expressed as a residual adhesion rate (%) of the abrasive particles after the test. .

【0038】[0038]

【発明の効果】本発明による研磨砥粒は、研削力及び耐
久性共、従来のものに比べて約2倍を有しており、効率
よくしかも耐久性においても優れている。
The abrasive grains according to the present invention have approximately twice the grinding power and durability as compared with conventional ones, and are efficient and excellent in durability.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】磁性金属粒子と研磨材粒子を、鉱酸または
有機カルボン酸の水溶液中で撹拌混合し、次いで乾燥ま
たは焼成し、磁性金属粒子の表面に研磨材粒子を固着せ
しめることを特徴とする複合砥粒の製造方法。
1. The method of claim 1, wherein the magnetic metal particles and the abrasive particles are mixed with a mineral acid or
A method for producing composite abrasive grains , comprising stirring and mixing in an aqueous solution of an organic carboxylic acid , followed by drying or baking to fix abrasive particles to the surfaces of magnetic metal particles.
【請求項2】研磨材粒子の固着量が、複合砥粒全量に対
し0.01〜50重量%である請求項1記載の複合砥粒
の製造方法。
2. The method for producing composite abrasive grains according to claim 1, wherein the amount of the abrasive particles fixed is 0.01 to 50% by weight based on the total amount of the composite abrasive grains.
【請求項3】鉱酸または有機カルボン酸の水溶液の濃度
が、0.001〜2Nである請求項1または2記載の複
合砥粒の製造方法。
3. The method for producing composite abrasive grains according to claim 1, wherein the concentration of the aqueous solution of the mineral acid or the organic carboxylic acid is 0.001 to 2N.
【請求項4】鉱酸または有機カルボン酸が、硝酸、塩
酸、硫酸、リン酸、酢酸、ギ酸、クエン酸、シュウ酸、
または酒石酸である請求項1、2または3記載の複合砥
粒の製造方法。
4. The method according to claim 1, wherein the mineral acid or organic carboxylic acid is nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid, formic acid, citric acid, oxalic acid,
4. The method for producing composite abrasive grains according to claim 1, 2 or 3, which is tartaric acid.
JP03098234A 1991-04-03 1991-04-03 Manufacturing method of composite abrasive Expired - Fee Related JP3088124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03098234A JP3088124B2 (en) 1991-04-03 1991-04-03 Manufacturing method of composite abrasive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03098234A JP3088124B2 (en) 1991-04-03 1991-04-03 Manufacturing method of composite abrasive

Publications (2)

Publication Number Publication Date
JPH04306290A JPH04306290A (en) 1992-10-29
JP3088124B2 true JP3088124B2 (en) 2000-09-18

Family

ID=14214274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03098234A Expired - Fee Related JP3088124B2 (en) 1991-04-03 1991-04-03 Manufacturing method of composite abrasive

Country Status (1)

Country Link
JP (1) JP3088124B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY150551A (en) * 2008-07-03 2014-01-30 3M Innovative Properties Co Fixed abrasive particles and articles made therefrom
CN103769278B (en) * 2014-01-08 2016-01-20 太原理工大学 A kind of high-energy ball milling preparation method of magnetic abrasive grain
CN107312499B (en) * 2017-07-18 2018-12-04 洛阳理工学院 A kind of ball mill metal and Ceramic Composite abrasive media and preparation method thereof

Also Published As

Publication number Publication date
JPH04306290A (en) 1992-10-29

Similar Documents

Publication Publication Date Title
TW555696B (en) Alumina powder, process for producing the same and polishing composition
CA2215499C (en) Modified alpha alumina particles
JP2931105B2 (en) Modified sol-gel alumina
JPH04146987A (en) Alumina-zirconia lapping compound, production thereof, and composition for abrasion
US5192339A (en) Abrasive grain and method for manufacturing the same
JPH04336971A (en) Binder grinding body abrasive grain, and its manufacture
WO2004037722A1 (en) Cerium oxide particles and process for the production thereof
TW200836883A (en) Submicron alpha alumina high temperature bonded abrasives
JPS61250084A (en) Composite whetstone particle for magnetic abrasion and production thereof
JP3048081B2 (en) Sintered composite abrasive material, its production and use
JP2506852B2 (en) Ceramic abrasive product, manufacturing method thereof, and surface grinding method
JP2972488B2 (en) Sintered composite abrasive grits, their production and use
JP3088124B2 (en) Manufacturing method of composite abrasive
JPH11268911A (en) Alumina powder, its production, and composition for polishing
JPH05117636A (en) Polycrystalline sintered abrasive particle based on alpha-aluminum trioxide, abrasive comprising the abrasive particle, preparation of the abrasive particle and preparation of fire-resistant ceramic product
EP0409991B1 (en) Abrasive grain and method of producing same
JP2000239652A (en) Precision polishing composition for hard brittle material and method for precision polishing of hard brittle material therewith
JP2777356B2 (en) Inorganic media for dry barrel polishing
JP2001062705A (en) Alpha alumina polishing material for metal polishing and manufacture thereof
JP2008006559A (en) Mirror-finishing method and machining body for mirror-finishing
JP2001198833A (en) Diamond grinding wheel and diamond grinding method, ground diamond body obtained thereby, single-crystal diamond, sintered diamond body, composite diamond grinding wheel, and diamond grinding wheel segment
JP2632898B2 (en) Polishing composition
JP2003509579A (en) Al2O3 / SiC-nanocomposite abrasive particles, their production and use
JPH06322288A (en) Preparation of fine powder
JP4224650B2 (en) Polishing composition for aluminum disk and polishing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees