JP2001198833A - Diamond grinding wheel and diamond grinding method, ground diamond body obtained thereby, single-crystal diamond, sintered diamond body, composite diamond grinding wheel, and diamond grinding wheel segment - Google Patents
Diamond grinding wheel and diamond grinding method, ground diamond body obtained thereby, single-crystal diamond, sintered diamond body, composite diamond grinding wheel, and diamond grinding wheel segmentInfo
- Publication number
- JP2001198833A JP2001198833A JP2000012479A JP2000012479A JP2001198833A JP 2001198833 A JP2001198833 A JP 2001198833A JP 2000012479 A JP2000012479 A JP 2000012479A JP 2000012479 A JP2000012479 A JP 2000012479A JP 2001198833 A JP2001198833 A JP 2001198833A
- Authority
- JP
- Japan
- Prior art keywords
- diamond
- polishing
- intermetallic compound
- grindstone
- grinding wheel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Polishing Bodies And Polishing Tools (AREA)
- Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、多結晶ダイヤモン
ド、ダイヤモンド単結晶、ダイヤモンド薄膜(気相合成
法により基板上に形成したダイヤモンド又はダイヤモン
ド自立膜(箔または板)を含む)、ダイヤモンド焼結体
等の、ダイヤモンドそれ自体又はダイヤモンドを含む材
料をクラックや破壊を生ずることなく効率良く研磨する
ためのダイヤモンド研磨用砥石及びダイヤモンド研磨方
法並びに研磨により得られたダイヤモンド研磨加工体
(ダイヤモンド薄膜、多結晶ダイヤモンド等を含む)、
単結晶ダイヤモンド及びダイヤモンド焼結体に関する。The present invention relates to a polycrystalline diamond, a diamond single crystal, a diamond thin film (including a diamond or a diamond free-standing film (foil or plate) formed on a substrate by a vapor phase synthesis method), and a diamond sintered body. And the like, and a diamond polishing method for efficiently polishing diamond itself or a material containing diamond without causing cracking or destruction, and a diamond polishing product (diamond thin film, polycrystalline diamond) obtained by polishing. Etc.),
The present invention relates to a single crystal diamond and a diamond sintered body.
【0002】[0002]
【従来の技術】今日、ダイヤモンドを利用した材料の1
つとしてダイヤモンド薄膜が注目されている。このダイ
ヤモンド薄膜は気相合成法(CVD法)等により、工業
的(人工的)に多結晶粒からなるダイヤモンド薄膜(基
板上に形成された薄膜及びダイヤモンド膜被覆部材)又
はダイヤモンド自立膜を製造することができるようにな
ったが、上記合成法により得られた多数の結晶粒からな
るダイヤモンド薄膜は凹凸の激しい表面を持っている。
このため、気相合成法により形成されたダイヤモンド薄
膜を、電子部品、光学部品、超精密部品あるいは加工工
具等に使用する場合には、ダイヤモンドの表面を平滑化
することが必要となってくる。2. Description of the Related Art Today, one of the materials using diamond is described.
As one, attention has been paid to diamond thin films. This diamond thin film is industrially (artificially) manufactured by a vapor phase synthesis method (CVD method) to produce a diamond thin film (a thin film formed on a substrate and a diamond film covering member) or a diamond free-standing film made of polycrystalline grains. However, the diamond thin film composed of a large number of crystal grains obtained by the above-mentioned synthesis method has a highly uneven surface.
Therefore, when a diamond thin film formed by the vapor phase synthesis method is used for an electronic component, an optical component, an ultra-precision component, a processing tool, or the like, it is necessary to smooth the surface of the diamond.
【0003】また、天然及び人工単結晶ダイヤモンド
(超高圧合成、気相合成法等による)は、砥石のドレッ
サー、刃物、ダイス、ヒートシンク、X線窓等、各種の
工業材料又は宝飾用品として使用されているが、最終的
にそれぞれの用途に適用できる形状に仕上げる必要があ
る。さらにダイヤモンドを利用したダイヤモンド焼結体
は、その特性を利用して、自動車用エンジン等の高速精
密研削又は研磨、超硬合金の精密研削又は研磨用工具、
切削又は切断用刃物、耐磨耗機構用部品、通信機器用ヒ
ートシンクあるいはパッケージ等に普及しつつある。な
お、ダイヤモンド焼結体は結合剤としてCo、WC、T
iCなどが使用されているが、また結合剤を殆ど含まな
いあるいは全く含まないものもある。本発明では特に言
及しない限り、これらの焼結体を全て含むものとする。[0003] Natural and artificial single crystal diamonds (by ultra-high pressure synthesis, vapor phase synthesis, etc.) are used as various industrial materials or jewelry articles such as dressers, blades, dies, heat sinks and X-ray windows for grinding wheels. However, finally, it is necessary to finish the shape that can be applied to each application. Furthermore, the diamond sintered body using diamond is a tool for high-speed precision grinding or polishing of an automobile engine or the like, precision grinding or polishing of a cemented carbide, utilizing its characteristics.
It is widely used for cutting or cutting blades, parts for wear-resistant mechanisms, heat sinks or packages for communication devices, and the like. Note that the sintered diamond material is made of Co, WC, T
Although iC and the like are used, some contain little or no binder. In the present invention, all of these sintered bodies are included unless otherwise specified.
【0004】ダイヤモンドは、それ自体が他の金属やセ
ラミック等硬質材料の研磨あるいは宝石類の微細研磨に
使用される程に、極めて硬い物質なので、ダイヤモンド
を研磨することが難しいことは、誰でも容易に理解でき
る。このような多数の凹凸を持つ多結晶ダイヤモンド膜
又は自立体を平滑化する方法として、強靭鋳鉄板を高速
回転させながらダイヤモンド粉を介在させ、共擦り(共
削り)しながらダイヤモンドを研磨するスカイフ法が挙
げられる。この方法は、宝石のダイヤモンド研磨に用い
られてきた手法であるが、上記人工ダイヤモンドを研磨
する方法としては極めて加工能率が低く、残念ながら殆
ど役に立たない。[0004] Since diamond is an extremely hard substance such that it is used for polishing other hard materials such as metals and ceramics or fine polishing of jewelry, it is easy for anyone to easily grind diamond. Can understand. As a method of smoothing a polycrystalline diamond film having such a large number of irregularities or a three-dimensional structure, a skiff method is used in which a tough cast iron plate is rotated at a high speed, diamond powder is interposed, and the diamond is polished while being co-rubbed (co-cutting). Is mentioned. Although this method has been used for polishing diamonds for jewelry, the processing efficiency is extremely low as a method for polishing the above-mentioned artificial diamond, and unfortunately is almost useless.
【0005】特に、上記ダイヤモンド単結晶は、結晶面
あるいは結晶方位により、硬さの変化が著しく、現状で
加工できる面は(100)面や(110)面等に限定さ
れ、硬さや熱伝導性等に最も優れている(111)面の
研磨加工は、極めて困難であり、事実上不可能と言われ
ている。このようなことから、ダイヤモンド単結晶の研
磨加工に際しては研磨可能な面を中心に、これらの結晶
面や結晶方位を調べつつ研磨する高い熟練技術が必要と
されており、ダイヤモンドの研磨加工を複雑かつコスト
高にしていた。[0005] In particular, the diamond single crystal has a remarkable change in hardness depending on the crystal plane or crystal orientation, and the plane that can be processed at present is limited to the (100) plane or the (110) plane. Polishing of the (111) plane, which is the most excellent, is extremely difficult and practically impossible. For this reason, when polishing a diamond single crystal, a highly skilled technique for polishing while examining the crystallizable plane and crystal orientation around the polished surface is required, which complicates the polishing of diamond. And the cost was high.
【0006】また、ダイヤモンド焼結体の研磨では、後
述するようなダイヤモンド砥石(共ずり)による研磨方
法では、ダイヤモンドと結合剤あるいはダイヤモンド相
互の粒界面における硬さの差、又は焼結体中の多数のダ
イヤモンド粒子の脱落により、大きな段差(数μm程
度)が生じ易く、上記のような加工具として使用する場
合にはこのような段差に起因する転写等の加工精度の問
題、そして耐磨耗性機構部品として使用する場合には摩
擦特性が低下するという問題があり、また焼結体中のダ
イヤモンド自体も損傷したり、脱落するという問題が発
生した。[0006] In the polishing of a diamond sintered body, the difference in hardness at the grain interface between diamond and a binder or between diamonds or in the polishing method using a diamond grindstone (co-shear) as described later, or in the sintered body. A large step (about several μm) is likely to occur due to the dropping of many diamond particles, and when used as a processing tool as described above, there is a problem of processing accuracy such as transfer caused by such a step, and abrasion resistance. When used as a mechanical mechanism part, there is a problem that the friction characteristics are reduced, and diamond itself in the sintered body is damaged or falls off.
【0007】上記に述べたように、ダイヤモンドの硬さ
は代替物が無いほどに硬い材料なので、研磨材としてダ
イヤモンド(共擦り)以外にないと考えるのが普通であ
り、このために共擦り用のダイヤモンド砥粒を各種の結
合材に埋め込んだ研磨用砥石が考えられている。このよ
うな砥石例として、フェノール樹脂を用いたレジンボン
ド砥石、メタルボンド砥石、長石・石英を用いたビトリ
ファイドボンド砥石、電着砥石などが挙げられる。[0007] As described above, since the hardness of diamond is such a hard material that there is no substitute, it is generally considered that there is no other abrasive than diamond (co-rubbing). Polishing whetstones in which diamond abrasive grains are embedded in various types of binders have been considered. Examples of such a grindstone include a resin bond grindstone using a phenol resin, a metal bond grindstone, a vitrified bond grindstone using feldspar / quartz, and an electrodeposition grindstone.
【0008】これらの手法の基本は、被研磨体であるダ
イヤモンド(なお、本明細書において特に説明しない限
り、ダイヤモンド薄膜や自立体だけでなく、単結晶ダイ
ヤモンド、ダイヤモンド焼結体、前記以外の多結晶ダイ
ヤモンド等の、ダイヤモンドそれ自体及びダイヤモンド
を含む材料を意味する。)の表面をダイヤモンド砥粒で
引掻いて磨くということであり、砥石に含まれるダイヤ
モンド砥粒の耐摩耗性、ダイヤモンド砥粒の数が加工能
率を決めるポイントになり、またダイヤモンドの支持体
となる各種ボンド材が研磨の支障にならず、さらにダイ
ヤモンド砥粒が摩耗の度に常に新しく研磨面に表出して
こなければならない。[0008] The basis of these techniques is a diamond to be polished (unless specifically described in this specification, not only a diamond thin film and a self-stereotype, but also a single crystal diamond, a diamond sintered body, and a diamond other than the above. This means that the surface of diamond itself and a material containing diamond, such as crystalline diamond, are scratched and polished with diamond abrasive grains. The number is the point that determines the processing efficiency, the various bonding materials serving as the diamond support do not hinder the polishing, and the diamond abrasive grains must always newly appear on the polished surface each time they are worn.
【0009】この手法の一つとして、鉄等の砥石ボンド
材をダイヤモンドの摩耗に伴なって鉄を電気的に酸化
(電解)させ(この場合、研磨に有効に作用するダイヤ
モンド砥粒が存在する間、鉄の酸化物不導体皮膜が形成
されて砥石ボンド材が電解されない状態となってい
る)、ダイヤモンドの摩耗量に応じて自動的に、ダイヤ
モンド砥粒の新生面が出るようにした研磨方法がある。
この方法が上記の中では最も効率が高い方法と考えられ
るが、砥粒となる良質なダイヤモンド粉の選定、砥石ボ
ンド材の選定と埋め込み作業及び品質の維持、電解設備
とその条件設定、研磨操作と制御などが必要となり、こ
れらがダイヤモンド研磨の良否を決定し、操作が煩雑、
コスト高、研磨品質が安定しないという問題がある。As one of the methods, a grinding stone bonding material such as iron is used to electrically oxidize (electrolyze) iron with the abrasion of diamond (in this case, there are diamond abrasive grains effectively acting on polishing). In the meantime, an oxide non-conductive film of iron is formed and the grinding stone bond material is not electrolyzed), and a polishing method that automatically generates a new surface of diamond abrasive grains according to the wear amount of diamond is is there.
This method is considered to be the most efficient method among the above, but selection of high quality diamond powder to be abrasive grains, selection of grinding stone bond material and embedding work and maintenance of quality, electrolytic equipment and its condition setting, polishing operation And control are required, these determine the quality of diamond polishing, the operation is complicated,
There are problems that the cost is high and the polishing quality is not stable.
【0010】また、被研磨材がダイヤモンド薄膜では、
研磨加工に作用するダイヤモンド砥粒の数に比較して被
研磨材であるダイヤモンド粒の数が圧倒的に多いため、
加工速度、加工能率には自ずと限界がある。このよう
に、ダイヤモンド砥石を用いた研磨方法は、砥石の目減
りが激しく、また精度が高く高圧力がかけられる高価な
加工装置が必要であるという問題があった。When the material to be polished is a diamond thin film,
Because the number of diamond grains, which is the material to be polished, is overwhelmingly greater than the number of diamond grains acting on the polishing process,
Processing speed and processing efficiency are naturally limited. As described above, the polishing method using the diamond grindstone has a problem that the grindstone is severely reduced and an expensive processing apparatus which can apply high pressure with high accuracy is required.
【0011】上記以外の方法として、鉄やステンレス鋼
をダイヤモンドに押し付けて研磨する提案がなされた。
ダイヤモンドは常温では化学的に安定であるが、空気中
で700°Cに加熱すると黒鉛化して燃焼し始め、真空
中でも1400°C以上になると黒鉛化する。上記の方
法はこのような高温における鉄とダイヤモンドとの反応
を利用して研磨する方法である。鉄とダイヤモンドの反
応(ダイヤモンド成分の炭素が金属中に溶解する)は8
00°C程度から生じ、Fe3C(セメンタイト)が生成
し、研磨中の摩擦面ではこれが剥離し、さらに研磨が進
行することを利用したものと理解されている。高温では
この反応がさらに進行し易くなり、Fe3Cの生成・分
解が起り、研磨が進む。加工能率を考慮すると900°
C以上が必要といわれている。As a method other than the above, there has been proposed a method in which iron or stainless steel is pressed against diamond and polished.
Although diamond is chemically stable at room temperature, it is graphitized when heated to 700 ° C. in air and starts to burn, and becomes graphitized at 1400 ° C. or higher even in vacuum. The above method is a method of polishing using the reaction between iron and diamond at such a high temperature. The reaction between iron and diamond (the carbon in the diamond component dissolves in the metal) is 8
It is understood that Fe 3 C (cementite) is generated from about 00 ° C., which is separated from the friction surface during polishing, and that the polishing proceeds. At a high temperature, this reaction is further facilitated, and the generation and decomposition of Fe 3 C occur, and the polishing proceeds. 900 ° considering processing efficiency
It is said that C or more is necessary.
【0012】この鉄又は鉄系材料は安価な研磨材を使用
できるという点で良い方法と考えられたが、この方法の
一番の問題は、高温に加熱しなければ効率的な研磨がで
きないと言うことである。ところが、ステンレスや鉄系
材料は高温で軟化し、強度が著しく低下するので安定し
た研磨ができない。特に、高温の鉄を用いる場合には、
鉄の酸化を防止するために、真空中あるいは還元性雰囲
気中で研磨を実施する必要があるため、設備の面でも又
研磨作業が煩雑である(自在にできない)という点でも
問題がある。This iron or iron-based material was considered to be a good method in that an inexpensive abrasive could be used, but the main problem with this method was that efficient polishing would not be possible without heating to high temperatures. That is to say. However, stainless steel and iron-based materials are softened at high temperatures and the strength is significantly reduced, so that stable polishing cannot be performed. In particular, when using high-temperature iron,
In order to prevent oxidation of iron, it is necessary to perform polishing in a vacuum or in a reducing atmosphere. Therefore, there is a problem in terms of equipment and that the polishing operation is complicated (cannot be performed freely).
【0013】さらにまた、上記のような高温加熱は被研
磨体であるダイヤモンドに影響を与え、摩擦や加熱時の
急激な温度勾配による熱応力に起因して、ダイヤモンド
にクラックが発生したり、破壊するなどの問題を生じ
た。このため、この鉄に替えて炭素との親和力が大きい
クロムやチタンを使用したが、前者は脆くて加工ができ
ず、また後者は鉄と同様に軟らか過ぎ又酸化しやすく酸
化チタンとなり研磨材として使用できなかった。この他
レーザ加工等が考えられるが、面精度が劣り使用に耐え
るものではなかった。Furthermore, the high-temperature heating as described above affects the diamond to be polished, causing cracks or breakage of the diamond due to friction and thermal stress due to a rapid temperature gradient during heating. And other problems. For this reason, instead of iron, chromium or titanium, which has a high affinity for carbon, was used, but the former was brittle and could not be processed, and the latter was too soft and easily oxidized, like titanium, and became titanium oxide, making it an abrasive. Could not be used. In addition, laser processing and the like are conceivable, but the surface accuracy is inferior and cannot be used.
【0014】[0014]
【発明が解決しようとする課題】以上から、本発明はダ
イヤモンド単結晶、ダイヤモンド薄膜(気相合成法によ
り基板上に形成したダイヤモンド又はダイヤモンド自立
膜(箔または板)を含む)、ダイヤモンド焼結体、その
他の多結晶ダイヤモンド等の、ダイヤモンドそれ自体又
はダイヤモンドを含む材料をクラックや破壊あるいは品
質の劣化を生ずることなく低温(室温を含む)で研磨す
ることができ、また研磨材の安定した性能を維持し、か
つ平面研削、ラップ研削、その他の従来の研磨装置を使
用することができ、さらに操作が簡単で研磨品質が安定
した低コストのダイヤモンド研磨用砥石及びダイヤモン
ド研磨方法並びに研磨により得られたダイヤモンド研磨
加工体、単結晶ダイヤモンド及びダイヤモンド焼結体を
得ることを課題とする。また、本発明の方法を用いるこ
とにより、今後ダイヤモンド膜の応用の進展に伴って急
増することが予想される3次元形状のダイヤ膜部材、ダ
イヤモンド膜被覆部材の研削及び研磨加工も効率良く、
低コストで行うことを課題とする。本発明者は、すでに
Al、Cr、Mn、Fe、Co、Ni、Cuの群から選
択した1種または2種以上の元素とTi元素との金属間
化合物を主成分とする優れたダイヤモンド研磨用砥石を
提案している(特願平11−130991号、特願平1
1−218850号、特願平11−320523号)。
本発明は、さらにこれらを展開し、有用なダイヤモンド
研磨用砥石を提供するものである。As described above, the present invention relates to a diamond single crystal, a diamond thin film (including a diamond or a diamond free-standing film (foil or plate) formed on a substrate by a vapor phase synthesis method), and a diamond sintered body. And other polycrystalline diamonds or the like, diamond itself or a material containing diamond can be polished at a low temperature (including room temperature) without cracking, destruction or deterioration of quality, and the stable performance of the abrasive can be improved. Maintained and obtained by surface grinding, lap grinding, other conventional polishing equipment, low-cost diamond polishing wheel and diamond polishing method with simple operation and stable polishing quality and obtained by polishing To obtain a diamond polished body, single crystal diamond and diamond sintered body That. In addition, by using the method of the present invention, a diamond film member having a three-dimensional shape, which is expected to increase sharply with the application of diamond film in the future, and a diamond film-coated member can be efficiently ground and polished.
The task is to perform at low cost. The present inventor has already prepared an excellent diamond polishing material mainly containing an intermetallic compound of one or more elements selected from the group consisting of Al, Cr, Mn, Fe, Co, Ni, and Cu and a Ti element. Proposal of whetstones (Japanese Patent Application No. 11-130991, Japanese Patent Application No. 1
1-218850, Japanese Patent Application No. 11-320523).
The present invention further develops these and provides a useful diamond polishing wheel.
【0015】[0015]
【課題を解決するための手段】本発明者は、特殊な金属
材料がダイヤモンドとの反応を効率よく行うことがで
き、かつ低温若しくは常温(室温)または加熱下での研
磨が可能であり、さらに研磨材の摩耗と劣化をたとえ大
気中においても極力抑えることができるとの知見を得
た。この知見に基づき、本発明は 1.Al、Cr、Mn、Fe、Co、Ni、Cuの群か
ら選択した1種若しくは2種以上の元素とZr、Hf、
V、Nb、Mo、Ta、Wの群から選択した1種若しく
は2種以上の元素との金属間化合物を主成分とすること
を特徴とするダイヤモンド研磨用砥石 2.Al、Cr、Mn、Fe、Co、Ni、Cu、R
u、Rh、Pd、Os、Ir、Ptの群から選択した1
種若しくは2種以上の元素とTi元素との金属間化合物
を主成分として、さらに含有することを特徴とする上記
1記載のダイヤモンド研磨用砥石 3.Ru、Rh、Pd、Os、Ir、Ptの群から選択
した1種若しくは2種以上の元素とTi、Zr、Hf、
V、Nb、Mo、Ta、Wの群から選択した1種若しく
は2種以上の元素との金属間化合物を主成分とすること
を特徴とするダイヤモンド研磨用砥石 4.Al、Cr、Mn、Fe、Co、Ni、Cuの群か
ら選択した1種または2種以上の元素とTi、Zr、H
f、V、Nb、Mo、Ta、Wの群から選択した1種ま
たは2種以上の元素との金属間化合物を主成分として、
さらに含有することを特徴とする上記3記載のダイヤモ
ンド研磨用砥石 5.金属間化合物の含有量が90体積%以上であること
を特徴とする上記1〜4のそれぞれに記載のダイヤモン
ド研磨用砥石。 6.ダイヤモンド研磨用砥石の1部または全部が前記金
属間化合物であることを特徴とする上記1〜5のそれぞ
れに記載のダイヤモンド研磨用砥石、を提供する。The inventor of the present invention has found that a special metal material can efficiently react with diamond and can be polished at a low temperature, a normal temperature (room temperature), or under heating. It has been found that wear and deterioration of the abrasive can be minimized even in the atmosphere. Based on this finding, the present invention provides: One or more elements selected from the group consisting of Al, Cr, Mn, Fe, Co, Ni, Cu and Zr, Hf,
1. A diamond-grinding whetstone mainly containing an intermetallic compound with one or more elements selected from the group consisting of V, Nb, Mo, Ta and W. Al, Cr, Mn, Fe, Co, Ni, Cu, R
1 selected from the group of u, Rh, Pd, Os, Ir, Pt
2. The grinding wheel for diamond polishing as described in 1 above, further comprising, as a main component, an intermetallic compound of one or more kinds of elements and a Ti element. One or more elements selected from the group consisting of Ru, Rh, Pd, Os, Ir, and Pt, and Ti, Zr, Hf,
3. A grindstone for diamond polishing mainly comprising an intermetallic compound with one or more elements selected from the group consisting of V, Nb, Mo, Ta and W. One, two or more elements selected from the group consisting of Al, Cr, Mn, Fe, Co, Ni, Cu and Ti, Zr, H
an intermetallic compound with one or more elements selected from the group consisting of f, V, Nb, Mo, Ta, W,
4. The grinding wheel for diamond polishing according to the above item 3, further comprising: 5. The grinding wheel for diamond polishing according to any one of the above items 1 to 4, wherein the content of the intermetallic compound is 90% by volume or more. 6. The grinding wheel for diamond polishing according to any one of the above 1 to 5, wherein a part or all of the wheel for diamond polishing is the intermetallic compound.
【0016】さらにまた、本発明は 7.上記1〜6のそれぞれに記載の金属間化合物を主成
分とする砥石によりダイヤモンドを研磨する際に、研磨
部を100〜800°Cに加熱しながら研磨することを
特徴とするダイヤモンド研磨方法 8.研磨部を300〜500°Cに加熱することを特徴
とする上記7記載のダイヤモンドの研磨方法 9.金属間化合物の含有量が90体積%以上であること
を特徴とする上記7又は8に記載のダイヤモンドの研磨
方法 10.上記1〜6のそれぞれに記載の金属間化合物を主
成分とするダイヤモンド研磨用砥石で研磨したことを特
徴とするダイヤモンド研磨加工体 11.研磨加工後のダイヤモンド膜研磨面の結晶粒境界
部段差が、ダイヤモンド膜の厚さが300μmを超える
場合に0.1μm以下であり、厚さが300μm以下の
場合に0.02μm以下であることを特徴とする上記1
0記載のダイヤモンド研磨加工体 12.上記1〜6のそれぞれに記載の金属間化合物を主
成分とするダイヤモンド研磨用砥石で研磨したことを特
徴とする単結晶ダイヤモンド 13.研磨面が(111)面であることを特徴とする上
記12記載の単結晶ダイヤモンド 14.上記1〜6のそれぞれに記載の金属間化合物を主
成分とするダイヤモンド研磨用砥石で研磨したことを特
徴とするダイヤモンド焼結体 15.研磨後の表面粗さが0.5μm以下であることを
特徴とする上記14記載のダイヤモンド焼結体 16.上記1〜6のそれぞれに記載の金属間化合物とダ
イヤモンド砥粒、超硬合金又はセラミックスとを複合し
たことを特徴とするダイヤモンド研磨用複合砥石及び同
砥石セグメント、を提供するものである。なお、本明細
書において記載する金属間化合物は、複合金属間化合物
を包む。Furthermore, the present invention relates to 7. A diamond polishing method characterized in that when polishing diamond with a grindstone containing the intermetallic compound described in any one of the above 1 to 6 as a main component, polishing is performed while heating the polishing portion to 100 to 800 ° C. 8. The diamond polishing method according to the above 7, wherein the polishing section is heated to 300 to 500 ° C. 9. The diamond polishing method according to the above item 7 or 8, wherein the content of the intermetallic compound is 90% by volume or more. 10. A diamond-polished body characterized by being polished with a diamond-polishing grindstone containing the intermetallic compound described in any one of 1 to 6 above as a main component. The crystal grain boundary step on the polished surface of the diamond film after polishing is 0.1 μm or less when the thickness of the diamond film exceeds 300 μm, and is 0.02 μm or less when the thickness of the diamond film is 300 μm or less. Characteristic 1 above
Diamond-processed body described in 0. 12. Single-crystal diamond characterized by being polished with a diamond-polishing grindstone containing the intermetallic compound described in any one of 1 to 6 above as a main component. 13. The single crystal diamond according to the above item 12, wherein the polished surface is a (111) plane. 14. A diamond sintered body characterized by being polished with a diamond polishing grindstone containing the intermetallic compound described in any of 1 to 6 above as a main component. 15. The diamond sintered body according to the above 14, wherein the surface roughness after polishing is 0.5 μm or less. A composite grinding wheel for diamond polishing and a grinding wheel segment characterized by combining the intermetallic compound described in any one of 1 to 6 above with diamond abrasive grains, cemented carbide or ceramics. In addition, the intermetallic compound described in this specification encompasses a complex intermetallic compound.
【0017】[0017]
【発明の実施の形態】本発明のダイヤモンド研磨用砥石
は、例えば粉末冶金法によって製造することができる。
この場合、原料粉末としてそれぞれ平均粒径150μm
以下(好ましくは10μm以下)のTi、Zr、Hf、
V、Nb、Mo、Ta、Wの群から選択した1種または
2種以上の粉末とAl、Cr、Mn、Fe、Co、N
i、Cu、Ru、Rh、Pd、Os、Ir、Ptの群か
ら選択した1種または2種以上の粉末(以下、特に記載
しない限り「砥石用粉末」と言う。)とを、それぞれの
金属間化合物(以下、特に記載しない限り、「金属間化
合物の含有量が90体積%以上であるもの」を含む。)
が、本発明の金属間化合物の砥石となる組成及び比率に
調合し、これらをボールミルで混合し、乾燥して混合粉
とする。原料粉としては、微細なアトマイズ粉を使用す
ることができる。予めメカニカルアロイング法により所
定の比率に合金化した砥石用粉末を用いることもでき
る。微細かつ均一な混合粉末を使用した場合には、焼結
体の密度が高く、その結果均一かつ緻密な砥石が得られ
るという利点がある。これらの粉末は、単独の金属粉末
であっても良いし、予め合金(金属間化合物)とした粉
末、さらにこれらの複合粉末であっても良い。BEST MODE FOR CARRYING OUT THE INVENTION The diamond polishing wheel of the present invention can be manufactured by, for example, a powder metallurgy method.
In this case, each of the raw material powders has an average particle size of 150 μm.
Or less (preferably 10 μm or less) of Ti, Zr, Hf,
One or more powders selected from the group consisting of V, Nb, Mo, Ta, W, and Al, Cr, Mn, Fe, Co, N
One or more powders selected from the group of i, Cu, Ru, Rh, Pd, Os, Ir, and Pt (hereinafter referred to as “grinding powder” unless otherwise specified) are each metal. Intermetallic compound (hereinafter, unless otherwise specified, includes "the compound having an intermetallic compound content of 90% by volume or more")
However, the composition and ratio of the whetstone of the intermetallic compound of the present invention are adjusted, and these are mixed by a ball mill and dried to obtain a mixed powder. As the raw material powder, fine atomized powder can be used. It is also possible to use whetstone powder alloyed in advance in a predetermined ratio by a mechanical alloying method. When a fine and uniform mixed powder is used, there is an advantage that the density of the sintered body is high, so that a uniform and dense grindstone can be obtained. These powders may be a single metal powder, a powder previously alloyed (intermetallic compound), or a composite powder thereof.
【0018】次に、上記混合粉砕粉をモールドに入れ予
備成形した後、例えば冷間静水圧処理(CIP処理)
し、さらに1000〜1300°C、圧力500Kgf
/cm 2の条件でホットプレス焼結(HP処理)する
か、又はCIP処理した後、同様に1000〜1300
°C、圧力500Kgf/cm2の条件で熱間静水圧焼
結(HIP処理)して高密度(相対密度99%以上であ
ることが望ましい)の焼結体とする。CIP処理、HP
処理、HIP処理等の温度、圧力等の条件は上記に限ら
ず、原料の種類又は目的とする焼結体の密度等を考慮し
て他の条件を設定してもよい。また、上記のようなCI
P処理、HP処理、HIP処理等に替えて、黒鉛製のモ
ールドに混合粉末を充填し、これを上下パンチ(電極)
間で圧縮しながらパルス通電により加熱する方法、すな
わちパルス通電焼結法により焼結体とすることもでき
る。この場合、特に上記メカニカルアロイ粉を使用する
と緻密かつ均一な焼結体を得ることができる。Next, the mixed and ground powder is put into a mold and
After preforming, for example, cold isostatic pressure treatment (CIP treatment)
And at a temperature of 1000 to 1300 ° C. and a pressure of 500 kgf
/ Cm 2Hot sintering (HP processing) under the conditions of
Or after CIP treatment, similarly 1000-1300
° C, pressure 500Kgf / cm2Hot isostatic firing under the conditions of
(HIP treatment) to high density (relative density 99% or more
It is desirable that the sintered body is CIP processing, HP
Conditions such as temperature and pressure for processing and HIP processing are limited to the above.
Without considering the type of raw material or the density of the target sintered body, etc.
Other conditions may be set. In addition, the above CI
Instead of P treatment, HP treatment, HIP treatment, etc.
Filled with a powder mixture, and punch it up and down (electrode)
Heating by pulse current while compressing between
In other words, it can be made into a sintered body by pulse current sintering method.
You. In this case, in particular, use the mechanical alloy powder described above.
And a dense and uniform sintered body can be obtained.
【0019】本発明の金属間化合物を主成分とする合金
砥石は、真空アーク溶解、プラズマ溶解、電子ビーム溶
解、誘導溶解等の溶製法によっても製造できる。これら
の溶解に際してはガス、特に酸素の混入が著しく、また
上記アルミニウム等の金属間化合物を形成する元素およ
びチタンはいずれも酸素との結合力が強いので、真空中
又は不活性ガス中で溶解することが必要である。また、
これらの金属間化合物を主成分とする合金砥石の鋳造品
は機械的強度が焼結品よりも劣る傾向があるので、溶
解、凝固過程において偏析の発生や結晶粒が粗大化しな
いように、温度コントロールを実施して製造することが
必要である。上記粉末冶金法又は溶製法によって得られ
た焼結体又はインゴットから必要な砥石形状に切り出
し、平面研削盤、ラップ研削盤等の砥石に適合する形状
に仕上げ、かつこの合金砥石保持具等の構成部品等で固
定してダイヤモンド研磨用砥石工具とする。The alloy whetstone containing the intermetallic compound of the present invention as a main component can also be produced by a melting method such as vacuum arc melting, plasma melting, electron beam melting and induction melting. At the time of dissolution, gas, especially oxygen, is remarkably mixed, and since the elements forming the intermetallic compound such as aluminum and titanium have a strong bonding force with oxygen, they are dissolved in a vacuum or an inert gas. It is necessary. Also,
Since cast products of alloy whetstones containing these intermetallic compounds as a main component tend to have lower mechanical strength than sintered products, the temperature must be controlled so that segregation and crystal grains do not occur during the melting and solidification processes. It is necessary to control and manufacture. A required grinding wheel shape is cut out from the sintered body or ingot obtained by the powder metallurgy method or the smelting method, and is finished to a shape suitable for a grinding wheel such as a surface grinding machine and a lap grinding machine, and a configuration of the alloy grinding wheel holder and the like. It is fixed with parts or the like to make a diamond grinding tool.
【0020】被研磨体の一例として、ダイヤモンド薄膜
又はダイヤモンド自立体を挙げると、このダイヤモンド
薄膜又はダイヤモンド自立体は一般に知られている気相
成長法(CVD法)によって作成できる。例えば、高温
(2000°C前後)に加熱したタングステンフィラメ
ントの近傍位置に開口する石英管を配置し、この石英管
を通してメタン等の炭化水素ガスを水素で希釈した混合
ガスを導入し、500°C〜1100°Cに加熱した基板
上にダイヤモンドを前記混合ガスから分解析出させる方
法、上記タングステンフィラメントに替えて、プラズマ
放電を利用したマイクロ波プラズマCVD法、RF(高
周波)プラズマCVD法、DC(直流)アークプラズマ
ジェット法、さらには大気中で酸素アセチレンの火炎を
高速で基板に当て、ダイヤモンドを炭化水素含有ガスか
ら分解析出させる方法がある。本発明においてはこれら
の方法あるいは他の方法によって製作されたダイヤモン
ド薄膜又はダイヤモンド自立体に適応できる。As an example of the object to be polished, if a diamond thin film or diamond self-solid is used, the diamond thin film or diamond self-solid can be prepared by a generally known vapor phase growth method (CVD method). For example, a quartz tube which is open at a position near a tungsten filament heated to a high temperature (around 2000 ° C.) is arranged, and a mixed gas obtained by diluting a hydrocarbon gas such as methane with hydrogen is introduced through the quartz tube, and a temperature of 500 ° C. A method in which diamond is decomposed and precipitated from the mixed gas on a substrate heated to 11100 ° C., a microwave plasma CVD method using a plasma discharge, an RF (high frequency) plasma CVD method, a DC ( Direct current) arc plasma jet method, or a method in which a flame of oxygen acetylene is applied to a substrate at a high speed in the atmosphere to decompose and precipitate diamond from a hydrocarbon-containing gas. The present invention can be applied to a diamond thin film or a diamond self-solid formed by these methods or other methods.
【0021】天然のダイヤモンド又は人工ダイヤモンド
も容易に研磨できる。特にダイヤモンド単結晶(11
1)面の研磨が従来技術では不可能と言われているが、
本発明の砥石によれば、この(111)面の研磨がわず
か数分で進行するという驚異的な性能を有している。こ
の(111)面の研磨が可能となったことにより、切削
工具のすくい面に高品質の(111)面を使用すること
ができ、また砥石の精密ツルアーとして(111)面を
用いた高性能ダイヤモンド単石ドッレッサー、高熱伝導
ヒートシンクなどの高性能で付加価値の高いダイヤモン
ド単結晶を得ることができる。Natural or artificial diamonds can also be easily polished. Especially diamond single crystal (11
1) Surface polishing is said to be impossible with conventional technology,
According to the grindstone of the present invention, the (111) plane has a surprising performance that polishing proceeds in only a few minutes. Since the (111) surface can be polished, a high-quality (111) surface can be used as a rake face of a cutting tool, and a high-performance using the (111) surface as a precision tool for a grindstone. It is possible to obtain high-performance and high-value-added diamond single crystals such as a diamond single-stone dresser and a high heat conductive heat sink.
【0022】被研磨体がダイヤモンド焼結体の場合にも
極めて良質の研磨が可能である。ダイヤモンド砥石(共
ずり)研磨方法で発生するような、ダイヤモンドと結合
剤あるいはダイヤモンド相互の粒界面における硬さの差
又はダイヤモンド砥粒の脱落による段差が発生すること
が殆どなく、このような段差に起因する転写の問題が発
生しない。また、耐磨耗性機構部品として使用する場合
に発生しがちな摩擦特性の低下という問題もなく、極め
て均質なダイヤモンド焼結体の研磨ができる。Very high quality polishing is possible even when the object to be polished is a diamond sintered body. There is almost no step difference due to the difference in hardness at the grain interface between diamond and the binder or between the diamonds or the drop off of diamond abrasive grains, which is caused by the diamond grinding stone (co-shearing) polishing method. The resulting transfer problem does not occur. In addition, the diamond sintered body can be polished extremely homogeneously without the problem of a decrease in frictional characteristics that tends to occur when used as a wear-resistant mechanism part.
【0023】本発明の砥石による研磨に際しては、研磨
部を室温(常温)で、あるいは100〜800°Cに加
熱しながらダイヤモンドに対して相対的に回転又は移動
させながら、押し付けて該ダイヤモンドを研磨する。上
記のように基板上に形成されたダイヤモンド薄膜等の厚
みが薄い場合、例えば10μm程度であると、ダイヤモ
ンド表面の凹凸が数μm程度なので、研磨の抵抗が小さ
く、常温でも十分に研磨できる。ダイヤモンドと砥石の
接触点では、摩擦熱により、局部的にかなりの高温とな
るが、このような状況において、例えばTiC、TiA
lC、TiAlCNなどの本発明の砥石成分(Al、C
r、Mn、Fe、Co、Ni、Cu、Ru、Rh、P
d、Os、Ir、PtあるいはTi、Zr、Hf、V、
Nb、Mo、Ta、W)との脆い炭化物、炭窒化等が生
成し、かつこれが剥離するなどによって、より効果的に
ダイヤモンドの研磨(化学的研磨)が進行しているもの
と推測される。At the time of polishing with the grindstone of the present invention, the diamond is polished by pressing at a room temperature (normal temperature) or at a temperature of 100 to 800 ° C. while rotating or moving relative to the diamond. I do. When the thickness of the diamond thin film formed on the substrate as described above is small, for example, when the thickness is about 10 μm, the roughness of the diamond surface is about several μm, so that the polishing resistance is small and sufficient polishing can be performed at room temperature. At the point of contact between the diamond and the grindstone, frictional heat causes local high temperatures, but in such a situation, for example, TiC, TiA
Grinding wheel components of the present invention (Al, C
r, Mn, Fe, Co, Ni, Cu, Ru, Rh, P
d, Os, Ir, Pt or Ti, Zr, Hf, V,
It is presumed that diamond carbide (chemical polishing) is progressing more effectively due to the formation of brittle carbides, carbonitrides, and the like with Nb, Mo, Ta, and W) and the separation of the carbides.
【0024】これに対し、ダイヤモンドの厚みが大き
く、結晶粒径が大きい(数十μm以上の膜厚を有し、数
μm〜数十μmの結晶粒を持つケース)場合、研磨の抵
抗が増加するが、このような場合に加熱が有効である。
この場合の加熱に際しては、砥石及び又は研磨する個所
の少なくとも一部を加熱し、研磨部の温度が上記100
〜800°Cになるように調節して研磨する。外部から
加熱の温度が100°C未満では合金砥石の靭性が劣
り、砥石の割れが発生し易くなる。また、ダイヤモンド
自体も上記加熱及び摩擦熱によりほぼ同等の加熱を受け
るが、800°Cを超えるとダイヤモンド等が受ける熱
影響によりクラックが生じたり、割れたりすることが多
くなり、ダイヤモンド等を損傷し易くなるので避ける必
要がある。この加熱温度としては300〜500°Cが
より好適である。研磨部にかかる外部加熱の全熱が上記
の温度範囲となるように調節する。摩擦熱による温度上
昇を考慮して、温度設定することが必要であるが、摩擦
熱により突発的に800°Cを超える場合があってもよ
い。本発明において設定する加熱温度は、そのような突
発的温度上昇は本発明の加熱温度に含めない。On the other hand, when the diamond has a large thickness and a large crystal grain size (having a film thickness of several tens μm or more and having crystal grains of several μm to several tens μm), the polishing resistance increases. However, heating is effective in such a case.
In this case, at the time of heating, at least a part of a grinding stone and / or a portion to be polished is heated, and the temperature of the polishing portion is set to 100
Polishing by adjusting to ~ 800 ° C. If the temperature of external heating is less than 100 ° C., the toughness of the alloy grindstone is inferior, and the grindstone is likely to crack. Also, the diamond itself is subjected to substantially the same heating by the above-mentioned heating and frictional heat. However, when the temperature exceeds 800 ° C., cracks or cracks often occur due to the thermal effect on the diamond or the like, and the diamond or the like is damaged. It is necessary to avoid it. As the heating temperature, 300 to 500 ° C. is more preferable. The total heat of external heating applied to the polishing section is adjusted so as to be within the above-mentioned temperature range. Although it is necessary to set the temperature in consideration of a temperature rise due to frictional heat, the temperature may suddenly exceed 800 ° C. due to frictional heat. The heating temperature set in the present invention does not include such a sudden increase in the heating temperature in the present invention.
【0025】本発明のダイヤモンド研磨用砥石は、ステ
ンレス鋼に比べ室温での硬さが極めて大きいという特徴
がある。粉末法によって得た本発明の金属間化合物砥石
の硬度がHv500〜1000Kg/mm2に達するの
に対して、ステンレス鋼のそれはHv〜200Kg/m
m2程度に過ぎない。すなわち本発明の金属間化合物砥
石の硬度はステンレス鋼の2.5〜5倍に達する。ま
た、本発明の金属間化合物砥石は高温になっても硬さの
減少が少なく、約600°Cまでは温度上昇と共に強度
が上昇するという優れた性質を持っている。本発明のダ
イヤモンド研磨用砥石において、さらに重要なことは、
ダイヤモンドに対して驚くほど大きな耐摩耗性を示すこ
とである。これは硬さがはるかに大きい超硬合金(WC
+16%Co:Hv〜1500Kg/mm2)よりも少
ない摩擦減量を示すことからも容易に理解できる。The diamond polishing wheel of the present invention has a feature that its hardness at room temperature is extremely large as compared with stainless steel. While the hardness of the intermetallic compound grindstone of the present invention obtained by the powder method reaches Hv 500 to 1000 Kg / mm 2 , that of stainless steel is Hv to 200 Kg / m 2.
not only about m 2. That is, the hardness of the intermetallic compound grindstone of the present invention reaches 2.5 to 5 times that of stainless steel. Further, the intermetallic compound grindstone of the present invention has an excellent property that the hardness decreases little even at a high temperature, and the strength increases with the temperature up to about 600 ° C. In the diamond polishing wheel of the present invention, more importantly,
A surprisingly high abrasion resistance to diamond. This is a cemented carbide with much higher hardness (WC
+ 16% Co: Hv〜1500 Kg / mm 2 ), which can be easily understood from the fact that the friction loss is smaller than that.
【0026】本発明のダイヤモンド研磨用砥石の少ない
摩耗減量はダイヤモンドの研磨に好適なばかりでなく、
ダイヤモンドの摩耗量が著しく増大するという特徴を有
している。単独のTi、Ni等は炭素との反応を促進す
るが、温度上昇と共に軟化し、特に大気中では、容易に
酸化して酸化チタンを生成するため、殆ど研磨材として
の役割を持たない。しかし、本発明のダイヤモンド研磨
用砥石は、室温または100〜800°Cに加熱しなが
ら押し当て、相対的に回転又は移動することにより、割
れを発生することなく研磨することが可能となった。外
部加熱を行って研磨する場合の、特に有効な加熱温度範
囲は300〜500°Cである。ダイヤモンドは上記加
熱による熱影響を受け、本発明のダイヤモンド研磨用砥
石との反応性が高まり、ダイヤモンドの成分の炭素と砥
石中のTiとの反応が容易になり、ダイヤモンドの結晶
粒の微細な突起部が効果的に摩耗減少する。The low wear loss of the diamond polishing wheel of the present invention is not only suitable for diamond polishing, but also
It has the feature that the amount of wear of diamond is significantly increased. Ti, Ni or the like alone promotes the reaction with carbon, but softens as the temperature rises, and easily oxidizes particularly in the atmosphere to form titanium oxide, so that it has almost no role as an abrasive. However, the diamond polishing whetstone of the present invention can be polished without generating cracks by pressing while heating at room temperature or at 100 to 800 ° C. and relatively rotating or moving. A particularly effective heating temperature range for polishing by external heating is 300 to 500 ° C. The diamond is thermally affected by the above heating, and the reactivity of the diamond with the grinding wheel of the present invention is enhanced, the reaction between carbon as a component of diamond and Ti in the grinding wheel is facilitated, and fine projections of diamond crystal grains are formed. The part is effectively reduced in wear.
【0027】上記のような、ダイヤモンドの薄膜の製造
工程において、特に厚いダイヤモンドの膜を形成する場
合には、ダイヤモンドの結晶粒が粗大化し、かつ結晶表
面の凹凸が激しくなって研磨が著しく困難となるが、本
発明の砥石を使用して100〜800°Cに加熱しなが
ら研磨することにより、このような難研磨性のダイヤモ
ンドも砥石の破壊や極端な摩耗を発生することなく容易
に研磨することが可能となった。さらに、上記温度範囲
への加熱により、合金砥石の結晶粒界が強化され、粒界
割れが起こりにくくなることが確認された。ダイヤモン
ドと砥石の接触点では、摩擦熱と外部加熱により、炭化
物、炭窒化物の生成による化学的研磨が強く起こり、よ
り効果的なダイヤモンドの研磨が進行しているものと推
測される。In the process of producing a diamond thin film as described above, particularly when a thick diamond film is formed, the crystal grains of the diamond become coarse and the irregularities on the crystal surface become severe, making polishing extremely difficult. However, by polishing using the grindstone of the present invention while heating to 100 to 800 ° C., such hard-to-polish diamonds can be easily polished without destruction of the grindstone or extreme wear. It became possible. Furthermore, it was confirmed that the heating to the above-mentioned temperature range strengthened the crystal grain boundaries of the alloy whetstone and made it difficult for grain boundary cracks to occur. At the point of contact between the diamond and the grindstone, it is presumed that due to frictional heat and external heating, chemical polishing due to the formation of carbides and carbonitrides occurs strongly, and more effective diamond polishing is in progress.
【0028】本発明の砥石のこのような著しい特徴を利
用し、他のダイヤモンド研磨方法の一部にこの砥石を利
用することも当然可能である。本発明はこのような使用
の全てを包含するものである。単体の金属間化合物から
なるダイヤモンド研磨用砥石を製造しようとする場合、
金属間化合物以外の成分として、該金属間化合物の個々
の成分元素が単体として存在したり、又は微量の不純物
が混入する場合がある。しかし、この場合、砥石の中に
本発明の金属間化合物が90体積%以上含有量していれ
ば、砥石としての機能を十分に発揮させることができ
る。なお、本発明の砥石は、後述するように金属間化合
物を構成する元素(金属)又は該金属間化合物を構成す
る金属以外の金属若しくは合金、又は超硬合金、半金属
元素、非金属元素、セラミックス(含むガラス)、ダイ
ヤモンド砥粒、有機化合物(ポリマー)等と複合又は混
合させて使用することができる。したがって、上記90
体積%以上の金属間化合物は、これを単体として砥石に
使用する場合の好適な例を示しているだけで、本発明の
砥石等は、上記の割合に制限されるものではない。It is, of course, possible to take advantage of these remarkable features of the grindstone of the present invention and to utilize this grindstone in some of the other diamond polishing methods. The present invention covers all such uses. When trying to manufacture a diamond polishing wheel consisting of a single intermetallic compound,
As a component other than the intermetallic compound, an individual component element of the intermetallic compound may exist as a simple substance or a trace amount of impurities may be mixed. However, in this case, when the intermetallic compound of the present invention is contained in the grindstone at 90% by volume or more, the function as a grindstone can be sufficiently exhibited. In addition, the grindstone of the present invention is, as described later, an element (metal) constituting the intermetallic compound or a metal or alloy other than the metal constituting the intermetallic compound, or a cemented carbide, a semimetal element, a nonmetal element, It can be used in combination with or mixed with ceramics (including glass), diamond abrasive grains, organic compounds (polymers), and the like. Therefore, the above 90
The intermetallic compound of not less than volume% shows only a preferable example in the case of using it alone as a grindstone, and the grindstone of the present invention is not limited to the above ratio.
【0029】例えば、本発明の金属間化合物からなるダ
イヤモンド研磨用砥石の強度又は靭性等を増すために、
金属間化合物を構成する主たる元素であるAl、Cr、
Mn、Fe、Co、Ni、Cu、Ru、Rh、Pd、O
s、Ir、Ptの群から選択した1種または2種以上の
元素若しくはTi、Zr、Hf、V、Nb、Mo、T
a、Wの群から選択した1種または2種以上の元素又は
これら以外の元素をさらに付加的に添加することができ
る。金属間化合物の種類によっては、それ単独では脆す
ぎて砥石にできない場合がある。しかし、上記のように
強度又は靭性を向上できる材料と組み合わせることによ
り、また他の金属間化合物との複合金属間化合物とする
ことにより、強度を向上させることができる。したがっ
て、単独では砥石にできない場合でも、上記のようにす
ることにより、砥石として使用することが可能であり、
本発明はこのような砥石をも包含する。また、ダイヤモ
ンド研磨用砥石の硬さを向上させるために、セラミック
ス又は超硬合金等を添加することもできる。本発明はこ
れらを全て包含する。また、本発明はダイヤモンド研磨
用砥石の1部または全部を前記金属間化合物とするもの
であり、これによって、砥石の機能を飛躍的に向上させ
ることができる。例えば、従来のダイヤモンド砥石と同
様に、ダイヤモンド砥粒を金属間化合物で担持した複合
砥石、本発明の金属間化合物とセラミックスとの複合砥
石、金属間化合物を砥粒とした同金属間化合物と金属又
は超硬工具材等との複合砥石、並びにこれらの複合体と
することができる。なお、上記の通り、複合砥石又は混
合砥石とする場合、これらの材料の配合割合(体積率)
や結合剤等の体積率等は加工目的や用途に応じて任意に
選択できるものであり、特に制限されない。また、従来
の砥石セグメントの一部に、上記の砥石を併用すること
もできる。これらは全て本発明に含まれるものである。For example, in order to increase the strength or toughness of a diamond polishing wheel made of the intermetallic compound of the present invention,
Al, Cr, which are main elements constituting the intermetallic compound,
Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, O
one or more elements selected from the group consisting of s, Ir and Pt, or Ti, Zr, Hf, V, Nb, Mo, T
One or more elements selected from the group of a and W or elements other than these can be further added. Depending on the type of intermetallic compound, it may be too brittle by itself to form a grindstone. However, the strength can be improved by combining with a material capable of improving strength or toughness as described above, or by forming a composite intermetallic compound with another intermetallic compound. Therefore, even if it cannot be used as a grindstone by itself, it is possible to use it as a grindstone by performing the above.
The present invention also includes such a grindstone. In order to improve the hardness of the grinding wheel for diamond polishing, ceramics or cemented carbide may be added. The present invention includes all of these. Further, the present invention uses a part or all of the grinding wheel for diamond polishing as the intermetallic compound, whereby the function of the grinding wheel can be remarkably improved. For example, similarly to a conventional diamond grinding wheel, a composite grinding wheel in which diamond abrasive grains are supported by an intermetallic compound, a composite grinding wheel of an intermetallic compound of the present invention and a ceramic, an intermetallic compound and a metal in which an intermetallic compound is an abrasive grain Alternatively, a composite grindstone with a carbide tool material or the like, or a composite of these can be used. As described above, when a composite grinding wheel or a mixed grinding wheel is used, the mixing ratio (volume ratio) of these materials is used.
The volume ratio of the binder and the binder and the like can be arbitrarily selected according to the processing purpose and application, and is not particularly limited. Further, the above-mentioned grindstone can be used in combination with a part of the conventional grindstone segment. These are all included in the present invention.
【0030】本発明の方法により容易かつ精度よく研磨
した平滑面を持つダイヤモンド、特に、単結晶ダイヤモ
ンドは高性能ダイヤモンド単石ドッレッサー、高熱伝導
ヒートシンクなど、またダイヤモンド焼結体の研磨によ
り、精密なダイヤモンド焼結体加工具又は耐磨耗性機構
部品として、さらに本発明の方法により得られたダイヤ
モンド薄膜又はダイヤモンド自立体は、回路基板、高周
波デバイス、ヒートシンク、各種光学部品、表面弾性波
素子(フイルター)、平面ディスプレー、半導体や放射
線センサー等の電子デバイス部品、精密機械部品、各種
摺動部品等に好適な材料として、性能に優れたダイヤモ
ンド材料の飛躍的な用途が拡大できる効果を有する。Diamond having a smooth surface, which is easily and accurately polished by the method of the present invention, particularly, single crystal diamond is a high performance diamond single stone dresser, a high heat conduction heat sink, etc. The diamond thin film or the diamond solid obtained by the method of the present invention as a sintered body processing tool or a wear-resistant mechanical component is used for a circuit board, a high-frequency device, a heat sink, various optical components, and a surface acoustic wave device (filter). As a material suitable for flat panel displays, electronic device parts such as semiconductors and radiation sensors, precision machine parts, various sliding parts, etc., there is an effect that the use of diamond materials having excellent performance can be dramatically expanded.
【0031】[0031]
【実施例および比較例】次に、本発明を実施例および比
較例に基づいて説明する。なお、本実施例は好適な例を
示し、かつ本発明の理解を容易にするためのものであ
り、これらの例によって本発明が制限されるものではな
い。すなわち、本発明の技術思想の範囲における他の態
様および例は、当然本発明に含まれるものである。Examples and Comparative Examples Next, the present invention will be described based on Examples and Comparative Examples. In addition, this Example shows a preferable example, and it is for making the understanding of this invention easy, and this invention is not limited by these examples. That is, other embodiments and examples within the technical idea of the present invention are naturally included in the present invention.
【0032】(砥石及びその製造条件)Ti、Zr、H
f、V、Nb、Mo、Ta、Wの群から選択した1種ま
たは2種以上の粉末とAl、Cr、Mn、Fe、Co、
Ni、Cu、Ru、Rh、Pd、Os、Ir、Ptの群
から選択した1種または2種以上の粉末を、それぞれの
本発明の金属間化合物が形成できる比率に調合し、それ
ぞれの材料の粉末(2〜10μm)を、ボールミル中に
装填し100〜300時間程度ミリングしてメカニカル
アロイング粉とした後、これらの粉末をパルス通電焼結
法により、50MPaの加圧下、900°Cで5分間焼
結して、各金属間化合物焼結体砥石を得た。 (被削体) ・ダイヤモンド薄膜:H2/CH4混合ガスを用い、厚
み4mmの多結晶Si基板に熱フィラメント法によりダ
イヤモンド薄膜を形成する。ダイヤモンド薄膜の厚さ:
10μm(凹凸は数μm以下)、300μm、500μ
m 寸法:19mm×19mm ・ダイヤモンド焼結体 ・ダイヤモンド単結晶 (砥石による研磨条件) ・温度 :室温(15〜30°C)または研磨部を10
0〜800°Cに加熱 ・回転速度 :400〜3000rpm ・砥石形状 :φ30mm ・押し付け荷重:1kgf〜10kgf ・時間:1〜10分(Whetstone and its manufacturing conditions) Ti, Zr, H
f, V, Nb, Mo, Ta, W, one or more powders selected from the group consisting of Al, Cr, Mn, Fe, Co,
One, two or more powders selected from the group of Ni, Cu, Ru, Rh, Pd, Os, Ir, and Pt are blended in such a ratio that each intermetallic compound of the present invention can be formed. The powders (2 to 10 μm) were charged into a ball mill and milled for about 100 to 300 hours to obtain mechanical alloying powders. These powders were subjected to pulse current sintering at 900 ° C. under a pressure of 50 MPa. After sintering for each minute, each intermetallic compound sintered body grindstone was obtained. (Workpiece) Diamond thin film: Using a mixed gas of H 2 / CH 4, a diamond thin film is formed on a 4 mm-thick polycrystalline Si substrate by a hot filament method. Diamond thin film thickness:
10 μm (roughness is several μm or less), 300 μm, 500 μ
m Dimension: 19mm × 19mm ・ Diamond sintered body ・ Diamond single crystal (polishing conditions by whetstone) ・ Temperature: Room temperature (15-30 ° C) or 10 polished parts
Heated to 0 to 800 ° C ・ Rotation speed: 400 to 3000 rpm ・ Whetstone shape: φ30 mm ・ Pressing load: 1 kgf to 10 kgf ・ Time: 1 to 10 minutes
【0033】(実施例1)Zr−Ni金属間化合物(Z
r7Ni10)砥石を上記条件で製造し、気相合成ダイ
ヤモンド薄膜と超高圧で焼結したダイヤモンド焼結体の
双方に対して、室温で研磨を実施した。砥石形状は同様
にφ30mmとし、加工装置としてフライス盤を用い、
砥石の回転速度3,000rpmで、1分間の研磨を行
った。図1に、気相合成ダイヤモンド薄膜の研磨結果を
示す。図1は研磨後の気相合成ダイヤモンド薄膜表面の
光学顕微鏡写真(倍率×625)である。黒い部分は未
研磨ダイヤモンド粒子を示し、灰色部分乃至白色部分は
研磨された面を示す。同図において結晶粒に沿う段差は
殆ど見られず、1分間という僅かな時間でダイヤモンド
粒子部分の研磨が進んでいることが分かる。図2は、超
高圧で焼結したダイヤモンド焼結体の研磨後の光学顕微
鏡写真(倍率×625)である。同様に、黒い部分はダ
イヤモンド粒子の未研磨部を示し、灰色部分乃至白色部
分は研磨された面を示す。同図において結晶粒に沿う段
差は殆ど見られず、1分という僅かな時間で急速に研磨
が進んでいることが分かる。また、上記の金属間化合物
砥石は、室温で研磨を実施しているにもかかわらず、砥
石の磨耗が少なく割れや亀裂も発生しないという、極め
て強い研磨能力を示した。(Example 1) Zr-Ni intermetallic compound (Z
An r 7 Ni 10 ) grindstone was manufactured under the above conditions, and both the vapor-phase synthesized diamond thin film and the diamond sintered body sintered at an ultra-high pressure were polished at room temperature. The grindstone shape is also φ30 mm, using a milling machine as a processing device,
Polishing was performed for 1 minute at a rotation speed of the grinding wheel of 3,000 rpm. FIG. 1 shows the polishing result of the vapor phase synthetic diamond thin film. FIG. 1 is an optical micrograph (magnification × 625) of the surface of a vapor-phase synthetic diamond thin film after polishing. The black portions indicate unpolished diamond particles, and the gray to white portions indicate polished surfaces. In the figure, almost no step is found along the crystal grains, and it can be seen that the polishing of the diamond particle portion is progressing in a short time of one minute. FIG. 2 is an optical micrograph (magnification: 625) of a diamond sintered body sintered at an ultra-high pressure after polishing. Similarly, black portions indicate unpolished portions of diamond particles, and gray to white portions indicate polished surfaces. In the figure, almost no steps are found along the crystal grains, and it can be seen that the polishing is progressing rapidly in a short time of one minute. In addition, the above-mentioned intermetallic compound whetstone exhibited extremely strong polishing ability, in which the whetstone was hardly worn and no cracks or cracks were generated even though polishing was performed at room temperature.
【0034】(実施例2)次に、Zrの代わりにNbを
用い、Nb−Co金属間化合物(Nb6Co7)砥石を
上記条件で製造し、気相合成ダイヤモンド薄膜と超高圧
で焼結したダイヤモンド焼結体の双方に対して、室温で
研磨を実施した。研磨条件は実施例1と同様に砥石形状
をφ30mmとし、フライス盤を用いて砥石の回転速度
3,000rpmで、1分間の研磨を行った。図3に、
超高圧で焼結したダイヤモンド焼結体の研磨後の光学顕
微鏡写真(倍率×625)を示す。黒い部分はダイヤモ
ンド粒子の未研磨部を示し、灰色部分乃至白色部分は研
磨された面を示す。上記と同様に、1分間という僅かな
時間でダイヤモンド粒子の研磨が急速に進行しているの
が分かる。図示しないが、気相合成ダイヤモンド薄膜の
研磨結果でも、実施例1の場合と同様の1分間という僅
かな時間でダイヤモンドの研磨が進む優れた研磨結果が
得られた。また、Nb−Al金属間化合物(Nb2A
l)砥石を製造し、気相合成ダイヤモンド薄膜と超高圧
で焼結したダイヤモンド焼結体の双方に対して、室温で
研磨を実施したが、上記Nb−Co金属間化合物(Nb
6Co7)砥石で研磨した場合と同様の結果が得られ
た。以上に示す通り、本実施例の金属間化合物砥石は、
室温で研磨を実施しているにもかかわらず、砥石の磨耗
が少なく割れや亀裂も発生しないという、極めて強い研
磨能力を示した。(Example 2) Next, an Nb-Co intermetallic compound (Nb 6 Co 7 ) grindstone was manufactured under the above conditions using Nb instead of Zr, and sintered with a vapor-phase synthetic diamond thin film at an ultra high pressure. Polishing was performed on both of the diamond sintered bodies at room temperature. Polishing conditions were the same as in Example 1, with a grindstone shape of φ30 mm, and polishing was performed for 1 minute at a rotation speed of the grindstone of 3,000 rpm using a milling machine. In FIG.
The optical microscope photograph (magnification x625) of the diamond sintered compact sintered at ultra high pressure after polishing is shown. Black portions indicate unpolished portions of the diamond particles, and gray to white portions indicate polished surfaces. Similarly to the above, it can be seen that polishing of the diamond particles progresses rapidly in a short time of one minute. Although not shown, the polishing result of the vapor-phase synthetic diamond thin film also showed an excellent polishing result in which the polishing of diamond proceeded in as little as one minute as in Example 1. Further, an Nb-Al intermetallic compound (Nb 2 A
l) A grindstone was manufactured and polished at room temperature for both a vapor-phase synthetic diamond thin film and a diamond sintered body sintered at an ultra-high pressure, but the Nb-Co intermetallic compound (Nb
6 Co 7 ) A result similar to that obtained by polishing with a grindstone was obtained. As described above, the intermetallic compound grindstone of the present embodiment is:
Despite being polished at room temperature, the grinding wheel exhibited extremely strong polishing ability with little wear and no cracks or cracks.
【0035】(実施例3)次に、Ni−Nb金属間化合
物(Ni3Nb)砥石を上記条件で製造し、気相合成ダ
イヤモンド薄膜と超高圧で焼結したダイヤモンド焼結体
の双方に対して、室温で研磨を実施した。研磨条件は実
施例1と同様に砥石形状をφ30mmとし、フライス盤
を用いて砥石の回転速度3,000rpmで、1分間の
研磨を行った。図4に、気相合成ダイヤモンド薄膜の研
磨後の光学顕微鏡写真(倍率×625)を示す。黒い部
分はダイヤモンド粒子の未研磨部を示し、灰色部分乃至
白色部分は研磨された面を示す。上記と同様に、1分間
という僅かな時間でダイヤモンド粒子の研磨が急速に進
行しているのが分かる。また、超高圧ダイヤモンド焼結
体の研磨結果でも、上記と同様の1分間という僅かな時
間でダイヤモンドの研磨が進む優れた研磨結果が得られ
た(図示せず)。以上に示す通り、本実施例の金属間化
合物砥石は、室温で研磨を実施しているにもかかわら
ず、砥石の磨耗が少なく割れや亀裂も発生しないとい
う、極めて強い研磨能力を示した。[0035] Next (Example 3), Ni-Nb intermetallic compound (Ni 3 Nb) grindstone manufactured in the above conditions, for both gas phase synthesized diamond thin film and an ultra high pressure sintered diamond sintered body Then, polishing was performed at room temperature. Polishing conditions were the same as in Example 1, with a grindstone shape of φ30 mm, and polishing was performed for 1 minute at a rotation speed of the grindstone of 3,000 rpm using a milling machine. FIG. 4 shows an optical microscope photograph (magnification × 625) of the vapor-phase synthetic diamond thin film after polishing. Black portions indicate unpolished portions of the diamond particles, and gray to white portions indicate polished surfaces. Similarly to the above, it can be seen that polishing of the diamond particles progresses rapidly in a short time of one minute. Also in the polishing result of the ultra-high pressure diamond sintered body, an excellent polishing result in which the polishing of the diamond proceeds in a short time of one minute as described above was obtained (not shown). As described above, the intermetallic compound grindstone of this example exhibited extremely strong polishing ability, with little wear of the grindstone and no generation of cracks or cracks, even though polishing was performed at room temperature.
【0036】(実施例4)次に、Ti−Pt金属間化合
物(Ti3Pt)及びTa−Ru金属間化合物(TaR
u)砥石を上記と同様の条件で製造し、気相合成ダイヤ
モンド薄膜と超高圧で焼結したダイヤモンド焼結体の双
方に対して、室温で研磨を実施した。研磨条件は実施例
1と同様に砥石形状をφ30mmとし、フライス盤を用
いて砥石の回転速度3,000rpmで、1分間の研磨
を行った。研磨性能は上記本実施例に用いた金属間化合
物砥石と同様に、良好な結果が得られた。以上の通り、
本実施例の金属間化合物砥石は、室温で研磨を実施して
いるにもかかわらず、砥石の磨耗が少なく割れや亀裂も
発生しないという、極めて強い研磨能力を示した。ま
た、Rh、Pd、Os、Irの他の白金族元素と、T
i、Zr、Hf、V、Nb、Mo、Ta、Wの群との組
み合わせにおいても、同様の結果が得られることが確認
できた。この白金族元素の砥石を使用する場合は、特に
被研磨体への不純物の混入を嫌う場合に有効である。Example 4 Next, a Ti—Pt intermetallic compound (Ti 3 Pt) and a Ta—Ru intermetallic compound (TaR
u) A grindstone was manufactured under the same conditions as described above, and both the vapor-phase synthetic diamond thin film and the diamond sintered body sintered at an ultra-high pressure were polished at room temperature. Polishing conditions were the same as in Example 1, with a grindstone shape of φ30 mm, and polishing was performed for 1 minute at a rotation speed of the grindstone of 3,000 rpm using a milling machine. As for the polishing performance, good results were obtained as in the case of the intermetallic compound grindstone used in the present embodiment. As mentioned above,
The intermetallic compound whetstone of the present example exhibited extremely strong polishing ability, in which the whetstone was hardly worn and no cracks or cracks were generated even though polishing was performed at room temperature. Further, other platinum group elements of Rh, Pd, Os, and Ir, and T
It was confirmed that similar results were obtained also in combination with the group of i, Zr, Hf, V, Nb, Mo, Ta, and W. The use of a whetstone made of a platinum group element is particularly effective when it is difficult to mix impurities into the object to be polished.
【0037】(実施例5)次に、Ti−Ni金属間化合
物(TiNi)とNb−Co金属間化合物(Nb 6Co
7)からなる複合金属間化合物の砥石を上記条件で製造
し、気相合成ダイヤモンド薄膜と超高圧で焼結したダイ
ヤモンド焼結体の双方に対して、室温で研磨を実施し
た。砥石形状は同様にφ30mmとし、加工装置として
フライス盤を用い、砥石の回転速度3,000rpm
で、1分間の研磨を行った。図5に、超高圧で焼結した
ダイヤモンド焼結体の研磨結果を示す。図5は研磨後の
ダイヤモンド焼結体の光学顕微鏡写真(倍率×625)
である。黒い部分は未研磨ダイヤモンド粒子を示し、灰
色部分乃至白色部分は研磨された面を示す。1分間とい
う僅かな時間でダイヤモンド粒子部分の研磨が進んでい
ることが分かる。また、ダイヤモンド砥粒の脱落(黒色
部)が著しく少ないことが確認できた。図示しないが、
気相合成ダイヤモンド薄膜の研磨においても上記と同様
に、1分間という僅かな時間でダイヤモンド粒子部分の
研磨が進んだ。研磨性能はこれまでの本実施例と同様に
良好な結果が得られた。(Example 5) Next, a Ti-Ni intermetallic compound
(TiNi) and Nb-Co intermetallic compound (Nb 6Co
7) Is manufactured under the above conditions.
And diamond die sintered with ultra-high pressure
Polishing at room temperature for both of the sintered diamonds
Was. The grinding wheel shape is also φ30mm, and as a processing device
Using a milling machine, the rotation speed of the grindstone is 3,000 rpm
Then, polishing was performed for one minute. Fig. 5 shows the sintering at ultra high pressure.
The polishing result of a diamond sintered compact is shown. FIG. 5 shows the state after polishing.
Optical micrograph of a diamond sintered body (magnification x 625)
It is. Black areas indicate unpolished diamond particles,
The color portion to the white portion indicate the polished surface. One minute
Polishing of diamond particles progresses in a very short time
You can see that In addition, the drop of diamond abrasive grains (black
Part) was confirmed to be extremely small. Although not shown,
Same as above for polishing of vapor-phase synthetic diamond thin film
In just a minute, the diamond particles
Polishing progressed. Polishing performance is the same as in the previous embodiment.
Good results were obtained.
【0038】(実施例6)次に、Ti−Al金属間化合
物(TiAl)、Ti−Cr金属間化合物(TiC
r2)及びZr−Co金属間化合物(ZrCo2)から
なる複合金属間化合物の砥石、並びにTi−Ni金属間
化合物(TiNi)とZr−Ni金属間化合物(Zr7
Ni10)からなる複合金属間化合物の砥石を上記条件
で製造し、気相合成ダイヤモンド薄膜と超高圧で焼結し
たダイヤモンド焼結体の双方に対して、室温で研磨を実
施した。砥石形状は同様にφ30mmとし、加工装置と
してフライス盤を用い、砥石の回転速度3,000rp
mで、1分間の研磨を行った。図示しないが、気相合成
ダイヤモンド薄膜の研磨においても上記と同様に、1分
間という僅かな時間でダイヤモンド粒子部分の研磨が進
んだ。研磨性能はこれまでの本実施例と同様に良好な結
果が得られた。Example 6 Next, a Ti-Al intermetallic compound (TiAl) and a Ti-Cr intermetallic compound (TiC
r 2 ) and a composite intermetallic compound wheel composed of Zr—Co intermetallic compound (ZrCo 2 ), and a Ti—Ni intermetallic compound (TiNi) and a Zr—Ni intermetallic compound (Zr 7)
A composite intermetallic compound grindstone made of Ni 10 ) was manufactured under the above conditions, and both the vapor-phase synthetic diamond thin film and the diamond sintered body sintered at an ultra-high pressure were polished at room temperature. The grindstone shape is also φ30 mm, and a milling machine is used as a processing device.
The polishing was performed at m for 1 minute. Although not shown, in the polishing of the vapor phase synthetic diamond thin film, the polishing of the diamond particle portion progressed in a short time of one minute in the same manner as described above. As to the polishing performance, good results were obtained as in the present embodiment.
【0039】(実施例7)次に、Ti−Al金属間化合
物(TiAl)−2Cr(メタル)とNb−Co金属間
化合物(Nb6Co7)からなる金属間化合物(金属が
複合する)の砥石を上記条件で製造し、気相合成ダイヤ
モンド薄膜と超高圧で焼結したダイヤモンド焼結体の双
方に対して、室温で研磨を実施した。砥石形状は同様に
φ30mmとし、加工装置としてフライス盤を用い、砥
石の回転速度3,000rpmで、1分間の研磨を行っ
た。図6に、超高圧で焼結したダイヤモンド焼結体の研
磨結果を示す。図6は研磨後のダイヤモンド焼結体の光
学顕微鏡写真(倍率×625)である。黒い部分は未研
磨ダイヤモンド粒子を示し、灰色部分乃至白色部分は研
磨された面を示す。1分間という僅かな時間でダイヤモ
ンド粒子部分等(焼結助剤部を含む)の研磨が進んでい
ることが分かる。研磨性能は上記本実施例に用いた金属
間化合物砥石と同様、良好な結果が得られた。図示しな
いが、気相合成ダイヤモンド薄膜の研磨においても上記
と同様に、1分間という僅かな時間でダイヤモンド粒子
部分の研磨が進んだ。研磨性能はこれまでの本実施例と
同様に良好な結果が得られた。Example 7 Next, an intermetallic compound (composite of metal) composed of Ti-Al intermetallic compound (TiAl) -2Cr (metal) and Nb-Co intermetallic compound (Nb 6 Co 7 ) was prepared. A grindstone was manufactured under the above conditions, and both the vapor-phase synthetic diamond thin film and the diamond sintered body sintered at an ultra-high pressure were polished at room temperature. Similarly, the shape of the grindstone was set to φ30 mm, and polishing was performed for 1 minute at a rotation speed of the grindstone of 3,000 rpm using a milling machine as a processing device. FIG. 6 shows the polishing result of the diamond sintered body sintered at an ultra-high pressure. FIG. 6 is an optical micrograph (magnification × 625) of the diamond sintered body after polishing. The black portions indicate unpolished diamond particles, and the gray to white portions indicate polished surfaces. It can be seen that the polishing of the diamond particle portion and the like (including the sintering aid portion) proceeds in a short time of one minute. As for the polishing performance, good results were obtained as in the case of the intermetallic compound grindstone used in the present embodiment. Although not shown, in the polishing of the vapor phase synthetic diamond thin film, the polishing of the diamond particle portion progressed in a short time of one minute in the same manner as described above. As to the polishing performance, good results were obtained as in the present embodiment.
【0040】近年、ダイヤモンド薄膜の高い音速を利用
して、研磨加工処理したダイヤモンド薄膜表面にZnO
膜等を成膜し、櫛形電極を配置したダイヤモンド薄膜表
面弾性波デバイスがGHz帯通信における高周波帯域フ
イルター又は光通信タイミングクロックとして利用が検
討されているが、この場合従来の技術では、ダイヤモン
ド薄膜の加工面の段差が0.02〜0.04μm以上で
あり、このようなダイヤモンド膜表面の大きな段差は、
櫛形電極間距離のばらつき、あるいは電極を含む圧電体
薄膜の動作の不安定性を誘発し、表面弾性波デバイスの
性能低下やばらつきの原因となっていた。しかながら、
上記実施例に示す通り、本発明の砥石による研磨後のダ
イヤモンド薄膜研磨加工体は、結晶粒の境界部段差が極
めて小さく、高荷重下の摺動材料として、あるいは表面
弾性波デバイスとして極めて有効である。In recent years, by utilizing the high sound velocity of a diamond thin film, ZnO
The use of a diamond thin film surface acoustic wave device in which a film or the like is formed and a comb-shaped electrode is arranged as a high-frequency band filter or an optical communication timing clock in GHz band communication has been studied. The step of the processed surface is 0.02 to 0.04 μm or more, and such a large step of the diamond film surface is as follows:
This has caused variations in the inter-electrode distance or instability of the operation of the piezoelectric thin film including the electrodes, leading to performance degradation and variations in the surface acoustic wave device. However,
As shown in the above examples, the diamond thin film polished body after polishing by the grindstone of the present invention has a very small step at the boundary between crystal grains, and is extremely effective as a sliding material under a high load or as a surface acoustic wave device. is there.
【0041】(比較例1)比較として非常に強度及び靭
性が高いTi−6wt%Al−4wt%V合金を用い
て、ダイヤモンド薄膜に対し室温で研磨を実施した。こ
の場合のTi−6wt%Al−4wt%V合金は溶製品
を使用した。砥石回転速度は3000rpmで、5分間
の研磨を行った。この結果、Ti−6wt%Al−4w
t%V合金がダイヤモンドの表面に付着し、該合金が急
速に摩減するだけで、ダイヤモンド薄膜は全く研磨でき
なかった。これにより、TiとAlを含有するというだ
けの合金組成では、ダイヤモンドの研磨ができないこと
が確認できた。Comparative Example 1 As a comparison, a diamond thin film was polished at room temperature using a Ti-6 wt% Al-4 wt% V alloy having extremely high strength and toughness. In this case, a molten product was used for the Ti-6 wt% Al-4 wt% V alloy. Polishing was performed at a grinding wheel rotation speed of 3000 rpm for 5 minutes. As a result, Ti-6 wt% Al-4w
The t% V alloy adhered to the surface of the diamond and the alloy was only rapidly worn away, but the diamond film could not be polished at all. Thus, it was confirmed that diamond could not be polished with an alloy composition containing only Ti and Al.
【0042】(実施例8)上記実施例1について、研磨
が難しいとされている結晶粒が粗いダイヤモンド自立体
(500μm厚)に対して、200°C、300°C、
400°C、500°C、600°C、700°C、8
00°Cの各温度で、押し付け圧力、旋盤の回転数、研
磨時間を変えて研磨を実施した。この結果、加熱するこ
とにより、研磨が容易となった。しかし、100°C未
満では金属間化合物円板の砥石靭性が低下し、砥石にク
ラックが入るので、このように結晶粒径が大きいダイヤ
モンドでは、この温度未満では研磨性に劣ることが分か
った。また、800°Cを超えると、ダイヤモンドにク
ラックや割れが発生し易くなり、好ましくないことが分
かった。加熱温度条件として、より好ましい範囲は30
0〜500°Cである。(Eighth Embodiment) In the first embodiment, a diamond self-solid (500 μm thick) having coarse crystal grains, which is considered to be difficult to polish, is subjected to 200 ° C., 300 ° C.
400 ° C, 500 ° C, 600 ° C, 700 ° C, 8
Polishing was performed at each temperature of 00 ° C. by changing the pressing pressure, the number of revolutions of the lathe, and the polishing time. As a result, polishing was facilitated by heating. However, when the temperature is lower than 100 ° C., the toughness of the intermetallic compound disc decreases, and cracks occur in the wheel. Thus, it has been found that diamond having such a large crystal grain size has poor polishing properties at temperatures lower than this temperature. On the other hand, when the temperature exceeds 800 ° C., cracks and cracks are liable to occur in the diamond, which is not preferable. A more preferred range for the heating temperature condition is 30.
0 to 500 ° C.
【0043】特に、この300〜500°Cの温度で
は、金属間化合物砥石にクラックや割れが発生すること
なく、強度及び硬度が高い状態に維持でき、品質の安定
した迅速な研磨が可能であり、摩耗も少ないという極め
て好適な条件であることが確認できた。ダイヤモンドと
砥石の接触点では、摩擦熱と外部加熱によりかなりの高
温となるが、このような状況においては、炭化物、炭窒
化物が生成するなどにより化学的な研磨が生起し、より
効果的にダイヤモンドの研磨が進行しているものと推測
される。また、この温度範囲はダイヤモンドを損傷させ
ることもなく、いずれの場合にも優れた条件であること
が分かった。In particular, at the temperature of 300 to 500 ° C., cracks and cracks do not occur in the intermetallic compound whetstone, the strength and hardness can be maintained at a high level, and quick polishing with stable quality is possible. It was confirmed that the conditions were extremely suitable, that is, the wear was small. At the point of contact between the diamond and the grindstone, the frictional heat and external heating raise the temperature considerably, but in such a situation, chemical polishing occurs due to the formation of carbides and carbonitrides, making it more effective. It is presumed that diamond polishing is in progress. Further, it was found that this temperature range did not damage the diamond and was an excellent condition in each case.
【0044】以上から、ダイヤモンドの研磨時の加熱
は、ダイヤモンド膜厚みが数十ミクロン以上の膜におい
て、特に重要である。一般に、数十ミクロン以上のダイ
ヤモンド膜では、膜の成長とともに、膜表面に数ミクロ
ンから数十ミクロンの結晶方位の異なる結晶粒ができ、
これらの結晶粒同士で激しい凹凸が形成される。上記の
500μm厚のダイヤモンドでは、膜表面の結晶凹凸が
数十μm程度になっていた。このようなダイヤモンド膜
の研磨では、砥石研磨面内に不均一な引張り、圧縮歪が
発生し、該砥石中に脆性モード破壊の起点を多数提供す
ることになる。そして、この場合室温で研磨すると砥石
の磨耗が激しくなり、また上記のような激しい凹凸によ
り砥石に微小な亀裂が発生し、それらが研磨の進行とと
もに拡大して研磨加工中の破壊となることがある。研磨
部の加熱はこのような破壊起点を鈍化させることができ
るという特徴を有している。As described above, heating during polishing of diamond is particularly important for a diamond film having a thickness of several tens of microns or more. Generally, in a diamond film of several tens of microns or more, as the film grows, crystal grains having different crystal orientations of several microns to several tens of microns are formed on the film surface,
Intense irregularities are formed between these crystal grains. In the case of the diamond having a thickness of 500 μm, the crystal irregularities on the film surface were about several tens μm. In the polishing of such a diamond film, uneven tensile and compressive strains occur in the grinding surface of the grindstone, and provide many starting points of brittle mode fracture in the grindstone. And, in this case, when the polishing is performed at room temperature, the wear of the grindstone becomes intense, and a minute crack is generated in the grindstone due to the severe unevenness as described above, and they are enlarged as the polishing progresses and may be broken during the polishing process. is there. The heating of the polishing section has a feature that such a fracture starting point can be slowed down.
【0045】本実施例では研磨部の加熱方法としてガス
バーナを用いたが、他の加熱方法も当然利用できる。特
に、砥石への直接通電加熱、RF誘導加熱等が有効であ
る。また、上記にも述べたように、本発明の研磨加工は
砥石をダイヤモンド膜に接触させて加工する方法である
から、接触部の摩擦熱が当然発生する。したがって、砥
石等の加熱操作は外部加熱と摩擦熱の双方を総合した熱
を考慮して決定する。なお、押し付け圧力や砥石の回転
数が大きいと、相互に過剰な力がかかり、ダイヤモンド
や砥石を損傷させることがあるが、この条件は必要によ
り任意に変えられるものであり、特に固定された制限的
要件になるものではない。また、研磨時間は適宜変更で
きるものであるが、本発明の砥石を使用した場合には、
短時間で研磨が効率よく実施できるので、特に研磨時間
の長短が問題となることはない。In this embodiment, a gas burner is used as a method for heating the polishing section. However, other heating methods can be used. In particular, direct current heating, RF induction heating, and the like to the grindstone are effective. In addition, as described above, since the polishing process of the present invention is a method in which a grindstone is brought into contact with a diamond film for processing, frictional heat is naturally generated at a contact portion. Therefore, the heating operation of the grindstone or the like is determined in consideration of the combined heat of the external heating and the frictional heat. If the pressing pressure or the number of rotations of the grinding wheel is large, excessive force is applied to each other, and the diamond or the grinding wheel may be damaged. However, this condition can be arbitrarily changed as necessary, and particularly, the fixed limitation is applied. It is not a requirement. In addition, the polishing time can be appropriately changed, but when using the grindstone of the present invention,
Since the polishing can be efficiently performed in a short time, the length of the polishing time does not particularly matter.
【0046】(摩擦・摩耗試験)上記実施例1で得られ
たダイヤモンド研磨加工体及びこれと同一条件で作製し
た厚み500μmの多結晶ダイヤモンド膜を基板を除去
せずに従来のダイヤモンド砥石を用いて研磨加工したも
のを比較材として、双方の摩擦・摩耗試験を行った。摩
擦・摩耗試験は、先端曲率半径を種々変化させた棒状単
結晶ダイヤモンドピン(曲率半径R=0.025mm、
0.25mm)を用い、大気中無潤滑下でピン・オン・
ディスクの摩擦・摩耗試験を実施した。なお、上記試験
前の測定によれば、比較材のダイヤモンド研磨加工体結
晶粒境界部の研磨面平均段差は0.12μmであり、実
施例1で得られたダイヤモンド研磨加工体の結晶粒境界
部の研磨面の平均段差は0.03μmであった。上記の
それぞれについて、荷重と平均動摩擦係数をすべり距離
500m付近の安定した値で比較計測すると、いずれも
0.02〜0.03の低い値を示した。しかし、荷重の
増加に伴い比較材では、特にピン曲率半径がR=0.0
25mmの場合、摩擦後の加工面体の最大粗さが急激に
増加し、荷重が1.96Nでは表面粗さRyが1μmを
超えた。この比較材をレーザ顕微鏡で摩耗面を観察する
と、摩耗痕の両側にはピンの摩耗粒子が存在しているこ
とが確認され、また荷重の増加(ヘルツ最大接触圧力の
増加)に伴い加工面体の摩耗率も急激に増加した。(Friction / Wear Test) The diamond polished body obtained in Example 1 and a 500 μm-thick polycrystalline diamond film produced under the same conditions as those described above were prepared by using a conventional diamond grindstone without removing the substrate. Using the polished one as a comparative material, both friction and wear tests were performed. The friction and wear tests were performed using rod-shaped single-crystal diamond pins (radius of curvature R = 0.025 mm,
0.25mm) and pin-on
A friction and wear test of the disk was performed. According to the measurement before the test, the average polishing step at the grain boundary of the diamond polished body of the comparative material was 0.12 μm, and the grain boundary of the diamond polished body obtained in Example 1 was 0.12 μm. The average step height of the polished surface was 0.03 μm. For each of the above, when the load and the average dynamic friction coefficient were compared and measured at a stable value near a slip distance of 500 m, all showed a low value of 0.02 to 0.03. However, as the load increases, the comparative material has a pin curvature radius of R = 0.0
In the case of 25 mm, the maximum roughness of the processed surface body after friction increased rapidly, and when the load was 1.96 N, the surface roughness Ry exceeded 1 μm. Observation of the wear surface of this comparative material with a laser microscope confirmed that pin wear particles were present on both sides of the wear mark, and that the surface of the machined surface was increased with an increase in load (increase in Hertz maximum contact pressure). The wear rate also increased sharply.
【0047】一方、実施例1で得られたダイヤモンド研
磨加工体の同様な試験結果では、ピン曲率半径がR=
0.025mm、荷重が1.96Nにおいて、表面粗さ
Ryは初期の粗さを維持し、摩耗率も4.0x10
−12mm3/mm以下の非常に小さい値を示した。以
上から、ヘルツ最大接触圧力下では、部分的に加工面段
差部で亀裂が伝播し、摩耗が進行することを示してい
る。このように、摩擦・摩耗試験ではダイヤモンド研磨
加工体結晶粒境界部の研磨面段差が強く影響を与えてい
ることが分かる。上記の通り、本発明において研磨加工
面段差が0.1μm以下であるダイヤモンド研磨加工体
が実現でき、低い摩擦係数、長期に渡る信頼性の高い摩
擦挙動、さらには過酷な条件下での安定した低摩耗特性
を備え、超精密機械部品、人工関節、歯科用部品等、工
学や医学面での利用価値が極めて高いという特徴を有す
る。On the other hand, in the same test result of the diamond-polished body obtained in Example 1, the pin radius of curvature was R =
At 0.025 mm and a load of 1.96 N, the surface roughness Ry maintains the initial roughness, and the wear rate is 4.0 × 10 4.
It showed a very small value of −12 mm 3 / mm or less. From the above, it is shown that under the Hertz maximum contact pressure, cracks partially propagate at the stepped portion of the machined surface, and wear progresses. As described above, in the friction and wear test, it can be seen that the step of the polished surface at the boundary of the crystal grain of the diamond polished body has a strong influence. As described above, in the present invention, a polished diamond step having a polished surface step of 0.1 μm or less can be realized, a low friction coefficient, a long-term highly reliable friction behavior, and a stable under severe conditions. It has low wear characteristics and has a very high value of use in engineering and medicine, such as ultra-precision mechanical parts, artificial joints, dental parts, etc.
【0048】(比較例2)次に、超硬合金(WC+16
%Co)の砥石を使用して、上記実施例と同様にダイヤ
モンド自立体を使用し、かつ同一条件で研磨を実施し
た。この結果、100〜800°Cの温度の加熱では、
全く研磨ができなかった。すなわち、砥石が逆に削られ
る結果となった。このため、さらに温度を1000°C
に上げ研磨したところ、研磨初期に一部ダイヤモンドと
反応し、ダイヤモンド膜は研磨されたが、研磨用砥石が
軟化し、その後持続して研磨することはできなかった。(Comparative Example 2) Next, a cemented carbide (WC + 16
% Co), grinding was carried out under the same conditions as in the above example, using a diamond self-solid. As a result, in heating at a temperature of 100 to 800 ° C.,
No polishing was possible. That is, the result was that the grindstone was shaved in reverse. Therefore, the temperature is further increased to 1000 ° C.
After polishing, the diamond film was partially polished in the initial stage of polishing, and the diamond film was polished. However, the polishing grindstone was softened, and subsequent polishing was not possible.
【0049】(比較例3)外径φ204mm×厚み5m
m円板状SUS304ステンレス鋼の砥石の外周を使用
して、同様なダイヤモンド自立体を使用し、平面研削盤
にて室温で研磨を実施した。砥石外周の円板先端幅は
0.1mm厚みに形成し、回転速度は5,000rpm
とした。上記の条件で、Z方向の強制切り込み量を変化
させながら研磨を約20秒実施した。最大荷重が250
kg/cm2以下(Z方向反力3kgf)では砥石が削
れるだけで、ダイヤモンドは研磨されなかった。最大荷
重を540kg/cm2(Z方向反力8kgf)とした
ところ、火花を発生しながらダイヤモンドは研磨された
が、研磨部には砥石成分が強固に溶着し、この溶着物は
強酸でもなかなか除去できなかった。そして上記の場
合、いずれもダイヤモンド体には割れが発生した。さら
に研磨能力を向上させるために、砥石を1000°C程
度まで加熱し研磨を実施した。これによりダイヤモンド
の研磨はやや促進するが、砥石成分の溶着が一層激しく
なり、かつ全ての加熱研磨テストでもダイヤモンド体は
破損した。上記円板砥石端面を用いた定圧切り込み研磨
テストも実施したが、研磨結果は同様であった。Comparative Example 3 Outer Diameter φ204 mm × Thickness 5 m
Polishing was performed at room temperature with a surface grinder using a similar diamond self-solid using the outer periphery of a m-disk SUS304 stainless steel grindstone. The tip width of the disk around the grindstone is formed to a thickness of 0.1mm, and the rotation speed is 5,000rpm
And Under the above conditions, polishing was performed for about 20 seconds while changing the forcible cut amount in the Z direction. Maximum load is 250
At kg / cm 2 or less (reaction force of 3 kgf in the Z direction), the diamond was not polished but only the grinding stone. When the maximum load was set to 540 kg / cm 2 (reaction force in the Z direction: 8 kgf), the diamond was polished while generating sparks. However, the grindstone component was firmly welded to the polished portion, and this welded material was easily removed even with strong acid. could not. In each of the above cases, cracks occurred in the diamond body. In order to further improve the polishing ability, the grindstone was heated to about 1000 ° C. and polished. This slightly accelerated the polishing of the diamond, but the welding of the grindstone components became more intense, and the diamond body was damaged in all the heat polishing tests. A constant pressure incision polishing test using the end face of the above-mentioned disk grindstone was also performed, but the polishing results were the same.
【0050】上記の砥石は熱膨張が大きいため、高温に
加熱すればするほど加工中のわずかな温度変化により研
磨接触位置が変化して安定せず、過大な研磨圧力が付加
され、ダイヤモンド膜加工中の破壊の原因となる。さら
に、ダイヤモンドへの熱衝撃によりクラックを発生し、
またあるものは破損して研磨不能となる。他の超硬合金
や硬質あるいは軟質金属の砥石を使用しても、殆ど同じ
ような結果となった。以上から、本発明の砥石に比べ明
らかに研磨性に劣り、また本発明の砥石と同等の研磨特
性を有するものを既存の材料から見出すことはできなか
った。Since the above-mentioned grindstone has a large thermal expansion, the more it is heated to a high temperature, the more the polishing contact position is changed due to a slight temperature change during the processing, so that the polishing is not stabilized. Causes destruction inside. In addition, cracks occur due to thermal shock to diamond,
Others break and cannot be polished. Almost the same results were obtained using other cemented carbides or hard or soft metal grinding wheels. As described above, it was not possible to find, from the existing materials, a material having inferior abrasiveness as compared with the grindstone of the present invention and having the same polishing characteristics as the grindstone of the present invention.
【0051】(比較例4)ダイヤモンド自立体(500
μm厚)を、外部加熱をせずに室温とし、実施例1の金
属間化合物砥石を使用して研磨を実施した。この結果、
金属間化合物砥石にクラックや割れが発生し、むしろ凹
凸の激しいダイヤモンド膜で金属間化合物砥石が研磨さ
れる状況を呈した。以上から、結晶粒サイズは〜10μ
m以上の場合、特に数十μm以上のダイヤモンドの厚膜
では、膜の成長とともに膜表面に結晶方位の異なる結晶
粒同士で数μm〜数十μmの凹凸が生じていたが、これ
が室温での研磨を困難にしていることが分かった。した
がって、ダイヤモンドの結晶面の状況、すなわち結晶粒
が粗大化し、膜表面の凹凸が著しい場合には、外部加熱
が有効であることが分った。(Comparative Example 4) Diamond self-solid (500
(thickness: μm) was brought to room temperature without external heating, and polishing was performed using the intermetallic compound grindstone of Example 1. As a result,
Cracks and cracks occurred in the intermetallic compound grindstone, and rather, the intermetallic compound grindstone was polished by a diamond film having severe irregularities. From the above, the crystal grain size is ~ 10μ
m or more, especially in the case of a diamond thick film of several tens of μm or more, irregularities of several μm to several tens of μm were generated between crystal grains having different crystal orientations on the film surface as the film grew, but this was at room temperature. It turned out that polishing was difficult. Therefore, it has been found that external heating is effective when the state of the crystal plane of the diamond, that is, when the crystal grains are coarsened and the unevenness of the film surface is remarkable.
【0052】(実施例9)次に、実施例1の金属間化合
物砥石を使用し、天然ダイヤモンドを研磨した。天然1
b型斜方12面体ダイヤモンド単結晶を固定治具で固定
し、さらに面方位を特定して(111)面を室温で研磨
を実施した。砥石の回転数2,250rpm、研磨時間
3分間、研磨した。その結果、3分間という僅かな時間
で、研磨が極めて困難であったダイヤモンド単結晶(1
11)面が、良好に研磨されていた。Example 9 Next, using the intermetallic compound whetstone of Example 1, natural diamond was polished. Natural 1
The b-type rhombohedral dodecahedral diamond single crystal was fixed with a fixing jig, and the (111) plane was polished at room temperature with the plane orientation specified. Polishing was performed at a rotation speed of the grindstone of 2,250 rpm and a polishing time of 3 minutes. As a result, it was extremely difficult to polish the diamond single crystal (1
11) The surface was polished well.
【0053】(実施例10)同様に、実施例1の金属間
化合物砥石を使用し、NiとTiCを結合剤として使用
し、超高圧で焼結したダイヤモンド焼結体の研磨を実施
した。加工装置としてフライス盤を用い、砥石の回転速
度は2,250rpmで、30分間の室温における研磨
を行った。この結果、30分間という僅かな時間でダイ
ヤモンド粒子部分及び結合剤部分双方とも良好に研磨が
進んでいた。この研磨後に粗さを調べたところ、ダイヤ
モンド粒子/結合剤の境界部には殆ど段差が認められ
ず、表面粗さも0.5μm以下と極めて優れた研磨面が
得られていることが分かった。本実施例のダイヤモンド
焼結体の結合剤としてNiとTiCを使用したが、他の
結合剤を使用しても同様の結果が得られた。また、本実
施例では砥石として実施例1の金属間化合物砥石を使用
したが、本発明の他の砥石でも同様の結果が得られた。(Example 10) Similarly, using the intermetallic compound grindstone of Example 1 and using Ni and TiC as binders, a diamond sintered body sintered at an ultra-high pressure was polished. Using a milling machine as a processing device, the grindstone was polished at a rotational speed of 2,250 rpm for 30 minutes at room temperature. As a result, both the diamond particle portion and the binder portion were successfully polished in a short time of 30 minutes. When the roughness was examined after this polishing, almost no step was found at the boundary between the diamond particles and the binder, and it was found that a very excellent polished surface having a surface roughness of 0.5 μm or less was obtained. Although Ni and TiC were used as the binder for the diamond sintered body of the present example, similar results were obtained when other binders were used. In this example, the intermetallic compound whetstone of Example 1 was used as a whetstone, but similar results were obtained with other whetstones of the present invention.
【0054】(実施例11)次に、本発明の実施例1の
金属間化合物にダイヤモンド砥粒を混合し、金属間化合
物/ダイヤモンド複合砥石を作成し、これを用いて気相
成長ダイヤモンド薄膜及びダイヤモンド焼結体の研磨を
実施した。金属間化合物/ダイヤモンド複合砥石は実施
例1の金属間化合物に#325/400メッシュダイヤ
モンド砥粒を15vol%(体積%)混合し、φ32m
mの砥石外周に一体焼結したものを用いた。加工装置と
してはボール盤を用い、砥石の回転数3,000rpm
で研磨を実施した。比較のために従来使用されているメ
タルボンドダイヤモンド砥石で同様の研磨を実施した。
研磨加工能率は本実施例の金属間化合物/ダイヤモンド
複合砥石によるものの方が圧倒的に高い。また、ダイヤ
モンド薄膜及びダイヤモンド焼結体の割れや欠け等の損
傷は全く認められなかった。これに対し、従来のメタル
ボンドダイヤモンド砥石による研磨では、ダイヤモンド
薄膜及びダイヤモンド焼結体に亀裂の発生があり、また
砥石自体にも欠け落ちの損傷があった。本実施例によ
り、金属間化合物/ダイヤモンド複合砥石の著しい効果
が確認できた。(Example 11) Next, diamond abrasive grains were mixed with the intermetallic compound of Example 1 of the present invention to prepare an intermetallic compound / diamond composite grindstone. Polishing of the diamond sintered body was performed. The intermetallic compound / diamond composite whetstone was prepared by mixing the intermetallic compound of Example 1 with 15 vol% (vol%) of # 325/400 mesh diamond abrasive grains, and
m was integrally sintered on the outer periphery of the grindstone. A drilling machine is used as the processing device, and the rotation speed of the grindstone is 3,000 rpm.
Was polished. For comparison, the same polishing was performed using a metal bond diamond grindstone conventionally used.
The polishing efficiency is remarkably higher in the case of the intermetallic compound / diamond composite whetstone of this embodiment. Further, no damage such as cracking or chipping of the diamond thin film and the diamond sintered body was observed at all. On the other hand, in the conventional polishing using a metal-bonded diamond grindstone, the diamond thin film and the diamond sintered body have cracks, and the grindstone itself has chipped damage. According to this example, a remarkable effect of the intermetallic compound / diamond composite grindstone was confirmed.
【0055】上記複合金属間化合物(金属単体も含む)
からなる砥石の製造は、出発原料としてそれぞれの構成
成分の単独粉末から製造しても良いし、予め所定の金属
間化合物の粉末を製造し、それらを混合し焼結して砥石
を製造することもできる。また、実施例の多くは、常温
で研磨を実施した例を示したが、上記の通り適宜加熱し
て研磨することができる。この加熱により研磨能は一層
向上する。しかし、加熱が特に要求されない又は被研磨
材により加熱が望ましくない場合には、常温で実施する
ことができる。本発明の砥石は、成分調整が容易で、偏
析がなく、また粗大結晶を生じないという理由から粉末
冶金によって製造するのが良いが、製造の容易性から溶
製法を用いることもできる。この砥石の製造方法は、特
に制限されるものではなく、用途に応じて適宜選択でき
る。上記実施例においては、比較的簡単な成分組成につ
いて例示したが、金属間化合物以外に、金属単体を含ま
せる(複合させる)こともできるし、またダイヤモンド
砥石と複合させたり、セラミックスを複合させることも
できる。砥石としての機能を備えかつ砥石の一部に本砥
石が使用されるものは、全て本発明に含まれるものであ
る。The above composite intermetallic compound (including simple metal)
The manufacture of a grinding wheel consisting of a single wheel of each component may be manufactured as a starting material, or a powder of a predetermined intermetallic compound may be manufactured in advance, and then mixed and sintered to manufacture a grinding wheel. Can also. In many of the examples, polishing was performed at room temperature. However, polishing can be performed by appropriately heating as described above. The polishing performance is further improved by this heating. However, when heating is not particularly required or when heating is not desired due to the material to be polished, it can be carried out at room temperature. The whetstone of the present invention is preferably manufactured by powder metallurgy because the components can be easily adjusted, there is no segregation, and no coarse crystals are formed, but a melting method can be used because of the ease of manufacturing. The method for manufacturing the grinding wheel is not particularly limited, and can be appropriately selected depending on the application. In the above embodiment, a relatively simple component composition is exemplified. However, in addition to the intermetallic compound, a simple metal may be included (composite), or may be composited with a diamond grindstone, or a ceramic may be composited. Can also. The present invention includes all the wheels that have a function as a grindstone and that use the main grindstone as a part of the grindstone.
【0056】[0056]
【発明の効果】以上、本発明は、主成分としてTi、Z
r、Hf、V、Nb、Mo、Ta、Wの群から選択した
1種または2種以上の粉末とAl、Cr、Mn、Fe、
Co、Ni、Cu、Ru、Rh、Pd、Os、Ir、P
tの群から選択した1種または2種以上の粉末を、それ
ぞれ本発明の金属間化合物が形成できる組成及び比率に
調合した砥石を使用することにより、また必要により研
磨部を100〜800°Cに加熱しながら相対的に回転
又は移動する被研磨体であるダイヤモンドに押し当てて
研磨することにより、単結晶ダイヤモンド、気相合成法
により基板上に形成したダイヤモンド薄膜あるいはダイ
ヤモンド自立膜、ダイヤモンド焼結体、その他の多結晶
ダイヤモンド等に、クラックや破壊あるいは品質の劣化
を生ずることなく低温で研磨することができる優れた効
果を有する。また砥石の寿命を大きく延ばすことができ
ると共に安定した研磨性能を維持し、かつ平面研削等の
従来の研磨装置を使用することができ、かつ3次元形状
のダイヤモンド膜被覆部材の研磨加工も効率良く行うこ
とができる特徴を有する。単結晶ダイヤモンドの研磨に
おいては、従来不可能と考えられていた高硬度の(11
1)面の研磨加工が容易に行うことができ、硬度及び熱
伝導性に優れた同面の特性を生かした高性能の単結晶ダ
イヤモンドが得られる著しい特徴を有する。さらに一般
に研磨あるいは研削の工具材として、あるいは各種耐磨
耗性機構材料や電子部品として使用されるダイヤモンド
焼結体の研磨加工が容易にできる効果を有する。また、
本発明は、研磨加工後のダイヤモンド研磨面の結晶粒境
界部段差が著しく少なく形状精度に優れた研磨加工体を
得ることができ、操作が簡単で研磨品質が安定した低コ
ストのダイヤモンドの研磨ができるという著しい効果を
有する。As described above, according to the present invention, Ti, Z
one or more powders selected from the group consisting of r, Hf, V, Nb, Mo, Ta, W, and Al, Cr, Mn, Fe,
Co, Ni, Cu, Ru, Rh, Pd, Os, Ir, P
One or two or more powders selected from the group of t are used with a grindstone prepared in a composition and a ratio capable of forming the intermetallic compound of the present invention, respectively. Single-crystal diamond, diamond thin film or diamond free-standing film formed on substrate by vapor phase synthesis by pressing against diamond, which is the object to be polished that rotates or moves relatively while heating It has an excellent effect that it can be polished at a low temperature without causing cracks, breakage or deterioration of quality on a body or other polycrystalline diamond. In addition, the life of the grindstone can be greatly extended, stable polishing performance can be maintained, and a conventional polishing device such as surface grinding can be used, and the three-dimensional diamond film-coated member can be efficiently polished. Features that can be performed. In polishing single-crystal diamond, high hardness (11
1) The surface has a remarkable feature that a surface can be easily polished, and a high-performance single crystal diamond utilizing the same surface characteristics having excellent hardness and thermal conductivity can be obtained. Further, the present invention has an effect that a diamond sintered body generally used as a tool material for polishing or grinding, or as a material for various wear-resistant mechanisms or as an electronic component can be easily polished. Also,
The present invention makes it possible to obtain a polished body excellent in shape accuracy with a remarkably small crystal grain boundary step on the polished diamond polished surface. It has a remarkable effect that it can be done.
【図1】Zr−Ni金属間化合物(Zr7Ni10)砥
石を使用した研磨後の気相合成ダイヤモンド薄膜表面の
光学顕微鏡写真(倍率×625)である。FIG. 1 is an optical microscope photograph (magnification × 625) of a surface of a vapor-phase synthetic diamond thin film after polishing using a Zr—Ni intermetallic compound (Zr 7 Ni 10 ) grindstone.
【図2】同上の砥石を使用したダイヤモンド焼結体の研
磨後の光学顕微鏡写真(倍率×625)である。FIG. 2 is an optical micrograph (magnification: 625) of a diamond sintered body after polishing using the grinding wheel according to the first embodiment.
【図3】Nb−Co金属間化合物(Nb6Co7)砥石
を使用した研磨後のダイヤモンド焼結体光学顕微鏡写真
(倍率×625)である。FIG. 3 is an optical micrograph (magnification: 625) of a diamond sintered body after polishing using an Nb—Co intermetallic compound (Nb 6 Co 7 ) grindstone.
【図4】Ni−Nb金属間化合物(Ni3Nb)砥石を
使用した研磨後の気相合成ダイヤモンド薄膜の光学顕微
鏡写真(倍率×625)である。FIG. 4 is an optical micrograph (magnification × 625) of a vapor-phase synthetic diamond thin film after polishing using a Ni—Nb intermetallic compound (Ni 3 Nb) grindstone.
【図5】Ti−Ni金属間化合物(TiNi)とNb−
Co金属間化合物(Nb6Co7)からなる複合金属間
化合物の砥石を使用した研磨後のダイヤモンド焼結体の
光学顕微鏡写真(倍率×625)である。FIG. 5: Ti—Ni intermetallic compound (TiNi) and Nb—
It is Co intermetallic compound optical micrograph of a diamond sintered body after polishing using the grindstone of a composite intermetallic compound consisting of (Nb 6 Co 7) (magnification × 625).
【図6】Ti−Al金属間化合物(TiAl)−2Cr
(メタル)とNb−Co金属間化合物(Nb6Co7)
からなる複合金属−金属間化合物の砥石を使用した研磨
後のダイヤモンド焼結体の光学顕微鏡写真(倍率×62
5)である。FIG. 6: Ti-Al intermetallic compound (TiAl) -2Cr
(Metal) and Nb-Co intermetallic compound (Nb 6 Co 7)
Micrograph (magnification × 62) of a diamond sintered body after polishing using a composite metal-intermetallic compound grindstone composed of
5).
───────────────────────────────────────────────────── フロントページの続き (71)出願人 399007165 有限会社アプライドダイヤモンド 神奈川県平塚市日向岡1−8−32 (74)上記3名の代理人 100093296 弁理士 小越 勇 (72)発明者 阿部 利彦 宮城県仙台市宮城野区苦竹4丁目2番1号 東北工業技術研究所内 (72)発明者 橋本 等 宮城県仙台市宮城野区苦竹4丁目2番1号 東北工業技術研究所内 (72)発明者 武田 修一 神奈川県平塚市日向岡1−8−32 Fターム(参考) 3C049 BA08 CA04 3C063 AA02 BB01 BB02 BB19 BC05 EE15 (54)【発明の名称】 ダイヤモンド研磨用砥石及びダイヤモンド研磨方法並びに研磨により得られたダイヤモンド研磨 加工体、単結晶ダイヤモンド及びダイヤモンド焼結体並びにダイヤモンド研磨用複合砥石及び同 砥石セグメント ──────────────────────────────────────────────────続 き Continued on the front page (71) Applicant 399007165 Applied Diamond Co., Ltd. 1-32-32 Hyugaoka, Hiratsuka-shi, Kanagawa (74) The above three agents 100093296 Patent Attorney Isamu Kogoshi (72) Inventor Toshihiko Abe 4-2-1, Kushitake, Miyagino-ku, Sendai City, Miyagi Prefecture (72) Inventor Hashimoto et al. 4-2-1, Kushitake, Miyagino-ku, Sendai City, Miyagi Prefecture Tohoku Industrial Research Institute (72) Shuichi Takeda 1-32-32 Hyugaoka, Hiratsuka-shi, Kanagawa F-term (reference) Worked product, single crystal diamond, sintered diamond and diamond Composite grindstone and the grindstone segments polishing
Claims (16)
Cuの群から選択した1種若しくは2種以上の元素とZ
r、Hf、V、Nb、Mo、Ta、Wの群から選択した
1種若しくは2種以上の元素との金属間化合物を主成分
とすることを特徴とするダイヤモンド研磨用砥石。1. An Al, Cr, Mn, Fe, Co, Ni,
One or more elements selected from the group of Cu and Z
A grindstone for diamond polishing comprising as a main component an intermetallic compound with one or more elements selected from the group consisting of r, Hf, V, Nb, Mo, Ta and W.
Cu、Ru、Rh、Pd、Os、Ir、Ptの群から選
択した1種若しくは2種以上の元素とTi元素との金属
間化合物を主成分として、さらに含有することを特徴と
する請求項1記載のダイヤモンド研磨用砥石。2. Al, Cr, Mn, Fe, Co, Ni,
2. The composition according to claim 1, further comprising an intermetallic compound of one or more elements selected from the group consisting of Cu, Ru, Rh, Pd, Os, Ir, and Pt and a Ti element as a main component. The grinding wheel for diamond polishing described.
群から選択した1種若しくは2種以上の元素とTi、Z
r、Hf、V、Nb、Mo、Ta、Wの群から選択した
1種若しくは2種以上の元素との金属間化合物を主成分
とすることを特徴とするダイヤモンド研磨用砥石。3. One or more elements selected from the group consisting of Ru, Rh, Pd, Os, Ir, and Pt, and Ti, Z
A grindstone for diamond polishing comprising as a main component an intermetallic compound with one or more elements selected from the group consisting of r, Hf, V, Nb, Mo, Ta and W.
Cuの群から選択した1種または2種以上の元素とT
i、Zr、Hf、V、Nb、Mo、Ta、Wの群から選
択した1種または2種以上の元素との金属間化合物を主
成分として、さらに含有することを特徴とする請求項3
記載のダイヤモンド研磨用砥石。4. Al, Cr, Mn, Fe, Co, Ni,
One or more elements selected from the group of Cu and T
4. The composition according to claim 3, further comprising an intermetallic compound with one or more elements selected from the group consisting of i, Zr, Hf, V, Nb, Mo, Ta, and W as a main component.
The grinding wheel for diamond polishing described.
であることを特徴とする請求項1〜4のそれぞれに記載
のダイヤモンド研磨用砥石。5. The grinding wheel for diamond polishing according to claim 1, wherein the content of the intermetallic compound is 90% by volume or more.
部が前記金属間化合物であることを特徴とする請求項1
〜5のそれぞれに記載のダイヤモンド研磨用砥石。6. The diamond grinding wheel according to claim 1, wherein a part or all of the grinding wheel is the intermetallic compound.
5. The grinding wheel for diamond polishing according to any one of to 5.
属間化合物を主成分とする砥石によりダイヤモンドを研
磨する際に、研磨部を100〜800°Cに加熱しなが
ら研磨することを特徴とするダイヤモンド研磨方法。7. When polishing diamond with a grindstone containing the intermetallic compound as a main component according to any one of claims 1 to 6, polishing is performed while heating the polishing portion to 100 to 800 ° C. Diamond polishing method.
ことを特徴とする請求項7記載のダイヤモンドの研磨方
法。8. The diamond polishing method according to claim 7, wherein the polishing section is heated to 300 to 500 ° C.
であることを特徴とする請求項7又は8に記載のダイヤ
モンドの研磨方法。9. The diamond polishing method according to claim 7, wherein the content of the intermetallic compound is 90% by volume or more.
金属間化合物を主成分とするダイヤモンド研磨用砥石で
研磨したことを特徴とするダイヤモンド研磨加工体。10. A diamond-polished body polished with a diamond-grinding grindstone containing the intermetallic compound according to claim 1 as a main component.
結晶粒境界部段差が、ダイヤモンド膜の厚さが300μ
mを超える場合に0.1μm以下であり、厚さが300
μm以下の場合に0.02μm以下であることを特徴と
する請求項10記載のダイヤモンド研磨加工体。11. A step at a crystal grain boundary portion of a polished surface of a diamond film after a polishing process has a diamond film thickness of 300 μm.
0.1 μm or less when the thickness exceeds 300 m, and the thickness is 300
The diamond-polished body according to claim 10, wherein the diameter is 0.02 μm or less when the diameter is not more than μm.
金属間化合物を主成分とするダイヤモンド研磨用砥石で
研磨したことを特徴とする単結晶ダイヤモンド。12. A single crystal diamond polished with a diamond polishing grindstone containing the intermetallic compound according to claim 1 as a main component.
徴とする請求項12記載の単結晶ダイヤモンド。13. The single crystal diamond according to claim 12, wherein the polished surface is a (111) plane.
金属間化合物を主成分とするダイヤモンド研磨用砥石で
研磨したことを特徴とするダイヤモンド焼結体。14. A diamond sintered body characterized by being polished with a diamond polishing whetstone containing the intermetallic compound according to claim 1 as a main component.
あることを特徴とする請求項14記載のダイヤモンド焼
結体。15. The diamond sintered body according to claim 14, wherein the surface roughness after polishing is 0.5 μm or less.
間化合物とダイヤモンド砥粒、超硬合金又はセラミック
スとを複合したことを特徴とするダイヤモンド研磨用複
合砥石及び同砥石セグメント。16. A composite whetstone for diamond polishing and a whetstone segment, wherein the intermetallic compound according to claim 1 is combined with diamond abrasive grains, cemented carbide or ceramics.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000012479A JP3717046B2 (en) | 2000-01-21 | 2000-01-21 | Diamond polishing wheel, diamond polishing method, and diamond polishing composite wheel |
EP00107332A EP1052058B1 (en) | 1999-05-12 | 2000-04-04 | Grinding & polishing tool for diamond, method for polishing diamond and polished diamond, single crystal diamond and sintered diamond compact obtained thereby |
DE60018634T DE60018634T2 (en) | 1999-05-12 | 2000-04-04 | Grinding and polishing tool for diamond, method for polishing diamond and polished diamond, and thus obtained single crystal diamond and sintered diamond press work piece |
US09/565,295 US6592436B1 (en) | 1999-05-12 | 2000-05-04 | Grinding and polishing tool for diamond, method for polishing diamond, and polished diamond, single crystal diamond and single diamond compact obtained thereby |
US10/205,456 US6585565B2 (en) | 1999-05-12 | 2002-07-25 | Grinding and polishing tool for diamond, method for polishing diamond, and polished diamond, single crystal diamond and single diamond compact obtained thereby |
US10/320,983 US20030091826A1 (en) | 1999-05-12 | 2002-12-17 | Grinding and polishing tool for diamond, method for polishing diamond, and polished diamond, single crystal diamond and single diamond compact obtained thereby |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000012479A JP3717046B2 (en) | 2000-01-21 | 2000-01-21 | Diamond polishing wheel, diamond polishing method, and diamond polishing composite wheel |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002323471A Division JP2003211361A (en) | 2002-11-07 | 2002-11-07 | Diamond polished body, single crystal diamond and diamond sintered body obtained by diamond polishing wheel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001198833A true JP2001198833A (en) | 2001-07-24 |
JP3717046B2 JP3717046B2 (en) | 2005-11-16 |
Family
ID=18540189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000012479A Expired - Fee Related JP3717046B2 (en) | 1999-05-12 | 2000-01-21 | Diamond polishing wheel, diamond polishing method, and diamond polishing composite wheel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3717046B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008063155A (en) * | 2006-09-04 | 2008-03-21 | Sumitomo Electric Ind Ltd | Method for manufacturing diamond structure and diamond structure |
JP2011088264A (en) * | 2009-10-26 | 2011-05-06 | Sumitomo Electric Ind Ltd | Diamond cutting tool and method for manufacturing the same |
JP2011171451A (en) * | 2010-02-17 | 2011-09-01 | Disco Corp | Processing method and processing apparatus by grinding stone tool |
JP2011177883A (en) * | 2010-02-03 | 2011-09-15 | Toyo Seikan Kaisha Ltd | Polishing method for diamond surface |
WO2012090540A1 (en) | 2010-12-28 | 2012-07-05 | 東洋製罐株式会社 | Diamond surface polishing method |
JP2013052495A (en) * | 2011-09-06 | 2013-03-21 | Sumitomo Electric Ind Ltd | Polishing machine for polishing diamond material and method of polishing diamond material |
EP3269501A4 (en) * | 2015-03-09 | 2019-01-16 | Toyo Seikan Group Holdings, Ltd. | Diamond surface polishing method and device for implementing same |
CN114406910A (en) * | 2022-01-25 | 2022-04-29 | 长沙市萨普新材料有限公司 | Diamond grinding wheel disc for thinning sapphire sheets and preparation method thereof |
JP2022532279A (en) * | 2019-10-23 | 2022-07-14 | 華僑大学 | Grinding method for large single crystal diamond |
-
2000
- 2000-01-21 JP JP2000012479A patent/JP3717046B2/en not_active Expired - Fee Related
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008063155A (en) * | 2006-09-04 | 2008-03-21 | Sumitomo Electric Ind Ltd | Method for manufacturing diamond structure and diamond structure |
JP2011088264A (en) * | 2009-10-26 | 2011-05-06 | Sumitomo Electric Ind Ltd | Diamond cutting tool and method for manufacturing the same |
JP2011177883A (en) * | 2010-02-03 | 2011-09-15 | Toyo Seikan Kaisha Ltd | Polishing method for diamond surface |
US9149901B2 (en) | 2010-02-03 | 2015-10-06 | Toyo Seikan Group Holdings, Ltd. | Method of polishing the diamond-surface |
JP2011171451A (en) * | 2010-02-17 | 2011-09-01 | Disco Corp | Processing method and processing apparatus by grinding stone tool |
WO2012090540A1 (en) | 2010-12-28 | 2012-07-05 | 東洋製罐株式会社 | Diamond surface polishing method |
EP2660004A4 (en) * | 2010-12-28 | 2017-11-22 | Toyo Seikan Group Holdings, Ltd. | Diamond surface polishing method |
JP2013052495A (en) * | 2011-09-06 | 2013-03-21 | Sumitomo Electric Ind Ltd | Polishing machine for polishing diamond material and method of polishing diamond material |
EP3269501A4 (en) * | 2015-03-09 | 2019-01-16 | Toyo Seikan Group Holdings, Ltd. | Diamond surface polishing method and device for implementing same |
JP2022532279A (en) * | 2019-10-23 | 2022-07-14 | 華僑大学 | Grinding method for large single crystal diamond |
JP7241434B2 (en) | 2019-10-23 | 2023-03-17 | 華僑大学 | Grinding method for large single crystal diamond |
CN114406910A (en) * | 2022-01-25 | 2022-04-29 | 长沙市萨普新材料有限公司 | Diamond grinding wheel disc for thinning sapphire sheets and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3717046B2 (en) | 2005-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2672136B2 (en) | Diamond compact | |
JP4173573B2 (en) | Method for producing porous abrasive wheel | |
JP5420173B2 (en) | Method for producing powder composition, CBN compact, tool insert | |
US6592436B1 (en) | Grinding and polishing tool for diamond, method for polishing diamond, and polished diamond, single crystal diamond and single diamond compact obtained thereby | |
CN1066661C (en) | Improved metal bond and metal abrasive articles | |
JP2011520031A (en) | Super hard reinforced cemented carbide | |
US5718736A (en) | Porous ultrafine grinder | |
TW201211222A (en) | Bonded abrasive article and method of forming | |
JPS6121974A (en) | Composite polycrystal diamond | |
KR20050072753A (en) | Method for producing a sintered, supported polycrystalline diamond compact | |
JP6419959B2 (en) | Cubic boron nitride composite, method of using it, method of making it, and tool including it | |
Qi et al. | Vacuum brazing diamond grits with Cu-based or Ni-based filler metal | |
JP2000246512A (en) | Diamond coating cutting tool | |
JP3717046B2 (en) | Diamond polishing wheel, diamond polishing method, and diamond polishing composite wheel | |
JP2003181765A (en) | Porous supergrain grinding stone and method for manufacturing the same | |
JPH0621360B2 (en) | Diamond-coated sintered bond excellent in peel resistance and method for producing the same | |
JP3513547B2 (en) | Grinding stone for polishing single crystal diamond or diamond sintered body and polishing method thereof | |
JP3575540B2 (en) | Numerical control polishing method | |
JP3210977B2 (en) | Whetstone for diamond polishing, diamond polishing method and diamond-polished body | |
JP2003211361A (en) | Diamond polished body, single crystal diamond and diamond sintered body obtained by diamond polishing wheel | |
JP2004291137A (en) | Cutting blade | |
JP2002220628A (en) | Diamond-metal composite with mirror plane, and artificial joint, dice, roll or mold therewith, and method for manufacturing diamond-metal composite | |
JPH0797603A (en) | Ceramic matrix base material for diamond coating and production of base material for coating | |
JPH0665745A (en) | Diamond-coated hard material and its production | |
JP3406163B2 (en) | Superabrasive stone and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20021210 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050825 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3717046 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080909 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090909 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090909 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100909 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100909 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110909 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110909 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120909 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120909 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130909 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |