JP5411210B2 - Method for producing metal-supported diamond fine powder and metal-supported diamond fine powder - Google Patents

Method for producing metal-supported diamond fine powder and metal-supported diamond fine powder Download PDF

Info

Publication number
JP5411210B2
JP5411210B2 JP2011144393A JP2011144393A JP5411210B2 JP 5411210 B2 JP5411210 B2 JP 5411210B2 JP 2011144393 A JP2011144393 A JP 2011144393A JP 2011144393 A JP2011144393 A JP 2011144393A JP 5411210 B2 JP5411210 B2 JP 5411210B2
Authority
JP
Japan
Prior art keywords
diamond
metal
fine powder
particles
diamond fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011144393A
Other languages
Japanese (ja)
Other versions
JP2013010991A (en
Inventor
泰治 松本
信隆 竹澤
翼 山ノ井
一智 飯塚
護 吉本
博 山中
志津香 森野
勝美 粂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tochigi Prefecture
Tomei Diamond Co Ltd
Tokyo Institute of Technology NUC
Original Assignee
Tochigi Prefecture
Tomei Diamond Co Ltd
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tochigi Prefecture, Tomei Diamond Co Ltd, Tokyo Institute of Technology NUC filed Critical Tochigi Prefecture
Priority to JP2011144393A priority Critical patent/JP5411210B2/en
Publication of JP2013010991A publication Critical patent/JP2013010991A/en
Application granted granted Critical
Publication of JP5411210B2 publication Critical patent/JP5411210B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Chemically Coating (AREA)

Description

本発明は表面に金属を担持する平均粒径が5μm以下の整粒されたダイヤモンド微粉、特にサブミクロンクラス、即ち平均粒径が1μm未満のダイヤモンド微粉及びその製造方法に関する。   The present invention relates to a finely sized diamond fine powder having an average particle diameter of 5 μm or less carrying a metal on its surface, particularly a submicron class, that is, a diamond fine powder having an average particle diameter of less than 1 μm and a method for producing the same.

ダイヤモンド粒子の高機能化を目指して実施されている表面被覆は、ダイヤモンド含有工具製作時において、砥粒としてのダイヤモンド粒子を固定するマトリックスとの接合強度向上を目指した中間膜、高温時の酸化による粒子劣化防止のための保護膜、複合機能発現を目的とした導電膜などがあり、樹脂ボンド工具用ダイヤモンド粒子へのニッケル被覆、高温焼成工具用粒子への金属炭化物被覆、表面への導電性付与を目的とした蒸着膜などが広く実用化されている。特に金属被覆は金属ボンド工具用の粒子として、あるいはダイヤモンド焼結体製造における結合剤として、また磁性を有する研磨剤としての用途にも用いられている。   Surface coating, which has been implemented with the aim of increasing the functionality of diamond particles, is an intermediate film that aims to improve the bonding strength with the matrix that fixes diamond particles as abrasive grains during the production of diamond-containing tools. There are protective films for preventing particle deterioration, conductive films for the purpose of developing composite functions, etc., nickel coating on diamond particles for resin bond tools, metal carbide coating on particles for high-temperature fired tools, conductivity imparting to the surface Vapor-deposited films for the purpose are widely put into practical use. In particular, metal coatings are used as particles for metal bond tools, as binders in the production of diamond sintered bodies, and as magnetic abrasives.

これらの用途に向けた金属被覆方法としては、物理的な方法として蒸着、スパッタリングなど、化学的な方法として、めっき(電気めっき、化学めっき、浸漬めっき)、化学蒸着(CVD)、溶射などが知られている。中でも化学めっきは、電気絶縁体であるダイヤモンドへの簡便な被覆方法として広く利用されており、特に次亜リン酸ナトリウムを還元剤に用い、Ni-P合金として析出させる方法が一般的である。   As metal coating methods for these applications, physical methods such as vapor deposition and sputtering, chemical methods such as plating (electroplating, chemical plating, immersion plating), chemical vapor deposition (CVD), and thermal spraying are known. It has been. Among them, chemical plating is widely used as a simple coating method for diamond as an electrical insulator, and in particular, a method of using sodium hypophosphite as a reducing agent and precipitating as a Ni-P alloy is common.

特公昭52-027875号公報Japanese Patent Publication No.52-027875 特開平8-209360号公報JP-A-8-209360

ダイヤモンド粒子表面への一様な被覆形成のためには、各粒子の全面が被覆原料に面するか、接していることが必須要件となる。このため物理的な方法においては粒子の振動・回転動作が併用され、化学的な方法では粒子の全表面が被覆原料に接する処置が採られている。   In order to form a uniform coating on the surface of diamond particles, it is essential that the entire surface of each particle faces or is in contact with the coating raw material. For this reason, in the physical method, the vibration / rotation operation of the particles is used in combination, and in the chemical method, the entire surface of the particles is in contact with the coating raw material.

しかし粒度が小さくなり、特に1μm以下のいわゆるサブミクロン級の微粉になると、微粉粒子間の相互作用による凝集現象が顕著になることから、このような微粉粒子上への金属析出に際しては予めダイヤモンド粒子を一次粒子(孤立粒子)の形で一様に分散させておく工夫が必要となる。さらに析出金属を介した微粉粒子相互の接合を防止するための措置も必要となる。例えばサブミクロン級のダイヤモンドへの化学めっきにおいては、めっき浴中におけるダイヤモンド濃度を例えば0.01質量%以下の希薄溶液とすることによって微粉粒子間の相互作用を低減し、また析出金属を介した凝集体形成防止のために、十分に希釈した金属塩溶液を用いることによって金属の析出速度を小さく保つ必要があり、生産性の低いことが障害になっている。   However, when the particle size becomes smaller, especially when it becomes a so-called submicron-class fine powder of 1 μm or less, the aggregation phenomenon due to the interaction between the fine powder particles becomes prominent. It is necessary to devise a method for uniformly dispersing the particles in the form of primary particles (isolated particles). Furthermore, measures for preventing the joining of the fine powder particles via the deposited metal are also required. For example, in chemical plating on submicron grade diamond, the interaction between fine particles is reduced by using a dilute solution with a diamond concentration in the plating bath of 0.01% by mass or less, and agglomerates via precipitated metal. In order to prevent formation, it is necessary to keep the metal deposition rate small by using a sufficiently diluted metal salt solution, and the low productivity is an obstacle.

本発明は従来金属被覆された孤立粒子の形成が困難であった一次粒子としての平均粒径が5μm以下(D50値表示による。以下同様)のダイヤモンド微粉、特にサブミクロン級のダイヤモンド微粉乃至微粒子上に均一な担持層を形成する方法を提供することを主な目的とするものである。 In the present invention, diamond particles having an average particle diameter of 5 μm or less (D 50 value display, the same applies hereinafter) as primary particles, which has been difficult to form metal-coated isolated particles in the past, particularly submicron grade diamond particles or fine particles The main object is to provide a method for forming a uniform support layer thereon.

本発明の金属担持ダイヤモンド微粉の製造方法は、本質的に高い水中分散性及び帯電性のダイヤモンド微粉の創製工程、かかるダイヤモンド微粉を一次粒子として水中に分散して負に帯電・懸濁させ、さらに正に帯電する金属イオンを添加する工程、金属イオンの電荷を中和し、ダイヤモンド微粉上に金属前駆体を付着させる工程、及び該前駆体を金属に還元し、金属を担持したダイヤモンド微粉を形成する各工程を含む。   The method for producing a metal-supported diamond fine powder of the present invention is essentially a process of creating diamond powder with high dispersibility and chargeability in water, such diamond fine powder is dispersed in water as primary particles, and negatively charged and suspended. A step of adding positively charged metal ions, a step of neutralizing the charge of metal ions and attaching a metal precursor on diamond fine powder, and reducing the precursor to metal to form diamond-supported metal powder Each process to include.

より詳細には、本発明の方法は次の各工程にて構成される。
(1) 平均粒径5μm以下の整粒されたダイヤモンド微粉に酸化処理を施し、微粉を構成するダイヤモンド粒子表面に酸素含有官能基を付与する工程、
(2) 上記ダイヤモンド微粉を水、アルコールなどの極性溶媒中に入れて負に帯電したダイヤモンド微粉とし、溶媒中に分散懸濁させて懸濁液とする工程、
(3) 上記懸濁液に正に帯電した金属イオンを添加し、次いで金属イオンの電荷を中和し、ダイヤモンド微粉表面周囲の金属イオンを水酸化物乃至水和酸化物に変換し、ダイヤモンド微粉上に析出・担持された金属前駆体とする工程、
(4) 上記ダイヤモンド微粉を還元性雰囲気中で加熱し、上記金属前駆体を金属に還元する工程、及び、
(5) 上記金属担持ダイヤモンドを回収する工程。
More specifically, the method of the present invention includes the following steps.
(1) Oxidizing diamond sized powder having an average particle size of 5 μm or less, and adding oxygen-containing functional groups to the surface of the diamond particles constituting the powder;
(2) The above diamond fine powder is placed in a polar solvent such as water or alcohol to form negatively charged diamond fine powder, and dispersed and suspended in a solvent to obtain a suspension,
(3) Add positively charged metal ions to the suspension, then neutralize the charge of the metal ions, convert the metal ions around the surface of the diamond fine powder to hydroxide or hydrated oxide, A step of forming a metal precursor deposited and supported thereon,
(4) heating the diamond fine powder in a reducing atmosphere, reducing the metal precursor to metal, and
(5) A step of recovering the metal-carrying diamond.

本発明の方法は、ナノメータクラスのダイヤモンド微粉にも容易に適用されるので、全粒子に一様に金属が担持されたかかる微細な粒径のダイヤモンド粉体を効果的に得ることができる。本発明において金属は基体のダイヤモンド粒子表面に析出条件に応じて、粒状乃至被膜、或いはその他の形状に析出され、「担持」という用語はこれらを含めた状態で金属が基体粒子に係合乃至付着していることを表わす。   Since the method of the present invention can be easily applied to nanometer-class diamond fine powder, it is possible to effectively obtain diamond powder having such a fine particle size in which metal is uniformly supported on all particles. In the present invention, the metal is deposited on the surface of the diamond particles of the substrate in the form of particles, coatings, or other shapes depending on the deposition conditions. The term “support” includes the metal and engages or adheres to the substrate particles. It represents what you are doing.

図1は金属前駆体を担持したMD100(平均粒径105nm)級ダイヤモンドを、水素雰囲気中において数段階の温度に加熱した際のX線回折図形(XRD)である。(実施例1)FIG. 1 is an X-ray diffraction pattern (XRD) when MD100 (average particle size 105 nm) grade diamond carrying a metal precursor is heated to several stages of temperature in a hydrogen atmosphere. (Example 1)

本発明の方法において、サブミクロンサイズのダイヤモンドを凝集させることなく、即ち一次粒子として水中に分散させるためには、ダイヤモンド微粉表面の酸化によって、親水性の官能基を積極的に付ける操作が有効である。表面酸化は酸素雰囲気中で400℃付近に加熱することでも実現できるが、確実な全表面酸化には、酸化剤溶液中に分散させた状態で加熱を行う湿式酸化法が好ましい。   In the method of the present invention, in order to disperse submicron-sized diamond in water without being agglomerated, that is, as primary particles, an operation of positively attaching a hydrophilic functional group by oxidation of the diamond fine powder surface is effective. is there. Although surface oxidation can be realized by heating to around 400 ° C. in an oxygen atmosphere, wet oxidation is preferred for reliable full surface oxidation, in which heating is performed while dispersed in an oxidant solution.

利用可能な酸化剤溶液の例としては濃硫酸、濃硝酸、過塩素酸を挙げることかでき、このような溶液中にダイヤモンドを懸濁分散させた状態で沸点付近に加熱する。この際酸化剤を添加すると更に有効であり、かかる酸化剤としては、硝酸カリ、酸化クロム、過マンガン酸カリが適切である。湿式酸化が終わったダイヤモンド微粉は脱イオン水で洗浄し、120℃以下で乾燥してから次工程へ送る。   Examples of the oxidant solution that can be used include concentrated sulfuric acid, concentrated nitric acid, and perchloric acid. In such a solution, diamond is suspended and dispersed and heated to near the boiling point. In this case, it is more effective to add an oxidizing agent, and as such an oxidizing agent, potassium nitrate, chromium oxide and potassium permanganate are suitable. The diamond fine powder after wet oxidation is washed with deionized water, dried at 120 ° C or lower, and sent to the next step.

湿式酸化法で処理したダイヤモンド微粉では、赤外吸収分析によってカルボニル、カルボキシル、ヒドロキシルに帰属する強い吸収が認められる。この処理を施すことにより、親水性の官能基が付加されたダイヤモンドのゼータ(ζ)電位は、pH9において-40mV以下の値となる。   The diamond fine powder treated by the wet oxidation method shows strong absorption attributed to carbonyl, carboxyl and hydroxyl by infrared absorption analysis. By performing this treatment, the zeta (ζ) potential of the diamond to which the hydrophilic functional group is added becomes a value of −40 mV or less at pH 9.

上記のダイヤモンド微粉は水、アルコール等の極性溶媒中において負に帯電し、相互に反発し合うことで一次粒子の形で溶媒中に懸濁する。超音波の付与は軽く凝集する傾向のある微粉粒子の凝集を解く処置として有効である。   The above diamond fine powder is negatively charged in a polar solvent such as water or alcohol, and repels each other to be suspended in the solvent in the form of primary particles. The application of ultrasonic waves is effective as a treatment for solving the aggregation of fine powder particles that tend to aggregate lightly.

得られたダイヤモンド微粉分散液に金属化合物を投入し、正電荷の金属イオンをダイヤモンド表面に結合させる。金属の種類はダイヤモンドの用途に応じて選ぶことができ、金属ボンド用や樹脂ボンド用の研磨工具の砥粒として用いる場合はニッケルや銅、磁性研磨材の用途では鉄やニッケル、微粉ダイヤモンドで構成された焼結体製作用の原料ではコバルトが主として選ばれる。   A metal compound is charged into the obtained diamond fine powder dispersion to bind positively charged metal ions to the diamond surface. The type of metal can be selected according to the diamond application, and it is composed of nickel and copper when used as abrasive grains for metal bonding and resin bonding tools, and iron, nickel, and finely divided diamond when used as a magnetic abrasive. Cobalt is mainly selected as the material for producing the sintered body.

これらの金属は硝酸塩や塩化物など、水溶性の塩の形で加えられる。ダイヤモンド分散水溶液に金属化合物を投入する代わりに、金属塩を溶かした水溶液中にダイヤモンド微粉を投入し、超音波を付与して懸濁・分散させてもよい。   These metals are added in the form of water-soluble salts such as nitrates and chlorides. Instead of introducing the metal compound into the diamond dispersion aqueous solution, diamond fine powder may be introduced into an aqueous solution in which a metal salt is dissolved, and an ultrasonic wave may be applied to suspend and disperse.

次いでダイヤモンド微粉表面の金属イオンを中和処理によって析出させ、水洗、乾燥することによって、金属化合物が付着したダイヤモンド微粉が得られる。中和剤としては水酸化ナトリウム等の金属水酸化物、アンモニア、各種のアルカリ塩、尿素などが利用可能であり、化学めっきの還元剤として用いられているジメチルアミンボラン(DMAB)、ピロリン酸塩、次亜リン酸塩、水素化ホウ素化合物、ヒドラジンなども利用可能である。   Next, the metal ions on the surface of the diamond fine powder are precipitated by neutralization treatment, washed with water, and dried to obtain diamond fine powder to which the metal compound is adhered. As the neutralizing agent, metal hydroxide such as sodium hydroxide, ammonia, various alkali salts, urea and the like can be used, and dimethylamine borane (DMAB) and pyrophosphate used as reducing agents for chemical plating. Hypophosphite, borohydride compounds, hydrazine and the like can also be used.

上記の乾燥ダイヤモンド微粉表面の化合物は、まだ金属に特有の性質を示さない。例えば硝酸ニッケル液中に分散させて中和剤にDMABを用いたダイヤモンド粉末からは、磁化率測定において強磁性の信号が検出されない。このために微粉上への電気めっきや無電解めっきにおいてしばしば生じる、析出金属を介した微粉の接合による凝集粒子の出現はなく、各粉末粒子が微細な析出化合物によって隔てられ、孤立粒子の形態を保っている特徴が認められる。   The compound on the surface of the above-mentioned dry diamond fine powder does not yet exhibit the properties specific to metals. For example, a ferromagnetic signal is not detected in susceptibility measurement from diamond powder dispersed in nickel nitrate solution and using DMAB as a neutralizing agent. For this reason, there is no appearance of agglomerated particles due to the joining of fine powders via precipitated metal, which often occurs in electroplating and electroless plating on fine powders, and each powder particle is separated by fine precipitated compounds, and the form of isolated particles is reduced. The retained feature is recognized.

この析出化合物は金属めっきを目的とした処理操作における金属前駆体と見做すことができる。析出化合物のサイズは透過電顕観察により数nmと見積もられ、相互に接合して強固な塊状となる傾向が見られないことから、金属状の析出を目的とした化学めっきの場合とは異なり、直径100nm以下の微粉ダイヤモンドの各微粉粒子に金属前駆体を担持させ、最終的に金属めっきを施すことも可能になった。   This deposited compound can be regarded as a metal precursor in a treatment operation aimed at metal plating. The size of the deposited compound is estimated to be several nanometers by transmission electron microscope observation, and since there is no tendency to join together to form a solid lump, it differs from the case of chemical plating for the purpose of metallic precipitation. In addition, it became possible to carry a metal plating finally by loading a metal precursor on each fine powder particle of fine diamond having a diameter of 100 nm or less.

ダイヤモンド微粉表面に形成された金属前駆体は、X線回折によって金属水酸化物に一致する回折図形が得られる場合があり、中和乃至加水分解によって生じた水酸化物ないしは水和酸化物と見られる。例えばダイヤモンド懸濁液に硝酸ニッケル液を添加し、DMABまたは水酸化ナトリウム希釈液を用いた中和によって得られた生成物では、水酸化ニッケルに一致するX線回折図形が得られた。   The metal precursor formed on the surface of the diamond fine powder may obtain a diffraction pattern that matches the metal hydroxide by X-ray diffraction, and is regarded as a hydroxide or hydrated oxide generated by neutralization or hydrolysis. It is done. For example, in a product obtained by adding nickel nitrate solution to a diamond suspension and neutralizing with a diluted solution of DMAB or sodium hydroxide, an X-ray diffraction pattern consistent with nickel hydroxide was obtained.

この生成物は水素雰囲気中加熱において、300℃付近でニッケルに帰属する弱い回折パターンが、400℃付近ではニッケルのブロードな回折図形が認められた。加熱温度を500℃とするとニッケル帰属の鋭いピークが得られている。この試料についての透過電顕観察では、基材のダイヤモンド微粉上の各所に、ニッケルに一致する格子像を有する微粒子の存在が認められた。さらに温度を上げて800℃での加熱を行ったところ、ニッケル帰属の鋭い回折ピークには変化がないものの、透過電顕観察によりダイヤモンド微粉表面に、金属ニッケルが直径10nm程度の球状となって点在していることが認められ、熔融状態のニッケルが表面張力によって凝集粒子になったと推定された。従って薄膜形成を目的とした、水素使用の金属ニッケルへの還元温度は、微粉ニッケルの焼結経験も加味して700℃以下、安全を見越して600℃以下が適当と見積もられた。   When this product was heated in a hydrogen atmosphere, a weak diffraction pattern attributed to nickel was observed near 300 ° C., and a broad diffraction pattern of nickel was observed near 400 ° C. When the heating temperature is 500 ° C., a sharp peak attributed to nickel is obtained. In transmission electron microscope observation of this sample, the presence of fine particles having a lattice image corresponding to nickel was observed at various locations on the diamond fine powder of the base material. When the temperature was further raised and heated at 800 ° C., the sharp diffraction peak attributed to nickel did not change, but the surface of the fine diamond powder was observed to become spherical with a diameter of about 10 nm by transmission electron microscopy. It was estimated that the nickel in the molten state became aggregated particles due to surface tension. Therefore, the reduction temperature to metallic nickel using hydrogen for the purpose of forming a thin film was estimated to be 700 ° C or less, considering the sintering experience of fine nickel, and 600 ° C or less for safety.

ただしダイヤモンド焼結体原料、あるいは磁気研磨用の磁性砥粒を目指した場合の還元温度は800℃でもよく、析出金属の表面積が小さくなることで、対酸化安定性が向上するメリットが認められる。   However, the reduction temperature in the case of aiming at a diamond sintered compact raw material or magnetic abrasive grains for magnetic polishing may be 800 ° C., and the merit of improving oxidative stability is recognized by reducing the surface area of the deposited metal.

本発明の方法に従い、加熱処理を施した単結晶質サブミクロンダイヤモンド微粉を基体として金属被覆を施し、研磨材として用いると良好な切れ味が確保される。加熱処理砥粒の製法は特開2000-136376に開示されている。この方法によればダイヤモンド微粉内に微細なクラックを生じさせることができ、微小破砕による自生発刃の持続に伴う研磨性能の向上が認められている。
特開2000-136376号公報
According to the method of the present invention, when a single-crystal submicron diamond fine powder subjected to heat treatment is coated with a metal as a base and used as an abrasive, good sharpness is secured. A method for producing heat-treated abrasive grains is disclosed in JP-A-2000-136376. According to this method, fine cracks can be generated in the diamond fine powder, and it has been recognized that the polishing performance is improved as the self-generated blades are sustained by the fine crushing.
JP 2000-136376 A

ただし加熱処理を施したダイヤモンド微粉の表面は、グラファイトに似た六角網目構造を呈していると見られ、疎水性を示す。さらに加熱処理の過程で微粉粒子同士の接合によって見掛けの粒径が大きくなっている。従って孤立粒子の形で水中に分散させるための表面親水性化処理は必須であって、前記した酸化処理方法、特に湿式酸化処理方法が用いられる。得られたダイヤモンド粒子は、グラファイト類似の表面構造を一部維持しつつ、親水性の官能基も有しており、水中における分散性は良好である。   However, the surface of the heat-treated diamond fine powder appears to have a hexagonal network structure similar to graphite and exhibits hydrophobicity. Further, the apparent particle size is increased by the joining of the fine powder particles during the heat treatment. Therefore, the surface hydrophilization treatment for dispersing in the form of isolated particles in water is essential, and the above-described oxidation treatment method, particularly the wet oxidation treatment method is used. The obtained diamond particles have a hydrophilic functional group while maintaining a part of the surface structure similar to graphite and have good dispersibility in water.

この手法はカーボンナノファイバーやカーボンナノチューブへも適用可能であり、実質上絡まりのないカーボンナノファイバー、カーボンナノチューブの表面に金属が担持された、新しい機能材料の創製が可能である。   This method can also be applied to carbon nanofibers and carbon nanotubes, and it is possible to create new functional materials in which metal is supported on the surface of carbon nanofibers and carbon nanotubes that are substantially free of entanglement.

また本発明方法は衝撃加圧法によって合成されたデトネーションダイヤモンド凝集体や、多結晶質ダイヤモンド粒子へも用いることができる。これらの市販ダイヤモンドは精製処理の結果として表面が親水性になっている場合には入手状態のまま水中分散が可能であり、続けて金属イオン添加、中和による前駆体形成、乾燥、ガス還元の諸工程を経て、金属担持または被覆ダイヤモンドとすることができる。一方入手品の水中分散が困難な場合には、前記した加熱処理粒子に準じた表面酸化処理を施すことにより、金属で被覆された単粒子状のダイヤモンド粒子が得られる。   The method of the present invention can also be used for detonation diamond aggregates synthesized by an impact pressure method and polycrystalline diamond particles. These commercially available diamonds can be dispersed in water as obtained when the surface is hydrophilic as a result of purification treatment, followed by addition of metal ions, precursor formation by neutralization, drying, and gas reduction. Through various steps, a metal-supported or coated diamond can be obtained. On the other hand, when it is difficult to disperse the obtained product in water, single-particle diamond particles coated with metal can be obtained by performing surface oxidation treatment according to the aforementioned heat-treated particles.

このように本発明方法はサブミクロンないしナノメータサイズのカーボン材料全般に適用可能である。   As described above, the method of the present invention can be applied to all carbon materials of submicron or nanometer size.

金属水酸化物を主体とする前駆体をダイヤモンド微粉表面に形成させ、続く還元処理によって金属をダイヤモンド微粉表面に担持させる本発明方法を用いることにより、粒径5μm以下、特に1μm以下の微細粒子について、孤立(一次)粒子の状態で表面に薄い金属膜あるいは金属微粒子を付けることが可能になった。   By using the method of the present invention in which a precursor mainly composed of metal hydroxide is formed on the surface of diamond fine powder and the metal is supported on the surface of diamond fine powder by subsequent reduction treatment, fine particles having a particle size of 5 μm or less, particularly 1 μm or less are obtained. It became possible to attach a thin metal film or fine metal particles to the surface in the state of isolated (primary) particles.

得られた金属担持ダイヤモンド微粉、例えばニッケルの薄膜で覆われた微粉は、精密研磨用のメタルボンド研磨工具分野では、ニッケルやブロンズのマトリックス中において相溶性表面を持つ砥粒として強固な固定を可能とし、またレジンボンド工具として樹脂系マトリックス中に固定される場合には、樹脂への局部加熱による焼けの防止や、クラックを生じた微粉の保持による、砥粒の脱落抑止の保護膜として機能することで、工具寿命の向上に寄与する。   The resulting metal-supported diamond fine powder, such as fine powder covered with a nickel thin film, can be firmly fixed as abrasive grains having a compatible surface in a nickel or bronze matrix in the field of metal bond polishing tools for precision polishing. In addition, when fixed in a resin-based matrix as a resin bond tool, it functions as a protective film to prevent the grains from falling off by preventing local burning of the resin and holding fine powder that has cracked. This contributes to improved tool life.

特にサブミクロンサイズの砥粒において、従来の砥粒ではダイヤモンド粒子同士の凝集傾向が強く、孤立粒子としてマトリックス中への固定が困難であり、また凝集粒子が見掛けの粗大粒子としてワークに傷を付ける弊害があることから、固定砥粒としての利用ではなく、遊離砥粒として分散液中に懸濁して用いられていた。しかし遊離砥粒としての利用では、実際の加工に寄与する砥粒の割合が低いことから多量の砥粒を用いる必要があり、さらに使用済みの多量の分散液を廃棄物として処理する必要があって環境への負荷も大きいという弊害がある。   Particularly in sub-micron size abrasive grains, conventional abrasive grains have a strong tendency to agglomerate with each other, making it difficult to fix them in the matrix as isolated particles, and the agglomerated particles scratch the work as apparent coarse particles. Because of its detriment, it was not used as a fixed abrasive but was suspended in a dispersion as a free abrasive. However, when used as free abrasive grains, it is necessary to use a large amount of abrasive grains because the ratio of abrasive grains contributing to actual processing is low, and it is also necessary to treat a large amount of used dispersion as waste. There is a negative effect that the load on the environment is large.

本発明によるダイヤモンド微粉は表面への金属担持によって、ダイヤモンド微粉同士の凝集現象が生じないことから、微粉にもかかわらず固定砥粒として工具マトリックス中への分散固定が可能である。従って実質的に全ての微粉粒子が研磨加工に寄与することとなり、砥粒使用量の大幅な低減、ならびに分散液が不要となることから、廃棄物対策が不要となるメリットがある。   The diamond fine powder according to the present invention does not cause an agglomeration phenomenon between the diamond fine powders due to the metal loading on the surface. Therefore, the diamond fine powder can be dispersed and fixed in the tool matrix as fixed abrasive grains regardless of the fine powder. Therefore, substantially all the fine powder particles contribute to the polishing process, and there is a merit that it is not necessary to take measures against waste because the amount of abrasive grains used is greatly reduced and the dispersion liquid is unnecessary.

一方コバルトを薄膜状あるいは粒子状で担持した粒子は、微粒で構成された靱性の大きな焼結体の原料となる。平均粒径数μm〜数十μmのダイヤモンド粒子を出発材料とするダイヤモンド焼結体は構成粒子が小さくまた配置方向がランダムであることから、単結晶ダイヤモンドの欠点である大きな割れや亀裂の伝播がみられず、切削加工用工具として広く利用されている。製造に際しては主としてコバルト系金属の焼結助剤をダイヤモンド粒子間に浸透させ、溶解・析出機構による液相焼結法が採用されている。   On the other hand, particles carrying cobalt in the form of a thin film or particles serve as a raw material for a sintered body having fine toughness and high toughness. Diamond sintered bodies with diamond particles having an average particle diameter of several μm to several tens of μm as starting materials have small constituent particles and random arrangement directions. It is not seen and is widely used as a cutting tool. In the production, a liquid phase sintering method based on a dissolution / precipitation mechanism is adopted in which a cobalt-based metal sintering aid is infiltrated between diamond particles.

ダイヤモンド焼結体刃具は鉄系金属を除く広範囲の材料の切削加工に用いられているが、高シリコン・アルミ合金や炭素繊維補強樹脂などの高機能材料の加工には、より靱性の高い刃具材料が求められている。この課題への対応としては構成粒子サイズをより小さなサブミクロンクラスとすることの有効性が知られている。しかし微粉のダイヤモンド粒子の間へ焼結助剤金属を浸透させて焼結反応を行うのは実質上不可能である。   Sintered diamond blades are used for cutting a wide range of materials except ferrous metals, but they have higher toughness for high-functional materials such as high silicon / aluminum alloys and carbon fiber reinforced resins. Is required. In order to cope with this problem, it is known that the constituent particle size is set to a smaller submicron class. However, it is practically impossible to conduct the sintering reaction by infiltrating the sintering aid metal into fine diamond particles.

本発明においてはダイヤモンド微粉表面に予め所要量の焼結助剤金属を担持させた出発原料を用意することにより、サブミクロンダイヤモンドで構成された靱性の高い焼結体の製作を実施可能とした。   In the present invention, by preparing a starting material in which a required amount of a sintering aid metal is previously supported on the surface of diamond fine powder, it is possible to manufacture a sintered body with high toughness composed of submicron diamond.

担持させる焼結助剤金属量は、用いられるダイヤモンド微粉のサイズによって最適値が異なるが、通常ダイヤモンドに対して10〜20質量%が好ましい範囲である。担持させる焼結助剤金属(コバルト)の形態は一般に薄膜状が好ましく、このために金属状態とするための水素還元温度としては、600℃未満が用いられる。   The optimum amount of the sintering aid metal to be supported varies depending on the size of the diamond fine powder to be used, but is usually in the range of 10 to 20% by mass relative to diamond. The form of the sintering aid metal (cobalt) to be supported is generally in the form of a thin film, and for this reason, a hydrogen reduction temperature for obtaining a metallic state is less than 600 ° C.

また鉄やニッケルを担持させた粒子は磁気研磨用の磁性砥粒として、精密仕上げ研磨への用途が期待される。磁場拘束される磁性砥粒は、遊離砥粒でありながら固定砥粒に似た行動が可能であり、分散液(スラリー)として用いられる遊離砥粒に比べて砥粒の利用効率が格段に高いのが特徴である。また粒子を固定した工具では加工が不可能な複雑形状箇所の加工も可能である。   Also, particles carrying iron or nickel are expected to be used for precision finish polishing as magnetic abrasive grains for magnetic polishing. Magnetic abrasive grains restrained by a magnetic field can behave like fixed abrasive grains while being free abrasive grains, and use efficiency of abrasive grains is significantly higher than free abrasive grains used as a dispersion (slurry). Is the feature. In addition, it is possible to process a complicated shape that cannot be processed with a tool in which particles are fixed.

ダイヤモンドによる高い研磨性能を維持する観点から肉厚の被覆は好ましくなく、一方担持金属量が少ない場合には駆動源の磁力に対する応答性が低下することから、鉄、ニッケルなどの磁性金属担持量は、ダイヤモンド粒子に対して20乃至100質量%が好適である。これらの磁性金属を、膜状あるいは粒状で担持させることにより、ダイヤモンド砥粒の研磨性能を損なうことなく、磁場内における自在な研磨加工が可能である。   From the viewpoint of maintaining high polishing performance with diamond, a thick coating is not preferable. On the other hand, when the amount of supported metal is small, the responsiveness to the magnetic force of the driving source is reduced. The amount is preferably 20 to 100% by mass with respect to the diamond particles. By supporting these magnetic metals in the form of a film or particles, it is possible to perform free polishing in a magnetic field without impairing the polishing performance of the diamond abrasive grains.

金属被覆粒子の出発原料としてトーメイダイヤ(株)製のMD100 (平均粒径105nm)の微粉を用いた。原料のダイヤ微粉を予め濃硝酸・濃硫酸混液中で煮沸処理を施すことによって、表面に親水性の官能基を結合させた。Rank Brother電気泳動式コロイド粒子ゼータ電位測定装置model MARK II による測定から、pH9におけるゼータ電位は約-40mVと見積もられた。   As a starting material for the metal-coated particles, fine powder of MD100 (average particle size 105 nm) manufactured by Tomei Dia Co., Ltd. was used. The raw diamond powder was previously boiled in a concentrated nitric acid / concentrated sulfuric acid mixed solution to bond hydrophilic functional groups to the surface. The zeta potential at pH 9 was estimated to be about -40 mV from the measurement by Rank Brother electrophoresis type colloidal particle zeta potential measuring device model MARK II.

このダイヤモンド微粉5gを5リットルの脱イオン水中に入れて、超音波バスによって十分に分散し懸濁させた。この水溶液に金属塩として硝酸ニッケル・6水和物3gを添加して十分に攪拌し、液温度を55℃に保った状態で還元剤として、合計0.2モルのDMAB(ジメチルアミンボラン)液を少量ずつ滴下して、微粉表面に前駆体としてのニッケル化合物を析出させた。   5 g of this diamond fine powder was placed in 5 liters of deionized water and sufficiently dispersed and suspended by an ultrasonic bath. Add 3 g of nickel nitrate hexahydrate as a metal salt to this aqueous solution, stir well, and keep a small amount of 0.2 mol DMAB (dimethylamine borane) liquid as a reducing agent while maintaining the liquid temperature at 55 ° C. The solution was added dropwise to deposit a nickel compound as a precursor on the surface of the fine powder.

生成物の前駆体を120℃で乾燥させてX線回折と磁気測定に供した。X線回折の結果からは通常の化学めっき(無電解めっき)に見られる金属ニッケルに帰属するブロードな回折線は認められず、代わりにニッケル水酸化物に一致する回折線が認められた。また磁気測定においてはベースラインとの差異は認められないことから、析出物は金属質ではないと判断した。   The product precursor was dried at 120 ° C. and subjected to X-ray diffraction and magnetic measurements. From the results of X-ray diffraction, a broad diffraction line attributed to metallic nickel found in normal chemical plating (electroless plating) was not observed, but a diffraction line corresponding to nickel hydroxide was observed instead. Moreover, since the difference from the baseline was not recognized in the magnetic measurement, it was judged that the precipitate was not metallic.

一方透過電顕による観察結果からは、微粉粒子表面全面にニッケルが存在すると推定された。走査電顕像からもダイヤモンド微粉の全表面が析出物で覆われていることが認められた。   On the other hand, from the observation result by transmission electron microscope, it was estimated that nickel was present on the entire surface of the fine particles. Scanning electron microscopic images also confirmed that the entire surface of the diamond fine powder was covered with precipitates.

この生成物を水素雰囲気中で加熱すると、XRD図形に図1に示すような変化を生じた。即ち400℃付近でニッケル帰属のブロードな回折図形が認められ、加熱温度を490℃とするとニッケル帰属の鋭いピークが得られた。さらに昇温して800℃での加熱を行ったところ、ニッケル帰属の鋭い回折ピークには変化がないものの、透過電顕観察によりダイヤモンド微粉表面に、金属ニッケルが直径10nm前後の球状となって点在していることが認められ、微粉表面を覆っていたニッケル膜が熔融して凝集し、液滴になったと推定され、800℃の加熱は表面被覆の目的からは高すぎることが分かった。   When this product was heated in a hydrogen atmosphere, the XRD pattern changed as shown in FIG. That is, a broad diffraction pattern attributed to nickel was observed around 400 ° C., and a sharp peak attributed to nickel was obtained when the heating temperature was 490 ° C. Further heating and heating at 800 ° C showed no change in the sharp diffraction peak attributed to nickel, but by observation with transmission electron microscope, metallic nickel became a spherical shape with a diameter of around 10 nm on the surface of diamond fine powder. It was estimated that the nickel film covering the surface of the fine powder melted and aggregated into droplets, and heating at 800 ° C. was found to be too high for the purpose of surface coating.

対比の目的から上記と同じ硝酸ニッケルを添加したダイヤモンド懸濁液に、DMABに代えて水酸化ナトリウム希釈液を室温で添加し、pH9に保ち前駆体の析出を行った。得られた乾燥生成物の水素中加熱における挙動は、DMABを用いた場合と全く同じであって、DMABによる析出前駆体が水酸化物であることが確かめられた。   For the purpose of comparison, a sodium hydroxide diluted solution was added at room temperature instead of DMAB to a diamond suspension to which the same nickel nitrate was added as described above, and the precursor was precipitated while maintaining pH 9. The behavior of the obtained dried product in heating in hydrogen was exactly the same as when DMAB was used, and it was confirmed that the precipitation precursor by DMAB was a hydroxide.

金属被覆ダイヤモンド微粉の出発原料としてトーメイダイヤ(株)製のMD250(平均粒径255nm)の微粉を用いた。表面の酸化処理には濃硝酸・濃硫酸混液に硝酸カリを加えて煮沸する手法を用いた。ダイヤモンド微粉50gを15リットルの脱イオン水中に分散させ、硝酸コバルト・6水和物25gを添加して十分に攪拌した後、尿素30gを粉末状で加えて85℃に加熱し、コバルト含有前駆体で覆われたダイヤモンド微粉を得た。120℃で乾燥したダイヤモンド微粉を水素中600℃に加熱し、約5質量%のコバルト膜で覆われたダイヤモンド微粉を得た。   As a starting material for metal-coated diamond fine powder, a fine powder of MD250 (average particle size 255 nm) manufactured by Tomei Dia Co., Ltd. was used. The surface was oxidized by adding potassium nitrate to concentrated nitric acid / concentrated sulfuric acid mixture and boiling. 50 g of diamond fine powder is dispersed in 15 liters of deionized water, 25 g of cobalt nitrate hexahydrate is added and stirred well, then 30 g of urea is added in powder form and heated to 85 ° C., and a cobalt-containing precursor The diamond fine powder covered with was obtained. The diamond fine powder dried at 120 ° C. was heated to 600 ° C. in hydrogen to obtain diamond fine powder covered with about 5% by mass of a cobalt film.

この粉末をタンタル製のカプセル中で13%Co-WC組成の超硬合金基板表面に0.8mmの厚さに充填し、5.5GPa、1350℃の条件に15分間保つことで、微粒組織の切削工具素材が得られた。   This powder is filled in a tantalum capsule on the surface of a cemented carbide substrate with a 13% Co-WC composition to a thickness of 0.8mm and kept at 5.5GPa and 1350 ° C for 15 minutes. The material was obtained.

金属被覆粒子の出発原料としてトーメイダイヤ(株)製のHM3-8(平均粒径4.3μm)のダイヤモンド微粉を用いた。この品種は窒素雰囲気中1300℃の加熱処理を施した単結晶質ダイヤモンド粒子であって、表面は疎水性である。表面を親水性とするために、濃硝酸・濃硫酸混液に硝酸カリを添加し煮沸する酸化処理を施した。   As a starting material for the metal-coated particles, diamond fine powder of HM3-8 (average particle size 4.3 μm) manufactured by Tomei Dia Co., Ltd. was used. This variety is single-crystal diamond particles that have been heat-treated at 1300 ° C in a nitrogen atmosphere, and the surface is hydrophobic. In order to make the surface hydrophilic, an oxidation treatment was performed by adding potassium nitrate to a mixture of concentrated nitric acid and concentrated sulfuric acid and boiling.

ダイヤモンド微粉40gを10リットルの脱イオン水中に分散させ、塩化ニッケル・6水和物50gを添加し液温を50℃に保持して、アンモニア水を加えてpH9.0としニッケル含有前駆体で覆われたダイヤモンド粉末微粉を得た。水素中600℃の加熱によって、約10質量%のニッケル膜で覆われたダイヤモンド粒子を得た。
この粒子をフェノール樹脂で固定した砥石は、超硬合金製金型の仕上げ研磨に適していた。
Disperse 40 g of diamond fine powder in 10 liters of deionized water, add 50 g of nickel chloride hexahydrate, maintain the liquid temperature at 50 ° C., add ammonia water to pH 9.0, and cover with nickel-containing precursor. A fine diamond powder was obtained. Diamond particles covered with about 10% by mass of nickel film were obtained by heating at 600 ° C. in hydrogen.
A grindstone in which these particles were fixed with a phenol resin was suitable for final polishing of a cemented carbide mold.

出発材料と被覆処理条件の例を表1に示す。いずれも分散媒は脱イオン水10リットルとした。

Figure 0005411210
Examples of starting materials and coating treatment conditions are shown in Table 1. In both cases, the dispersion medium was 10 liters of deionized water.
Figure 0005411210

本発明により製造されるサブミクロンクラスの金属担持ダイヤモンド微粉は、
* 精密研磨用砥粒として、マトリックス中や支持部材に固定して工具として使用することができるので、従来は遊離砥粒として用いられていた加工分野において、砥粒の有効利用と廃棄物量の大幅な低減が達成される;
* 一次粒子の微細さに拘わらず超高圧高温下で効果的な焼結を行うことが可能なことにより、ダイヤモンド焼結体原料として、微細粒子で構成された靱性の大きな切削工具の製作を可能とし、特にシリコン・アルミ合金、炭素繊維補強樹脂に代表される難削材の加工を容易にする;
* 磁性流体に用いられる微細磁性砥粒として、ダイヤモンドの優れた研磨性能を利用した精密仕上げ研磨を可能にする;
などの多様な利用可能性を有している。
Submicron-class metal-supported diamond fine powder produced according to the present invention is
* Since it can be used as a tool in a matrix or fixed to a support member as a precision polishing abrasive, it can be used effectively as a loose abrasive in the processing field that was previously used as a loose abrasive. Reduction is achieved;
* The ability to perform effective sintering under ultra-high pressure and high temperature regardless of the fineness of the primary particles enables the production of cutting tools with high toughness composed of fine particles as raw materials for diamond sintered bodies. In particular, it facilitates the processing of difficult-to-cut materials represented by silicon / aluminum alloy and carbon fiber reinforced resin;
* As a fine magnetic abrasive used in magnetic fluids, it enables precision finish polishing using the superior polishing performance of diamond;
It has various applicability.

Claims (13)

次の各工程を有する、金属担持ダイヤモンド微粉の製造方法:
(1) 平均粒径5μm以下の整粒されたダイヤモンド微粉に酸化処理を施し、ダイヤモンド微粉を構成するダイヤモンド粒子表面に酸素含有官能基を付与する工程、
(2) 上記ダイヤモンド粒子を極性溶媒中に入れて負に帯電したダイヤモンド粒子とし、該溶媒中に分散懸濁させて懸濁液とする工程、
(3) 上記懸濁液に正に帯電した金属イオンを添加し、次いで金属イオンの電荷を中和し、ダイヤモンド粒子表面周囲の金属イオンを水酸化物乃至水和酸化物に変換し、ダイヤモンド粒子上に析出・担持された金属前駆体とする工程、
(4) 上記金属前駆体を担持するダイヤモンド粒子を還元性雰囲気中で加熱し、金属前駆体を金属に還元する工程、
(5) 上記工程(4)で得られた金属担持ダイヤモンド粒子を回収する工程。
A method for producing metal-supported diamond fine powder having the following steps:
(1) Oxidizing diamond sized powder having an average particle size of 5 μm or less, and imparting oxygen-containing functional groups to the surface of the diamond particles constituting the diamond powder;
(2) The above diamond particles are placed in a polar solvent to form negatively charged diamond particles, and dispersed and suspended in the solvent to form a suspension,
(3) Add positively charged metal ions to the suspension, then neutralize the charge of the metal ions, convert the metal ions around the surface of the diamond particles to hydroxide or hydrated oxide, A step of forming a metal precursor deposited and supported thereon,
(4) heating the diamond particles carrying the metal precursor in a reducing atmosphere to reduce the metal precursor to metal;
(5) A step of recovering the metal-supported diamond particles obtained in the step (4) .
前記極性溶媒が水又はアルコールである、請求項1に記載の方法。   The method of claim 1, wherein the polar solvent is water or alcohol. 前記工程(3)の中和を、金属水酸化物、アンモニア、各種アルカリ塩、尿素、又は化学めっき用還元剤の添加によって行う、請求項1に記載の方法。   The method according to claim 1, wherein the neutralization in the step (3) is performed by adding a metal hydroxide, ammonia, various alkali salts, urea, or a reducing agent for chemical plating. 前記工程(3)の中和を、ジメチルアミンボラン(DMAB)、ピロリン酸塩、次亜リン酸塩、水素化ホウ素化合物、ヒドラジンから選ばれる1種を含む化学めっき用還元剤の添加によって行う、請求項に記載の方法。 The neutralization in the step (3) is performed by adding a reducing agent for chemical plating including one selected from dimethylamine borane (DMAB), pyrophosphate, hypophosphite, borohydride compound, and hydrazine . The method of claim 1 . 前記ダイヤモンド微粉の平均粒径がD50値表示において1μm以下である、請求項1に記載の方法。 The method according to claim 1, wherein an average particle diameter of the diamond fine powder is 1 μm or less in D 50 value display. 前記ダイヤモンド微粉の平均粒径がD50値表示において0.2μm以下である、請求項1又は請求項5に記載の方法。 The average particle diameter of the diamond fine powders is 0.2μm or less in the D 50 value display method of claim 1 or claim 5. 前記工程(4)の金属を薄膜状で得る、請求項1に記載の方法。   The method according to claim 1, wherein the metal of the step (4) is obtained in a thin film form. 前記工程(4)の金属を粒子状で得る、請求項1に記載の方法。   The method according to claim 1, wherein the metal of step (4) is obtained in the form of particles. 前記工程(4)の金属が強磁性又は常磁性を有する、請求項1に記載の方法。   The method according to claim 1, wherein the metal in step (4) is ferromagnetic or paramagnetic. 前記工程(1)のダイヤモンド微粉が、静的超高圧力下で合成された単結晶質ダイヤモンドの粉砕によって得られた微粉である、請求項1に記載の方法。   The method according to claim 1, wherein the diamond fine powder in the step (1) is a fine powder obtained by pulverization of single crystalline diamond synthesized under a static ultrahigh pressure. 前記工程(1)のダイヤモンド微粉が、グラファイトを出発原料とし、衝撃加圧によって合成された、ナノメートル級の一次ダイヤモンド粒子が融着して成る多結晶質粒子で構成される、請求項1に記載の方法。   2. The diamond fine powder of the step (1) is composed of polycrystalline particles obtained by fusing nanometer-scale primary diamond particles synthesized by impact pressurization using graphite as a starting material. The method described. 前記工程(1)のダイヤモンド微粉が、高性能爆薬を出発原料とし、爆轟によって合成されたナノメートル級のダイヤモンド粒子の凝集体である、請求項1に記載の方法。   The method according to claim 1, wherein the diamond fine powder in the step (1) is an aggregate of nanometer-scale diamond particles synthesized from detonation using a high-performance explosive as a starting material. 前記工程(1)のダイヤモンド微粉構成粒子が加熱処理の結果として微小クラックを内蔵する、請求項1に記載の方法。   The method according to claim 1, wherein the diamond fine powder constituting particles of the step (1) incorporate microcracks as a result of the heat treatment.
JP2011144393A 2011-06-29 2011-06-29 Method for producing metal-supported diamond fine powder and metal-supported diamond fine powder Active JP5411210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011144393A JP5411210B2 (en) 2011-06-29 2011-06-29 Method for producing metal-supported diamond fine powder and metal-supported diamond fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011144393A JP5411210B2 (en) 2011-06-29 2011-06-29 Method for producing metal-supported diamond fine powder and metal-supported diamond fine powder

Publications (2)

Publication Number Publication Date
JP2013010991A JP2013010991A (en) 2013-01-17
JP5411210B2 true JP5411210B2 (en) 2014-02-12

Family

ID=47685109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011144393A Active JP5411210B2 (en) 2011-06-29 2011-06-29 Method for producing metal-supported diamond fine powder and metal-supported diamond fine powder

Country Status (1)

Country Link
JP (1) JP5411210B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5819683B2 (en) * 2011-09-08 2015-11-24 ビジョン開発株式会社 Magnetic diamond fine particles and method for producing the same
JP6483722B2 (en) * 2014-11-07 2019-03-13 株式会社ダイセル Nanodiamond having acidic functional group and method for producing the same
CN116332649A (en) * 2023-03-01 2023-06-27 绍兴自远磨具有限公司 Group diamond micro powder applied to fine grinding wheel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263991A (en) * 1986-05-07 1987-11-16 Adachi Shin Sangyo Kk Manufacture of plated material

Also Published As

Publication number Publication date
JP2013010991A (en) 2013-01-17

Similar Documents

Publication Publication Date Title
CN107723500B (en) A kind of graphene-aluminum oxide mixing enhancement copper-base composite material and preparation method thereof
CN105215353B (en) A kind of Metal/grapheme composite and preparation method thereof
US8591988B1 (en) Method of fabrication of anchored nanostructure materials
JP4969008B2 (en) Powder mixtures and composite powders, methods for their production and their use in composite materials
JP2004323968A (en) METHOD FOR MANUFACTURING ULTRAFINE TiC-TRANSITION METAL BASED COMPOSITE POWDER
CN109844177A (en) The thermal spraying of ceramic material
FR2784690A1 (en) Pre-alloyed tungsten and-or molybdenum and transition metal based powder, useful for sintered parts or cermet binders, comprises micron-size elementary particles
WO2015085777A1 (en) Preparation method of single crystal diamond grit
JP5411210B2 (en) Method for producing metal-supported diamond fine powder and metal-supported diamond fine powder
CN110918978B (en) Reinforcing phase reinforced composite powder with functional layer for use in fusing technology, and preparation method and application thereof
KR20010033224A (en) Micronic pre-alloyed metal powder based on three-dimensional transition metal
Wen et al. 2D materials-based metal matrix composites
GB2572635A (en) Paste for polishing and method of manufacture thereof
CN113913721B (en) Composite powder for supersonic flame spraying, preparation and application
Liu et al. A new process for pre-treatment of electroless copper plating on the surface of mica powders with ultrasonic and nano-nickel
US11154843B1 (en) Methods of forming nano-catalyst material for fabrication of anchored nanostructure materials
US8974719B2 (en) Composite materials formed with anchored nanostructures
WO2008022495A1 (en) Method for preparing nanometer metal powder
Wang et al. Controllable synthesis of core-shell SiO2@ CeO2 abrasives for chemical mechanical polishing on SiO2 film
CN109822090A (en) A kind of preparation method of the copper nanoparticle of in-stiu coating organic matter
Yang et al. Microstructure and properties of copper matrix composites reinforced with Cu-doped graphene
Singh et al. Glycerol mediated low temperature synthesis of nickel nanoparticles by solution reduction method
CN111020579A (en) Preparation of TiB on titanium alloy2Method for particle reinforced high-entropy alloy coating
JP4237013B2 (en) Manufacturing method of surface modified fine diamond abrasive
WO2019071839A1 (en) Graphene oxide coated silicon nitride composite powder, preparation therefor and application thereof, and al2o3 based ceramic cutter material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131107

R150 Certificate of patent or registration of utility model

Ref document number: 5411210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250