JPH04305227A - Electrochemical exhaust gas treating system - Google Patents

Electrochemical exhaust gas treating system

Info

Publication number
JPH04305227A
JPH04305227A JP3068641A JP6864191A JPH04305227A JP H04305227 A JPH04305227 A JP H04305227A JP 3068641 A JP3068641 A JP 3068641A JP 6864191 A JP6864191 A JP 6864191A JP H04305227 A JPH04305227 A JP H04305227A
Authority
JP
Japan
Prior art keywords
exhaust gas
electrochemical
cathode
nox
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3068641A
Other languages
Japanese (ja)
Other versions
JP2517799B2 (en
Inventor
Hideo Okada
秀夫 岡田
Satoshi Kuroe
黒江 聡
Shigenori Mitsushima
重徳 光島
Yoshio Iwase
岩瀬 嘉男
Kazuo Iwamoto
岩本 一男
Masahito Takeuchi
竹内 將人
Shigeoki Nishimura
西村 成興
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3068641A priority Critical patent/JP2517799B2/en
Publication of JPH04305227A publication Critical patent/JPH04305227A/en
Application granted granted Critical
Publication of JP2517799B2 publication Critical patent/JP2517799B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To reduce the NOx incorporated in exhaust gases so as to make the gases pollution-free and to simultaneously generate power by installing an anode and a cathode and a carbonic acid ion conductive electrolyte and separators interposed therebetween, supplying exhaust gases to the cathode side and supplying a reducing gas to the anode side. CONSTITUTION:The anode 2 and cathode 3 are disposed to hold the carbonic acid ion conductive electrolyte 1 therebetween and the anode separator 4 and cathode separator 5 which supply reactive gases to the anode 2 and the cathode 3, respectively, are provided to constitute a unit cell. NOx and CO2-contg. gases 7 are supplied to the cathode 3 side of the cell and the reducing gas 6, such as H2, is supplied to the anode 2. The harmful gases, such as NOx, contained in industrial waste gases, are treated by an electrochemical reaction and are made pollution-free. The electrons generated by the electrochemical oxidation reduction reaction are taken to the outside and are converted to electric energy. In addition, the CO2 in the exhaust gases is concentrated and is efficiently removed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は産業排ガス中に含まれる
窒素酸化物(NOx)等の有害ガスを電気化学的反応に
よって処理して無害化すると共に電気化学的酸化還元反
応により発生する電子を外部回路に取り出し電気エネル
ギ−に変換すると共に燃焼排ガス中のCO2 を濃縮し
て効率良く除去するのに好適な電気化学的排ガス処理シ
ステムに係る。
[Industrial Application Field] The present invention treats harmful gases such as nitrogen oxides (NOx) contained in industrial exhaust gas by electrochemical reactions to render them harmless, and also removes electrons generated by electrochemical redox reactions. The present invention relates to an electrochemical exhaust gas treatment system that is suitable for extracting CO2 into an external circuit and converting it into electrical energy, as well as concentrating and efficiently removing CO2 in combustion exhaust gas.

【0002】0002

【従来の技術】燃焼排ガス等に含まれる窒素酸化物(N
Ox )等は、大気中に放出されると,酸性雨や光化学
スモックの凶元となり公害問題、地球環境問題から排出
規制が厳しく定められている。また炭酸ガス(CO2 
)等は地球温暖化やオゾン層の破壊原因物質として注目
され排出抑制が緊急の課題となっている。
[Prior art] Nitrogen oxides (N) contained in combustion exhaust gas, etc.
When emitted into the atmosphere, substances such as Ox) become the cause of acid rain and photochemical smock, and strict emission regulations have been established due to pollution and global environmental issues. Also, carbon dioxide gas (CO2
), etc., are attracting attention as substances that cause global warming and ozone layer destruction, and reducing their emissions has become an urgent issue.

【0003】火力発電所排ガスや高温ガスタ−ビン排ガ
ス等には数百ppmから数千ppmのNOx が含まれ
、一方CO2 は数%から数十%含まれている。従来、
排ガス中のNOx を除去するために提案されている方
法は大別すると湿式法と乾式法がある。湿式法は吸収吸
着法が主であり、NOをNO2 に酸化してアルカリ性
水溶液に吸収溶解させる。この場合の酸化は気相ではO
3 やClO2 が用いられ、液相ではKMnO4 ,
NaClO2 あるいはHNO3 を用いて行なわれる
。また、鉄(II)錯体溶液による吸収法等も提案され
ているが吸収法はいずれも吸収液の後処理法等に問題が
残る。
[0003] Thermal power plant exhaust gas, high-temperature gas turbine exhaust gas, and the like contain several hundred ppm to several thousand ppm of NOx, and on the other hand, contain several percent to several tens of percent of CO2. Conventionally,
The methods proposed for removing NOx from exhaust gas can be roughly divided into wet methods and dry methods. The wet method is mainly an absorption adsorption method, in which NO is oxidized to NO2 and absorbed and dissolved in an alkaline aqueous solution. In this case, oxidation is O in the gas phase.
3 and ClO2 are used, and in the liquid phase KMnO4,
This is carried out using NaClO2 or HNO3. In addition, absorption methods using iron(II) complex solutions have also been proposed, but all absorption methods have problems in the post-treatment of the absorption solution.

【0004】一方、アルカリ溶融塩とNOとの反応を利
用した溶融塩吸収法も提案(公害防止設備機材編集委員
会偏:公害防止設備機材辞典,P459)されているが
NOをNO2 に酸化する手段が必要であり、燃焼排ガ
スのような低濃度NOX 含有ガスに対しては酸化速度
が低い等の問題もあり高い脱硝率が得られない外、NO
の吸収及び再生を溶融状態で行うことから生ずる大容量
排ガス処理方法としては有効でない。
On the other hand, a molten salt absorption method using the reaction between alkali molten salt and NO has also been proposed (Pollution Prevention Equipment and Equipment Editorial Committee: Dictionary of Pollution Prevention Equipment and Equipment, p. 459), but NO is oxidized to NO2. In addition, a high denitrification rate cannot be obtained due to problems such as a low oxidation rate for gases containing low concentration NOX such as combustion exhaust gas.
It is not effective as a method for treating large volumes of exhaust gas generated by absorbing and regenerating the gas in a molten state.

【0005】乾式法では接触分解法と選択還元法が主流
であり、前者ではCo3O4、YBa2 Cu3Oy触
媒によりNOx を直接接触分解する方法である。後者
は、VO−TiO触媒を用いてアンモニアによる選択還
元脱硝法である。また、NO2 を電気化学的反応によ
りNOに還元する方法が特開昭51−86735号公報
に提案されている。提案の方法によればリン酸又は硫酸
を用いたプロトン伝導性電解質型燃料電池に関し、NO
2 をNO還元したあと再びNO2に酸化してリサイク
ルする方式であり燃焼排ガスの中のNOx を還元無害
化することはできない。
[0005] The mainstream dry methods are catalytic cracking and selective reduction, and the former involves direct catalytic decomposition of NOx using a Co3O4, YBa2 Cu3Oy catalyst. The latter is a selective reduction denitrification method using ammonia using a VO-TiO catalyst. Further, a method of reducing NO2 to NO through an electrochemical reaction is proposed in Japanese Patent Application Laid-Open No. 51-86735. According to the proposed method, NO
This method reduces NOx to NOx and then oxidizes it to NO2 again for recycling, and cannot reduce NOx in the combustion exhaust gas to make it harmless.

【0006】ちなみに、一般のボイラ排ガス中のNOx
 のうちNO2 は数ppm〜数十ppmで、NOは数
十ppm〜数百ppmであり圧倒的にNOが多く存在す
るため提案の方式では、燃焼排ガス中のNOx を無害
化処理する方法として適当でない。さらに、火力発電所
などの排ガス中のNOX 、SOX を低減するためS
tanleyH.らにより、酸性電解質を用いたプロト
ン伝導性電解質型燃料電池のカソード側に導入する試み
がなされている(Environmental Pro
gress(Vol.5,No.4)。この方式では、
電極に高価な貴金族触媒を用いる必要があり大容量の排
ガス処理には実行上の困難を伴う。
By the way, NOx in general boiler exhaust gas
Of these, NO2 is several ppm to several tens of ppm, NO is several tens of ppm to several hundred ppm, and NO is present in overwhelmingly large amounts, so the proposed method is suitable as a method for detoxifying NOx in combustion exhaust gas. Not. Furthermore, in order to reduce NOX and SOX in exhaust gas from thermal power plants, etc.
tanleyH. have attempted to introduce it into the cathode side of a proton-conducting electrolyte fuel cell using an acidic electrolyte (Environmental Pro
gress (Vol. 5, No. 4). In this method,
It is necessary to use an expensive noble metal group catalyst in the electrode, which is difficult to implement in large-capacity exhaust gas treatment.

【0007】以上のごとく排煙脱硝法は種々提案されて
いるが、現在実用化されているのはアンモニアによる選
択還元脱硝法があるにすぎない。一方、CO2 処理法
にはアルカリ吸収法、アミン吸収法や酸化カルシウム吸
着法並びにゼオライト吸着法等があるが、火力プラント
排ガスのように排出ガス量が多い場合のガス処理は容易
でなく、新しい濃縮技術の開発が望まれる。
As described above, various flue gas denitrification methods have been proposed, but only the selective reduction denitrification method using ammonia is currently in practical use. On the other hand, CO2 treatment methods include the alkali absorption method, amine absorption method, calcium oxide adsorption method, and zeolite adsorption method, but gas treatment is not easy when the amount of exhaust gas is large, such as thermal power plant exhaust gas, and a new concentration method is required. Development of technology is desired.

【0008】[0008]

【発明が解決しようとする課題】産業排ガス等に含まれ
るNOx 、CO2 およびSOx 等は公害問題や地
球環境問題から極力除去しなければならない。本発明の
目的は、排ガス等に含まれるNOx を溶融炭酸塩型燃
料電池と類似のシステムを用いて電気化学的に還元し無
害化すると同時に電気化学反応に伴って発生する電子を
外部回路に取り出して発電を行うと共に、電気化学的反
応に伴うCO2 濃縮効果を利用して大容量排ガスなど
から効率良くCO2 を除去することにある。
[Problem to be Solved by the Invention] NOx, CO2, SOx, etc. contained in industrial exhaust gas etc. must be removed as much as possible in view of pollution problems and global environmental problems. The purpose of the present invention is to electrochemically reduce NOx contained in exhaust gas, etc., to make it harmless using a system similar to a molten carbonate fuel cell, and at the same time extract electrons generated by the electrochemical reaction to an external circuit. In addition to generating electricity using electrochemical reactions, the objective is to efficiently remove CO2 from large volumes of exhaust gas by utilizing the CO2 concentration effect associated with electrochemical reactions.

【0009】[0009]

【課題を解決するための手段】上記目的は、図1に示す
ように、炭酸イオン伝導性電解質1を挾んでアノ−ド2
およびカソ−ド3を配置し、該アノ−ド2及びカソ−ド
3のそれぞれに反応ガスを供給するアノードセパレータ
4およびカソードセパレータ5を設けて単位セルを構成
するとともに、セルのカソ−ド側にNOx 及びCO2
 含有ガス7を供給し、アノ−ドにはH2 等の還元ガ
ス6を供給して、下記の(化1)式から(化3)式また
は(化4)式から(化6)式に示す電気化学的酸化還元
反応を行わせることにより達成できる。
[Means for Solving the Problems] The above object is, as shown in FIG.
and a cathode 3, and an anode separator 4 and a cathode separator 5 for supplying reaction gas to the anode 2 and the cathode 3, respectively, constitute a unit cell, and the cathode side of the cell to NOx and CO2
A containing gas 7 is supplied, and a reducing gas 6 such as H2 is supplied to the anode, as shown in the following formulas (Chemical Formula 1) to (Chemical Formula 3) or (Chemical Formula 4) to (Chemical Formula 6) This can be achieved by performing an electrochemical redox reaction.

【0010】1)NOx がNOのときカソ−ド:NO
+CO2 +2e──→CO32− +1/2N2−−
−−−−−−− (化1) アノ−ド:H2 +CO3
2− ────→H2 O+CO2 +2e−−−−−
−−− (化2) 全体として:NO+H2 ────
─→H2O+1/2N2−−−−−−−−−−− (化
3)2)NOx がNO2 のとき カソ−ド:NO2 +2CO2 +4e→2CO32−
 +1/2N2−−−−−−−(化4) アノ−ド:2
H2 +2CO32− ──→2H2 O+2CO2 
+4e−−−−− (化5) 全体として:NO2 +
2H2 ───→2H2 O+1/2N2−−−−−−
−−−(化6) すなわち、カソ−ドでは外部回路から
電子を得てNOx をN2 に還元すると共にCO2 
をCO32− イオンに酸化する。CO32− イオン
は電解質を介してアノ−ドに移動する。アノードでは、
H2 によりCO32− イオンがCO2 に還元され
ると共に電子を発生する。この電子は外部回路に取り出
されカソードに還流させる。ここで、外部回路に取り出
した電子流は途中に負荷を設けることにより電気エネル
ギーとして利用する。
1) When NOx is NO, cathode: NO
+CO2 +2e──→CO32− +1/2N2−−
------- (Chemical formula 1) Anode: H2 + CO3
2- ────→H2 O+CO2 +2e------
--- (Chemical formula 2) Overall: NO + H2 ────
─→H2O+1/2N2−−−−−−−−−− (Chemical formula 3) 2) When NOx is NO2, cathode: NO2 +2CO2 +4e→2CO32−
+1/2N2---(Chemical formula 4) Anode: 2
H2 +2CO32- ──→2H2 O+2CO2
+4e--- (Chemical formula 5) Overall: NO2 +
2H2 ---→2H2 O+1/2N2----
---(Chemical 6) In other words, the cathode obtains electrons from the external circuit and reduces NOx to N2, and also CO2
oxidizes to CO32- ions. CO32- ions move to the anode via the electrolyte. At the anode,
CO32- ions are reduced to CO2 by H2 and generate electrons. These electrons are taken out to an external circuit and returned to the cathode. Here, the electron flow taken out to the external circuit is used as electrical energy by providing a load on the way.

【0011】カソ−ドに供給するCO2 やNOx が
多量のN2 等と混合している場合、電気化学的反応に
関与しないN2 等はそのままカソ−ド出口より系外に
流れ、CO2 は選択的にアノ−ド側に移動するためア
ノ−ド出口では高濃度のCO2 が得らる。したがって
、本システムを適用すれば実質的にCO2 の濃縮がで
きてCO2 処理が容易となる。
[0011] When CO2 or NOx supplied to the cathode is mixed with a large amount of N2, etc., the N2, etc. that do not participate in the electrochemical reaction flow out of the system from the cathode outlet, and CO2 is selectively Since it moves to the anode side, a high concentration of CO2 is obtained at the anode outlet. Therefore, if this system is applied, CO2 can be substantially concentrated and CO2 treatment becomes easy.

【0012】ところで、本システムはカソ−ド側からア
ノ−ド側へのCO32− イオン伝導によって可能とな
る。 本発明では、イオン伝導性電解質には炭酸塩を用いる。 炭酸塩としては、炭酸リチウム,炭酸カリウム,炭酸ナ
トリウム,炭酸バリウム,炭酸ストロンチウム,炭酸カ
ルシウム等から選ばれた1種または2種以上の混合炭酸
塩が良く、特に融点降下のある共融混合物が好ましい。 炭酸塩を電解質に用いるイオン伝導性電解質型燃料電池
をベースとしたことにより、電極に卑金族を用いること
が可能となる。また、電池運転温度が650℃付近と高
いために、高温燃焼排ガスを直接導入することができ、
排熱の有効利用システムとして望ましい形態である。
By the way, this system is made possible by CO32- ion conduction from the cathode side to the anode side. In the present invention, carbonate is used as the ionically conductive electrolyte. As the carbonate, one or a mixed carbonate of two or more selected from lithium carbonate, potassium carbonate, sodium carbonate, barium carbonate, strontium carbonate, calcium carbonate, etc. is preferable, and a eutectic mixture with a melting point depression is particularly preferable. . By using an ion-conducting electrolyte fuel cell as the base, which uses carbonate as the electrolyte, it becomes possible to use base metals in the electrodes. In addition, because the battery operating temperature is high at around 650°C, high-temperature combustion exhaust gas can be directly introduced.
This is a desirable form as a system for effectively utilizing waste heat.

【0013】さらに、本発明者らは、カソ−ドにおける
NOx の電気化学的還元反応を効率良く行うためにカ
ソ−ドについて検討を重た結果、気孔率が50〜80v
ol%の多孔質電子伝導性酸化物が有効であることが判
った。気孔率が50vol%以下では反応ガスが電極内
部に充分に拡散されず性能が低下する。また、80vo
l%以上になると電極強度の低下が著しく好ましくなか
った。この電子伝導性酸化物としては第1の成分が酸化
ニッケルまたは、酸化コバルトから成り、これに第2の
成分として銀、リチウム、クロム、銅、鉄、アルミニウ
ム、から選ばれた1種または、2種以上の金属又は酸化
物を含んで形成された複合酸化物電極が良い性能を示し
た。第2の成分の添加量は0.5〜20wt%(重量%
)が良く、0.5wt%未満では添加効果が少なく、2
0wt%をこえると銀以外の成分では電気抵抗の増大と
電極活性の低下が認められた。銀は20wt%をこえる
と電気抵抗の減少が若干認められるが、電極活性として
は特に変化はなかった。
[0013] Furthermore, as a result of extensive studies on the cathode in order to efficiently perform the electrochemical reduction reaction of NOx at the cathode, the present inventors found that the porosity of the cathode was 50 to 80V.
ol% porous electronically conductive oxide was found to be effective. If the porosity is less than 50 vol%, the reaction gas will not be sufficiently diffused into the electrode, resulting in poor performance. Also, 80vo
When the amount exceeded 1%, the electrode strength significantly decreased, which was undesirable. This electronically conductive oxide has a first component of nickel oxide or cobalt oxide, and a second component of one or two selected from silver, lithium, chromium, copper, iron, and aluminum. A composite oxide electrode formed containing more than one metal or oxide showed good performance. The amount of the second component added is 0.5 to 20 wt% (wt%
) is good, and if it is less than 0.5 wt%, the effect of addition is small;
When the content exceeds 0 wt%, an increase in electrical resistance and a decrease in electrode activity were observed for components other than silver. When silver exceeds 20 wt%, a slight decrease in electrical resistance is observed, but there is no particular change in electrode activity.

【0014】一方、アノ−ドにおけるCO32− イオ
ンの電気化学的還元反応を効率良く行うための電極とし
ては、気孔率が40〜75vol%の多孔質金属電極ま
たは多孔質複合電極が有効であった。気孔率が40vo
l%未満では反応ガスが電極内部に充分に拡散されず性
能が低下した。また、75vol%をこえると電極の空
隙が多くなり単位面積あたりの電極触媒量が低下して充
分な反応が進行しなくなる。前記多孔質金属電極または
多孔質複合電極の材料としては、第1の成分がニッケル
又は銅からなり、第2の成分がアルミニウム、ジルコニ
ウム、マグネシウム、イットリウムから選ばれた1種ま
たは2種以上の金属又は酸化物によって形成される。こ
こで第2成分の添加目的は電極活性を長期間安定に発揮
させることにあり、第1成分と第2成分からなる合金ま
たは、金属間化合物が好ましいが、第2成分が酸化物の
形態で第1成分の中に分散された複合電極でも良い。こ
れら第2成分の添加量としは、2〜50wt%、好まし
くは2〜20wt%である。2wt%未満では添加の目
的が達成されない。50wt%をこえると電極活性の低
下をまねき好ましくない。
On the other hand, a porous metal electrode or a porous composite electrode with a porosity of 40 to 75 vol% was effective as an electrode for efficiently carrying out the electrochemical reduction reaction of CO32- ions at the anode. . Porosity is 40vo
If it was less than 1%, the reaction gas would not be sufficiently diffused into the electrode, resulting in poor performance. Moreover, if it exceeds 75 vol%, the voids in the electrode will increase, the amount of electrode catalyst per unit area will decrease, and the reaction will not proceed sufficiently. As for the material of the porous metal electrode or porous composite electrode, the first component is nickel or copper, and the second component is one or more metals selected from aluminum, zirconium, magnesium, and yttrium. or formed by oxides. The purpose of adding the second component here is to stably exhibit electrode activity over a long period of time, and an alloy or an intermetallic compound consisting of the first component and the second component is preferable, but the second component is in the form of an oxide. It may also be a composite electrode dispersed within the first component. The amount of these second components added is 2 to 50 wt%, preferably 2 to 20 wt%. If the amount is less than 2 wt%, the purpose of addition will not be achieved. If it exceeds 50 wt%, the electrode activity may decrease, which is not preferable.

【0015】ところで、一般の燃焼排ガス等には、NO
x やCO2 の他にO2 が3〜10vol%共存す
る。O2 の共存は、高い電気エネルギ−を得るために
むしろ好都合である。このようなNOx ,CO2 お
よびO2 が混合する場合、カソ−ドの電気化学的酸化
還元反応は次式の如く進行すると推測される。   NO+1/2O2+2CO2+4e─→2CO32
− +1/2N2−−(化7)NOx 及びO2 によ
るCO2 の酸化反応は次式のごとくになり、この反応
における生成自由エネルギ−(ΔG)をJanafTh
emochemical Tables値を採用して求
めると下記ごとくである。
[0015] By the way, general combustion exhaust gas, etc. contains NO.
In addition to x and CO2, 3 to 10 vol% of O2 coexists. The coexistence of O2 is rather advantageous for obtaining high electrical energy. When such NOx, CO2 and O2 are mixed, it is assumed that the electrochemical redox reaction at the cathode proceeds as shown in the following equation. NO+1/2O2+2CO2+4e─→2CO32
- +1/2N2--(Chemical formula 7) The oxidation reaction of CO2 by NOx and O2 is as shown in the following equation, and the free energy of formation (ΔG) in this reaction is expressed as JanafTh
The results obtained using the emochemical Tables values are as follows.

【0016】   2NO+2CO2 +4e  ──→2CO32−
 +N −−−−−−−−−−−−−− (化8)  
NO2 +2CO2 +4e  ──→2CO32− 
+1/2N −−−−−−−−−(化9)  O2 +
2CO2 +4e  ───→2CO32− −−−−
−−−−−−−−−−−−−−−−(化10)生成自由
エネルギ−(ΔG)は、   (化8)式−−−−−−−−−−ΔG:21.6k
cal/mol  (化9)式−−−−−−−−−−Δ
G:29.8kcal/mol  (化10)式−−−
−−−−−−ΔG:40.5kcal/mol    
                         
  (650℃におけるΔG)ΔGの値が小さいほど平
衡的に進行し易いと推測すれば、CO2 の電気化学的
酸化反応はNO>NO2 >O2 の順で優先すること
が予想されNOx の選択的還元反応が進行する。
2NO+2CO2 +4e ---→2CO32-
+N −−−−−−−−−−−−−− (Chemical formula 8)
NO2 +2CO2 +4e ──→2CO32-
+1/2N −−−−−−−−(Chemical formula 9) O2 +
2CO2 +4e ───→2CO32− −−−−
−−−−−−−−−−−−−−−−(Chemical formula 10) The free energy of formation (ΔG) is expressed by the formula (Chemical formula 8)−−−−−−−−−−ΔG: 21.6k
cal/mol (Chemical formula 9) ----------Δ
G: 29.8 kcal/mol (Chemical formula 10)---
-------ΔG: 40.5kcal/mol

(ΔG at 650°C) If we assume that the smaller the value of ΔG, the easier it is to proceed in equilibrium, it is predicted that the electrochemical oxidation reaction of CO2 will take priority in the order of NO>NO2>O2, resulting in selective reduction of NOx. The reaction progresses.

【0017】本発明の電気化学的有害ガス処理システム
において、大容量の電気エネルギ−を取り出すためには
燃焼排ガスを直接カソ−ドに導入しただけでは化学量論
的に不足する場合がある。このようなときは、外部から
不足ガスを補うことにより解決できる。また、燃焼排ガ
ス等においてCO2 をCO32− イオンに酸化する
のに必要なNOx 並びにO2 が共存しない場合には
図2に示すごとくカソード側の燃焼排ガス8中に外部か
ら空気9などを取り入れてカソ−ドに供給するのが有効
である。O2 供給量はNOx の共存量によって多少
変化するが燃焼排ガス中のCO2 に対して1/2モル
相当量あれば充分である。また、図3に示すように空気
9の中に燃焼排ガス8を添加してカソ−ドに供給しても
目的が達成できる。
In the electrochemical harmful gas treatment system of the present invention, in order to extract a large amount of electrical energy, simply introducing the combustion exhaust gas directly into the cathode may not be stoichiometrically sufficient. In such a case, the problem can be solved by supplementing the insufficient gas from outside. In addition, if NOx and O2, which are necessary to oxidize CO2 to CO32- ions, do not coexist in the combustion exhaust gas, air 9 or the like is introduced from the outside into the combustion exhaust gas 8 on the cathode side as shown in Fig. 2. It is effective to supply the The amount of O2 supplied varies somewhat depending on the amount of NOx present, but an amount equivalent to 1/2 mole of CO2 in the combustion exhaust gas is sufficient. Further, as shown in FIG. 3, the objective can also be achieved by adding combustion exhaust gas 8 to air 9 and supplying it to the cathode.

【0018】ところで、アノ−ドではH2 やCO等の
還元性ガスを供給してCO32−イオンを電気化学的に
CO2に還元する。アノ−ドガスには天然ガスやナフサ
などを改質して得られるH2 リッチガスやCOを多く
含む石炭ガス化ガス等が適用できる。前述したごとくア
ノ−ド排出ガスは高濃度のCO2 を含有するので、図
4に示すごとくアノ−ドガス排出ラインにCO2 装置
を設けることにより燃焼排ガス中のCO2 を効率良く
回収することが可能になる。回収したCO2 はカソ−
ド側に還流して有効利用することは発電効率を向上させ
る点で好ましい。
By the way, at the anode, a reducing gas such as H2 or CO is supplied to electrochemically reduce CO32- ions to CO2. As the anode gas, H2-rich gas obtained by reforming natural gas or naphtha, or coal gasification gas containing a large amount of CO can be used. As mentioned above, the anode exhaust gas contains a high concentration of CO2, so by installing a CO2 device in the anode gas exhaust line as shown in Figure 4, it becomes possible to efficiently recover CO2 in the combustion exhaust gas. . The recovered CO2 is a casso-
It is preferable to return the waste to the power side for effective use in order to improve power generation efficiency.

【0019】CO2 の回収方法は特に限定されるもの
ではなく従来のアルカリ吸収法や炭酸カルシウム吸着法
,PSA法等が適用できる。燃焼排ガス中には、一般に
CO2 、O2 、NOx 、N2 等のほかにSOx
 やダストが含まれている。カソ−ドに悪影響を及ぼす
SOx やダストは予め除去したあとカソ−ド側に供給
するのが好ましい。
The CO2 recovery method is not particularly limited, and conventional alkali absorption methods, calcium carbonate adsorption methods, PSA methods, etc. can be applied. Combustion exhaust gas generally contains CO2, O2, NOx, N2, etc., as well as SOx.
Contains dust. It is preferable to remove SOx and dust that have an adverse effect on the cathode before supplying them to the cathode side.

【0020】[0020]

【作用】アノ−ド及びカソ−ドとその間にイオン伝導性
電解質を配置してセルを構成し、カソ−ド側には窒素酸
化物(NOx )並びにCO2 等を含む有害ガスを供
給し、アノ−ド側にはH2 などの還元性ガスを供給し
て電気化学的酸化還元反応を進行させてNOx 等をN
2に還元処理すると共に酸化還元反応によって発生する
電子を外部回路に取り出し電気エネルギ−に変換する。
[Operation] A cell is constructed by arranging an ion-conducting electrolyte between an anode and a cathode, and harmful gases including nitrogen oxides (NOx) and CO2 are supplied to the cathode side. - A reducing gas such as H2 is supplied to the side to promote an electrochemical redox reaction to remove NOx, etc.
At the same time, the electrons generated by the redox reaction are taken out to an external circuit and converted into electrical energy.

【0021】また、本発明の他の利用方法としてカソー
ドに酸化活性触媒を適用することにより、NOを電気化
学的に酸化して溶融炭酸塩に吸収して排ガス中のNOを
除去することも可能である。
[0021] In addition, as another method of utilizing the present invention, by applying an oxidation active catalyst to the cathode, it is also possible to electrochemically oxidize NO and absorb it into molten carbonate to remove NO from exhaust gas. It is.

【0022】[0022]

【実施例】【Example】

【0023】[0023]

【実施例1】アノ−ドに気孔率70vol%の10wt
%Al−残Ni電極を用い、カソ−ドに気孔率75vo
l%の5wt%Ag−残NiO電極を用い、電解質には
Li2 CO3 +K2 CO3 (62:38モル比
)混合炭酸塩を厚さ1.7mmの多孔質リチウムアルミ
ネ−ト板に含浸して電極面積64cm2の単セルを構成
した。このセルを650℃に昇温した後、カソ−ドに2
0vol%NO−20vol%CO2 −残N2 混合
ガスを、アノ−ドには50vol%H2 −残N2 混
合ガスをそれぞれ500ml/min供給して発電試験
をした。負荷電流密度と電圧の関係を求めた結果を図5
に示す。カソ−ドにNOとCO2 混合ガスが供給され
、電気化学的反応が進行して電気エネルギ−が得られた
[Example 1] 10wt with a porosity of 70vol% on the anode
%Al-remaining Ni electrode, the cathode has a porosity of 75vo.
A porous lithium aluminate plate with a thickness of 1.7 mm was impregnated with Li2 CO3 + K2 CO3 (62:38 molar ratio) mixed carbonate as the electrolyte, and the electrode area was A single cell of 64 cm2 was constructed. After heating this cell to 650°C, the cathode
A power generation test was conducted by supplying a mixed gas of 0 vol% NO-20 vol% CO2-residual N2 to the anode, and a mixed gas of 50 vol% H2-residual N2 to the anode at a rate of 500 ml/min. Figure 5 shows the results of determining the relationship between load current density and voltage.
Shown below. A mixed gas of NO and CO2 was supplied to the cathode, and an electrochemical reaction proceeded to obtain electrical energy.

【0024】[0024]

【実施例2】実施例1で用いたセルにより発電試験中に
カソ−ド出口のガスを化学発光分析計を用いてNOx 
の定量分析をした。分析結果を表1に示すが高い脱硝率
が得られた。
[Example 2] During a power generation test using the cell used in Example 1, the gas at the cathode outlet was measured using a chemiluminescence analyzer to determine NOx.
A quantitative analysis was conducted. The analysis results are shown in Table 1, and a high denitrification rate was obtained.

【0025】[0025]

【表1】[Table 1]

【0026】[0026]

【実施例3】本実施例では、カソ−ド電極について検討
した。多孔質Ni焼結板に第2成分として硝酸銀、硝酸
リチウム、硝酸クロム、硝酸銅、硝酸鉄、及び硝酸アル
ミニウムを金属酸化物としてそれぞれ5wt%相当量含
浸し乾燥した後、空気中で800℃、1時間焼成して2
成分系のNiO+α電極を作成した。これらの電極は厚
みが約0.7mmで気孔率が68〜71vol%であっ
た。これらの電極をカソ−ドとして、アノ−ドには厚み
0.65mmで気孔率68vol%の10wt%Al−
残Ni電極を用い、電解質にはLi2 CO3+K2 
CO3 (62:38モル比)混合炭酸塩を厚さ1.9
mmの多孔質リチウムアルミネ−ト板に含浸して電極面
積64cm2 の単セルを構成した。このセルを650
℃に昇温した後、カソ−ドに20vol%NO−20v
ol%CO2 −残N2 混合ガスを、アノ−ドには5
0vol%H2 −残N2 混合ガスをそれぞれ500
ml/min供給して発電試験をした。負荷電流密度9
0mA/cm  におけるセル電圧とカソ−ド出口のN
O2 濃度を分析した結果を表2に示す。
[Example 3] In this example, a cathode electrode was studied. A porous Ni sintered plate was impregnated with silver nitrate, lithium nitrate, chromium nitrate, copper nitrate, iron nitrate, and aluminum nitrate in an amount equivalent to 5 wt% each as a metal oxide as a second component, dried, and then heated at 800°C in air. Bake for 1 hour 2
A component-based NiO+α electrode was created. These electrodes had a thickness of about 0.7 mm and a porosity of 68 to 71 vol%. These electrodes are used as cathodes, and the anode is made of 10 wt% Al-
Using residual Ni electrode, Li2 CO3 + K2 as electrolyte
CO3 (62:38 molar ratio) mixed carbonate to a thickness of 1.9
A single cell with an electrode area of 64 cm2 was constructed by impregnating a porous lithium aluminate plate with a thickness of 64 cm2. Set this cell to 650
After raising the temperature to ℃, 20vol%NO-20v was applied to the cathode.
ol% CO2 - remaining N2 mixed gas, 5% to the anode
0 vol% H2 - remaining N2 mixed gas at 500% each
A power generation test was conducted by supplying ml/min. Load current density 9
Cell voltage at 0 mA/cm and N at cathode exit
Table 2 shows the results of analyzing the O2 concentration.

【0027】[0027]

【表2】[Table 2]

【0028】[0028]

【実施例4】本実施例では、アノ−ド電極について検討
した。多孔質ニッケル焼結板に第2成分として硝酸アル
ミニウム、硝酸ジルコニル、硝酸マグネシウム、硝酸イ
ットリウム、を金属酸化物として8wt%相当量を含浸
し乾燥した後、H2 雰囲気中で800℃、0.5時間
焼成した。これらの電極厚みは約0.6mmで気孔率が
65〜69vol%であった。これらの電極をアノ−ド
として、カソ−ドには厚み約0.7mmで気孔率が70
vol%の5wt%Ag−残NiOを用い、電解質には
Li2 CO3 +K2 CO3 (62:38モル比
)混合炭酸塩を厚さ1.9mmの多孔質リチウムアルミ
ネ−ト板に含浸して電極面積64cm2 の単セルを構
成した。このセルを実施例3と同様に650℃に昇温し
た後、カソ−ドに20vol%NO−20vol%CO
2 −残N2 混合ガスを、アノ−ドには50vol%
H2 −残N2 混合ガスをそれぞれ500ml/mi
n供給して発電試験をした。負荷電流密度90mA/c
mにおけるセル電圧とカソ−ド出口のNOx 濃度を分
析した結果を表3に示す。
[Example 4] In this example, an anode electrode was studied. A porous nickel sintered plate was impregnated with aluminum nitrate, zirconyl nitrate, magnesium nitrate, and yttrium nitrate in an amount equivalent to 8 wt% as metal oxides as the second component, dried, and then heated at 800°C for 0.5 hours in an H2 atmosphere. Fired. The thickness of these electrodes was about 0.6 mm, and the porosity was 65 to 69 vol%. Using these electrodes as anodes, the cathode has a thickness of about 0.7 mm and a porosity of 70.
A porous lithium aluminate plate with a thickness of 1.9 mm was impregnated with a mixed carbonate of Li2 CO3 + K2 CO3 (62:38 molar ratio) as an electrolyte, and an electrode area of 64 cm2 was prepared using vol% 5wt% Ag-residue NiO. A single cell was constructed. After raising the temperature of this cell to 650°C in the same manner as in Example 3, 20 vol% NO-20 vol% CO was added to the cathode.
2 - Residual N2 mixed gas, 50 vol% to the anode
H2 - remaining N2 mixed gas at 500ml/mi each
A power generation test was conducted by supplying n. Load current density 90mA/c
Table 3 shows the results of analyzing the cell voltage and NOx concentration at the cathode outlet.

【0029】[0029]

【表3】[Table 3]

【0030】[0030]

【実施例5】アノ−ドに気孔率70vol%の10wt
%Al−残Ni電極を用い、カソ−ドに気孔率75vo
l%の5wt%Ag−残NiO電極を用いて、電解質に
は、Li2 CO3 +K2 CO3 (62:38モ
ル比)混合炭酸塩を厚さ1.7mmの多孔質リチウムア
ルミネ−ト板に含浸して電極面積100cm2 の単セ
ルを構成した。
[Example 5] 10wt with a porosity of 70vol% on the anode
%Al-remaining Ni electrode, the cathode has a porosity of 75vo.
A porous lithium aluminate plate with a thickness of 1.7 mm was impregnated with a mixed carbonate of Li2 CO3 + K2 CO3 (62:38 molar ratio) as an electrolyte using a 1% 5 wt% Ag-remaining NiO electrode. A single cell with an electrode area of 100 cm2 was constructed.

【0031】このセルを650℃に昇温した後、カソ−
ドに2vol%NO−14vol%O  −30vol
%CO2 −残N2 混合ガスを460ml/min、
アノ−ドには80vol%H2 −残N2 混合ガスを
164ml/min供給して発電試験をした。  負荷
電流密度150mA/cm  におけるセル電圧とカソ
−ド出口ガスのNO濃度およびアノ−ド出口ガスのCO
2 濃度(dryベ−ス)測定結果を表4に示す。12
ワットの電気出力と99%の脱硝率並びに62%のCO
2 濃度ガスが得られた。
After heating this cell to 650°C, the cathode
2vol%NO-14vol%O-30vol
%CO2 - residual N2 mixed gas at 460ml/min,
A power generation test was conducted by supplying a mixed gas of 80 vol% H2 and residual N2 to the anode at a rate of 164 ml/min. Cell voltage at load current density 150 mA/cm, NO concentration of cathode outlet gas, and CO of anode outlet gas
2 The concentration (dry base) measurement results are shown in Table 4. 12
Watt electrical output and 99% denitrification rate as well as 62% CO
2 concentration gas was obtained.

【0032】[0032]

【表4】[Table 4]

【0033】[0033]

【実施例6】アノ−ドに気孔率65vol%の2wt%
MgO−残Ni電極を用い、カソ−ドに気孔率75vo
l%の2wt%Li2 O−残NiO電極を用いて電解
質にはLi2 CO3 +K2 CO3 (62:38
モル比)混合炭酸塩を厚さ1.5mmの多孔質リチウム
アルミネ−ト板に含浸して電極面積100cm2 の単
セルを構成した。
[Example 6] 2 wt% of porosity of 65 vol% on the anode
Using a MgO-remaining Ni electrode, the cathode has a porosity of 75vo.
Li2 CO3 + K2 CO3 (62:38
A porous lithium aluminate plate with a thickness of 1.5 mm was impregnated with the mixed carbonate (molar ratio) to form a single cell with an electrode area of 100 cm2.

【0034】このセルを650℃に昇温した後、カソ−
ドにボイラ−排ガスを模擬した0.012vol%NO
−7vol%O2 −12vol%CO2 −残N2 
混合ガスを1150ml/min、アノ−ドにはLNG
改質模擬ガスとした70vol%H 2−11vol%
H2 O−残N2 混合ガスを187ml/min供給
して発電試験をした。
After heating this cell to 650°C, the cathode
0.012vol%NO simulating boiler exhaust gas
-7vol%O2 -12vol%CO2 -Remaining N2
Mixed gas 1150ml/min, LNG for anode
70vol%H2-11vol% as reformed simulated gas
A power generation test was conducted by supplying a H2O-residual N2 mixed gas at a rate of 187 ml/min.

【0035】負荷電流密度150mA/cm2 におけ
るセル電圧とカソ−ド出口ガスのNO濃度を測定した結
果を表5に示す。0.75Vのセル電圧と99%以上の
脱硝率が得られた。
Table 5 shows the results of measuring the cell voltage and the NO concentration of the cathode outlet gas at a load current density of 150 mA/cm2. A cell voltage of 0.75V and a denitrification rate of 99% or more were obtained.

【0036】[0036]

【表5】[Table 5]

【0037】[0037]

【実施例7】図6は、実施例1から6に示した形式の電
気化学的排ガス処理システムを火力発電所の燃焼排ガス
の電気化学的処理システムとして用いた例を示している
。図示されるように、このシステムは、燃料14と空気
19をボイラ15に導入して燃焼し、蒸気を発生させて
スチ−ムタ−ビン21を稼働する。燃焼排ガスは集塵機
16および脱硫装置17により精製したのち、セルのカ
ソ−ド3に導入する。一方、燃料改質機18により製造
したH2 リッチガスをセルのアノ−ド2に導入して電
気化学的酸化還元反応を進行させて電流を取り出す。ア
ノ−ド排出ライン10にCO2 除去装置11を設けC
O2 を回収する。回収したCO2 の一部はCO2 
ガス供給ライン13によりカソ−ド3に還流する。また
、空気19は空気補給ライン20により燃焼排ガスに付
加する。 本システムにより排ガス中に含まれる窒素酸化物(NO
x )等の有害ガスを電気化学的反応によって処理して
無害化すると共に電気化学的酸化還元反応により発生す
る電子を外部回路に取り出し電気エネルギ−に変換する
と共に燃焼排ガス中のCO2 を濃縮して効率良く除去
することできる。
[Embodiment 7] FIG. 6 shows an example in which the electrochemical exhaust gas treatment system of the type shown in Examples 1 to 6 is used as an electrochemical treatment system for combustion exhaust gas of a thermal power plant. As shown in the figure, this system introduces fuel 14 and air 19 into a boiler 15 and burns them to generate steam to operate a steam turbine 21. After the combustion exhaust gas is purified by a dust collector 16 and a desulfurizer 17, it is introduced into the cathode 3 of the cell. On the other hand, H2-rich gas produced by the fuel reformer 18 is introduced into the anode 2 of the cell to allow an electrochemical redox reaction to proceed and to extract electric current. A CO2 removal device 11 is installed in the anode discharge line 10.
Collect O2. Some of the CO2 recovered is CO2
The gas is refluxed to the cathode 3 via a gas supply line 13. Air 19 is also added to the combustion exhaust gas via an air make-up line 20. This system eliminates nitrogen oxides (NO) contained in exhaust gas.
It processes harmful gases such as It can be removed efficiently.

【0038】[0038]

【実施例8】図7は、同様に、高温ガスタ−ビンの排ガ
スを電気化学的に処理するシステムを示している。空気
19をコンプレッサ24で昇圧し燃料14と共に高温ガ
スタ−ビン22導入して発電機23を駆動し、燃焼排ガ
スをセルのカソ−ド3に導入する。一方、燃料改質機1
8により製造したH2 リッチガスをセルのアノ−ド2
に導入して電気化学的酸化還元反応を進行させて電流を
取り出す。アノ−ド排出ライン10にCO2 除去装置
11を設けCO2 を回収する。回収したCO2 の一
部はCO2 ガス供給ライン13によりカソ−ド3に還
流する。また、空気19は空気補給ライン20により燃
焼排ガスに付加する。本システムにより窒素酸化物(N
Ox )含有率の高い高温ガスタ−ビン排ガス中のNO
x 等、有害ガスを電気化学的反応によって無害化する
と共に電気化学的酸化還元反応により発生する電子を外
部回路に取り出し電気エネルギ−に変換すると共に燃焼
排ガス中のCO2 を濃縮して効率良く除去することで
きる。
Embodiment 8 FIG. 7 similarly shows a system for electrochemically treating exhaust gas from a high temperature gas turbine. Air 19 is pressurized by a compressor 24 and introduced together with fuel 14 into a high-temperature gas turbine 22 to drive a generator 23, and the combustion exhaust gas is introduced into the cathode 3 of the cell. On the other hand, fuel reformer 1
The H2 rich gas produced in step 8 is applied to the anode 2 of the cell.
The electrochemical oxidation-reduction reaction proceeds and current is extracted. A CO2 removal device 11 is provided in the anode discharge line 10 to recover CO2. A portion of the recovered CO2 is refluxed to the cathode 3 via the CO2 gas supply line 13. Air 19 is also added to the combustion exhaust gas via an air make-up line 20. With this system, nitrogen oxides (N
Ox) NO in high-temperature gas turbine exhaust gas with high content
It detoxifies harmful gases such as x by electrochemical reactions, takes electrons generated by electrochemical redox reactions to an external circuit, converts them into electrical energy, and condenses CO2 in combustion exhaust gas for efficient removal. I can do that.

【0039】[0039]

【発明の効果】本発明によれば産業排ガス中に含まれる
窒素酸化物(NOx)等の有害ガスを電気化学的反応に
よって処理して無害化すると共に電気化学的酸化還元反
応により発生する電子を外部回路に取り出し電気エネル
ギ−に変換すると共に燃焼排ガス中のCO2 を濃縮し
て効率良く除去することできる。
Effects of the Invention According to the present invention, harmful gases such as nitrogen oxides (NOx) contained in industrial exhaust gas are treated by electrochemical reactions to render them harmless, and electrons generated by electrochemical redox reactions are The CO2 in the combustion exhaust gas can be extracted and converted into electrical energy by an external circuit, and can be efficiently removed by concentrating it.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の排ガス処理システムに用いる単位セル
の概略断面図。
FIG. 1 is a schematic cross-sectional view of a unit cell used in the exhaust gas treatment system of the present invention.

【図2】燃焼排ガスに空気を添加する場合の単位セルの
概略断面図。
FIG. 2 is a schematic cross-sectional view of a unit cell when air is added to combustion exhaust gas.

【図3】空気中に燃焼排ガスを添加する場合の単位セル
の概略断面図。
FIG. 3 is a schematic cross-sectional view of a unit cell when combustion exhaust gas is added to air.

【図4】本発明の排ガス処理システムの全体構成を示す
図。
FIG. 4 is a diagram showing the overall configuration of the exhaust gas treatment system of the present invention.

【図5】試験セルの負荷電流密度と電圧の関係を示す図
FIG. 5 is a diagram showing the relationship between load current density and voltage of a test cell.

【図6】本発明に基づく火力発電所燃焼排ガスの電気化
学的処理システムを示す図。
FIG. 6 is a diagram showing an electrochemical treatment system for thermal power plant combustion exhaust gas according to the present invention.

【図7】本発明に基づく高温ガスタ−ビン排ガスの電気
化学的処理システムを示す図。
FIG. 7 shows an electrochemical treatment system for high temperature gas turbine exhaust gas according to the present invention.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】  アノ−ド及びカソ−ドとその間に介在
する炭酸イオン伝導性電解質並びに該アノ−ド及びカソ
−ドに反応ガスを供給するセパレ−タが設置されて成る
セルを構成して、カソ−ド側には窒素酸化物(NOx 
)と炭酸ガス(CO2 )を含む排ガスを供給し、アノ
−ド側には還元性ガスを供給して電気化学的酸化還元反
応を進行させてNOx をN2に還元処理すると共に酸
化還元反応によって発生する電子を外部回路に取り出し
電気エネルギ−に変換することを特徴とする電気化学的
排ガス処理システム。
Claim 1: A cell comprising an anode and a cathode, a carbonate ion conductive electrolyte interposed therebetween, and a separator for supplying a reaction gas to the anode and cathode. , on the cathode side, nitrogen oxides (NOx
) and carbon dioxide (CO2), and a reducing gas is supplied to the anode side to proceed with an electrochemical redox reaction to reduce NOx to N2 and reduce NOx generated by the redox reaction. An electrochemical exhaust gas treatment system characterized by extracting electrons from the exhaust gas into an external circuit and converting them into electrical energy.
【請求項2】  炭酸イオン伝導性電解質が、炭酸リチ
ウム,炭酸カリウム,炭酸ナトリウム,炭酸バリウム,
炭酸ストロンチウム,炭酸カルシウムから選ばれた1種
または2種以上の混合炭酸塩で構成される溶融炭酸塩電
解質よりなることを特徴とする、請求項1記載の電気化
学的排ガス処理システム。
[Claim 2] The carbonate ion conductive electrolyte is lithium carbonate, potassium carbonate, sodium carbonate, barium carbonate,
2. The electrochemical exhaust gas treatment system according to claim 1, comprising a molten carbonate electrolyte composed of one or more mixed carbonates selected from strontium carbonate and calcium carbonate.
【請求項3】  カソ−ドには多孔質電気伝導性酸化物
電極を用い、アノ−ドには多孔質金属電極または多孔質
複合電極を用いることを特徴とする、請求項1または2
記載の電気化学的排ガス処理システム。
3. Claim 1 or 2, characterized in that a porous electrically conductive oxide electrode is used for the cathode, and a porous metal electrode or a porous composite electrode is used for the anode.
Electrochemical exhaust gas treatment system as described.
【請求項4】  カソ−ドの多孔質電気伝導性酸化物電
極が、酸化ニッケルからなる第1の成分および銀、リチ
ウム、クロム、銅、鉄、アルミニウム、およびコバルト
から選ばれた1種または2種以上の金属又は酸化物から
なる第2の成分によって形成されていることを特徴とす
る、請求項3記載の電気化学的排ガス処理システム。
4. The porous electrically conductive oxide electrode of the cathode comprises a first component consisting of nickel oxide and one or two selected from silver, lithium, chromium, copper, iron, aluminum, and cobalt. 4. The electrochemical exhaust gas treatment system according to claim 3, wherein the second component is made of one or more metals or oxides.
【請求項5】  アノ−ドの多孔質金属電極または多孔
質複合電極が、ニッケル又は銅からなる第1成分および
アルミニウム、ジルコニウム、マグネシウム、およびイ
ットリウムから選ばれた1種または2種以上の金属又は
酸化物よりなる第2成分によって形成されることを特徴
とする、請求項3記載の電気化学的排ガス処理システム
5. The porous metal electrode or porous composite electrode of the anode comprises a first component consisting of nickel or copper and one or more metals selected from aluminum, zirconium, magnesium, and yttrium, or 4. The electrochemical exhaust gas treatment system according to claim 3, characterized in that it is formed by a second component consisting of an oxide.
【請求項6】  カソ−ド側にはNOx 、CO2 、
O2含有ガスを供給し、アノ−ド側にはH2 、CO含
有ガスを供給して500〜800℃の温度領域において
、カソ−ドではNOx の電気化学的還元反応とCO2
 の電気化学的酸化反応を進行させ、アノ−ドではCO
32− イオンの電気化学的還元反応を進行させること
により、NOx の無害化処理を行うことを特徴とする
、請求項1ないし5に記載の電気化学的排ガス処理シス
テム。
[Claim 6] On the cathode side, NOx, CO2,
O2-containing gas is supplied, and H2 and CO-containing gas are supplied to the anode side, and in a temperature range of 500 to 800°C, an electrochemical reduction reaction of NOx and CO2 occurs at the cathode.
The electrochemical oxidation reaction of CO proceeds at the anode.
32- The electrochemical exhaust gas treatment system according to any one of claims 1 to 5, wherein NOx is rendered harmless by proceeding with an electrochemical reduction reaction of ions.
【請求項7】  CO2 、NOx を含有する燃焼排
ガスに、CO2 に対して少なくとも1/2モル相当量
のO2 ガスを混合してカソ−ドに供給し、NOx 並
びにO2 とCO2 の電気化学的反応を行わせNOx
 を還元無害化すると共に、CO2 をCO32− イ
オンに酸化してアノ−ド側にイオン伝導せしめ、アノ−
ドではH2 及びCOによるCO22− イオンの電気
化学的還元反応を進行させてCO2 として濃縮しアノ
−ド排出ラインよりCO2 を除去すると同時に酸化還
元反応によって発生する電子を外部回路に取り出し電気
エネルギ−に変換することを特徴とする電気化学的排ガ
ス処理システム。
7. Combustion exhaust gas containing CO2 and NOx is mixed with O2 gas in an amount equivalent to at least 1/2 mole relative to CO2, and the mixture is supplied to the cathode to cause an electrochemical reaction between NOx, O2, and CO2. NOx
At the same time, CO2 is reduced and rendered harmless, and CO2 is oxidized to CO32- ions, which conduct the ions to the anode side.
The electrochemical reduction reaction of CO22- ions by H2 and CO progresses in the deionizer, concentrating them as CO2, and removing CO2 from the anode exhaust line. At the same time, the electrons generated by the redox reaction are taken out to an external circuit and converted into electrical energy. An electrochemical exhaust gas treatment system characterized by converting.
【請求項8】  CO2 、NOx を含有する燃焼排
ガスが火力発電所燃焼排ガスであることを特徴とする、
請求項7に記載の電気化学的排ガス処理システム。
[Claim 8] The combustion exhaust gas containing CO2 and NOx is a thermal power plant combustion exhaust gas,
The electrochemical exhaust gas treatment system according to claim 7.
【請求項9】  CO2 、NOx を含有する燃焼排
ガスがガスタ−ビンの高温排ガスであることを特徴とす
る、請求項7に記載の電気化学的排ガス処理システム。
9. The electrochemical exhaust gas treatment system according to claim 7, wherein the combustion exhaust gas containing CO2 and NOx is high temperature exhaust gas from a gas turbine.
【請求項10】  CO2 、NOx を含有する燃焼
排ガスが化学プラント又は核燃料再処理プラントの排ガ
スであることを特徴とする、請求項7に記載の電気化学
的排ガス処理システム。
10. The electrochemical exhaust gas treatment system according to claim 7, wherein the combustion exhaust gas containing CO2 and NOx is exhaust gas from a chemical plant or a nuclear fuel reprocessing plant.
【請求項11】  燃焼排ガス中に含まれるイオウ酸化
物(SOx)を除去した後でカソ−ドに供給することを
特徴とする、請求項7ないし10に記載の電気化学的排
ガス処理システム
11. The electrochemical exhaust gas treatment system according to claim 7, wherein sulfur oxides (SOx) contained in the combustion exhaust gas are removed and then supplied to the cathode.
JP3068641A 1991-04-01 1991-04-01 Electrochemical exhaust gas treatment system Expired - Lifetime JP2517799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3068641A JP2517799B2 (en) 1991-04-01 1991-04-01 Electrochemical exhaust gas treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3068641A JP2517799B2 (en) 1991-04-01 1991-04-01 Electrochemical exhaust gas treatment system

Publications (2)

Publication Number Publication Date
JPH04305227A true JPH04305227A (en) 1992-10-28
JP2517799B2 JP2517799B2 (en) 1996-07-24

Family

ID=13379558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3068641A Expired - Lifetime JP2517799B2 (en) 1991-04-01 1991-04-01 Electrochemical exhaust gas treatment system

Country Status (1)

Country Link
JP (1) JP2517799B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515106A (en) * 2003-01-14 2006-05-18 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method for producing electricity and high concentration carbon dioxide
JP2009240881A (en) * 2008-03-31 2009-10-22 Chugoku Electric Power Co Inc:The Method of desulfurizing exhaust gas, exhaust gas desulfurizer, and carbon dioxide-recovering fuel cell power generation system equipped with the exhaust gas desulfurizer
JP2010242611A (en) * 2009-04-04 2010-10-28 Sumitomo Electric Ind Ltd NOx DECOMPOSITION ELEMENT AND GENERATOR
JP2012097351A (en) * 2010-10-29 2012-05-24 Univ Qinghua Electrochemical-catalytic converter for exhaust emission control
JP2016511525A (en) * 2013-03-15 2016-04-14 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company NOx mitigation in integrated power generation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101647338B1 (en) * 2014-08-12 2016-08-10 광주과학기술원 A process of reducing carbon dioxide by using a cathode comprising metal oxide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03106418A (en) * 1989-09-19 1991-05-07 Toshio Miyauchi Co2 recovering process in combustion gas and device therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03106418A (en) * 1989-09-19 1991-05-07 Toshio Miyauchi Co2 recovering process in combustion gas and device therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515106A (en) * 2003-01-14 2006-05-18 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method for producing electricity and high concentration carbon dioxide
JP4800919B2 (en) * 2003-01-14 2011-10-26 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method for producing electricity and high concentration carbon dioxide
JP2009240881A (en) * 2008-03-31 2009-10-22 Chugoku Electric Power Co Inc:The Method of desulfurizing exhaust gas, exhaust gas desulfurizer, and carbon dioxide-recovering fuel cell power generation system equipped with the exhaust gas desulfurizer
JP2010242611A (en) * 2009-04-04 2010-10-28 Sumitomo Electric Ind Ltd NOx DECOMPOSITION ELEMENT AND GENERATOR
JP2012097351A (en) * 2010-10-29 2012-05-24 Univ Qinghua Electrochemical-catalytic converter for exhaust emission control
JP2016511525A (en) * 2013-03-15 2016-04-14 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company NOx mitigation in integrated power generation

Also Published As

Publication number Publication date
JP2517799B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
KR101767894B1 (en) Nitrogen circulation type system and method for treating nitrogen oxide
US5213912A (en) Molten carbonate fuel cell sulfur scrubber
KR101290022B1 (en) Electrochemical-catalytic converter for exhaust emission control
WO2010120652A1 (en) Thermochemical energy storage system
CN105664682A (en) Method for deeply desulfurizing molten salt and recycling flue gas
JP2004174370A (en) Method, apparatus and system for treating gas
JPH11169661A (en) Carbon dioxide recovering device
JP2517799B2 (en) Electrochemical exhaust gas treatment system
KR20110100566A (en) Electrochemical-catalytic converter for exhaust emission control with power generation
US3979225A (en) Nitrogen dioxide regenerative fuel cell
KR102179532B1 (en) An electrolytic apparatus for removing nitrogen oxides, and a method for removing nitrogen oxides
JP4100479B2 (en) Carbon dioxide decomposition method
JP6637724B2 (en) Engine system and method of operating engine system
JPH02311302A (en) Purification apparatus for hydrogen gas to be supplied to fuel cell
CN110957513A (en) Direct coal fuel cell power generation system with near-zero carbon emission
JPS62274561A (en) Molten carbonate fuel cell
JP4416503B2 (en) Apparatus and method for supplying hydrogen to a fuel cell and use of the fuel cell for electrically driving a vehicle
JP2004171802A (en) Fuel cell system
JP4385424B2 (en) Carbon dioxide concentration method and apparatus
Langer et al. Electrogenerative and related electrochemical methods for NOx and SOx control
JPH11191427A (en) Electric power recovering method from exhaust gas
JP3649962B2 (en) Method and apparatus for removing nitrogen oxides and sulfur compounds in gas
CN210897490U (en) Direct coal fuel cell power generation system with near-zero carbon emission
JP2972438B2 (en) Fuel cell generator
JP3975803B2 (en) Method for producing CO selective oxidation catalyst