JPH04303814A - Optical isolator - Google Patents

Optical isolator

Info

Publication number
JPH04303814A
JPH04303814A JP9099891A JP9099891A JPH04303814A JP H04303814 A JPH04303814 A JP H04303814A JP 9099891 A JP9099891 A JP 9099891A JP 9099891 A JP9099891 A JP 9099891A JP H04303814 A JPH04303814 A JP H04303814A
Authority
JP
Japan
Prior art keywords
faraday rotation
faraday
rotation element
polarizer
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9099891A
Other languages
Japanese (ja)
Inventor
Yoshinori Yamazaki
芳則 山崎
Yuichi Watanabe
有一 渡辺
Shinji Iwatsuka
信治 岩塚
Masaaki Kobayashi
正明 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
TDK Corp
Original Assignee
Anritsu Corp
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp, TDK Corp filed Critical Anritsu Corp
Priority to JP9099891A priority Critical patent/JPH04303814A/en
Publication of JPH04303814A publication Critical patent/JPH04303814A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain mean characteristic by low insertion loss and high isolation by adjusting the film thickness of a Faraday rotation element so that the sum of the angles of Faraday rotation with different wavelengths is almost 90 deg.. CONSTITUTION:A polarizer 1 which passes polarized light in a constant oscillating direction, the Faraday rotation element 2 which rotates the oscillating direction transmitting the polarizer 1 by almost 45 deg. by the Faraday effect, an analyzer 3 arranged in which the transmitting direction of the polarized light is arranged inclining by 45 deg. in a Faraday rotating direction against the polarizer 1 and which transmits only the polarized light rotated by almost 45 deg. from the Faraday rotation element 2, and a magnet which generates the Faraday effect by supplying a saturation magnetic field to the Faraday rotation element 2 are provided, and they are used for incident light with two different wavelength lambda1, lambda2. The angles of Faraday rotation in the wavelength lambda1, lambda2 are set at theta1=45 deg.+alpha, and theta 2=45 deg.-alpha, and the film thickness L of the Faraday rotation element 2 can be adjusted and formed so that the angle between (theta1>theta2) and theta1+theta2 can go to almost 90 deg..

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、2つの異なる波長の両
方において動作する光アイソレータに関するものである
FIELD OF THE INVENTION This invention relates to optical isolators that operate at both two different wavelengths.

【0002】0002

【従来の技術】光通信分野に用いられる測定器、例えば
、光パルス試験器の場合、被測定光ファイバから戻って
きた後方散乱光、あるいは接続箇所からの反射光等の光
信号が、レーザダイオードモジュール内部のレーザダイ
オードの発光端面との間において多重反射を繰り返し、
その結果、被測定光ファイバの各種特性、例えば、光フ
ァイバの損失、光ファイバの接続損失、光ファイバの異
常点等を精密に測定することが出来なくなる。また、安
定化光源の場合には、レーザダイオードからの出射光に
対する戻り光の影響により、レーザダイオードの発振が
不安定となり、その結果、安定した波長や光出力を得る
ことが出来なくなる。従って、レーザダイオードモジュ
ール内部等にアイソレータを内蔵することが提案されて
いる。さらに説明すると、光アイソレータは透過偏波方
向が互いに45°に配置された偏光子および検光子と、
偏光子と検光子との間に45°のファラデー回転角を有
するファラデー素子と、ファラデー素子の周囲に磁場を
発生させる磁石とを備えて構成されている。
[Background Art] In the case of measuring instruments used in the field of optical communications, such as optical pulse testers, optical signals such as backscattered light returned from an optical fiber under test or reflected light from a connection point are transmitted to a laser diode. Repeated multiple reflections between the light emitting end face of the laser diode inside the module,
As a result, it becomes impossible to precisely measure various characteristics of the optical fiber to be measured, such as optical fiber loss, optical fiber connection loss, and abnormal points in the optical fiber. Further, in the case of a stabilized light source, the oscillation of the laser diode becomes unstable due to the influence of the return light on the emitted light from the laser diode, and as a result, it becomes impossible to obtain a stable wavelength and optical output. Therefore, it has been proposed to incorporate an isolator inside the laser diode module. To explain further, the optical isolator includes a polarizer and an analyzer whose transmission polarization directions are arranged at 45 degrees to each other;
The device includes a Faraday element having a Faraday rotation angle of 45° between the polarizer and the analyzer, and a magnet that generates a magnetic field around the Faraday element.

【0003】そして、順方向(光源からの光の出射方向
)に偏光子を透過した直線偏光は、ファラデー素子通過
時にファラデー効果を受け、偏波方向が45°回転され
て検光子を透過する。一方、光アイソレータに対して逆
方向(光源からの光の出射方向と相反する方向)に入射
した反射光のうち、検光子を透過した直線偏光は、その
偏波方向が順方向の時のファラデー回転と同方向にさら
に45°回転され、偏光子の透過偏波方向と直交して偏
光子からの通過が阻止される。
The linearly polarized light transmitted through the polarizer in the forward direction (the direction in which light is emitted from the light source) is subjected to the Faraday effect when passing through the Faraday element, and the polarization direction is rotated by 45 degrees before transmitting through the analyzer. On the other hand, among the reflected light that is incident on the optical isolator in the opposite direction (the direction opposite to the direction in which the light is emitted from the light source), the linearly polarized light that has passed through the analyzer is faraday when the polarization direction is in the forward direction. It is further rotated by 45° in the same direction as the rotation, and is perpendicular to the direction of polarization transmitted by the polarizer, thereby blocking its passage from the polarizer.

【0004】0004

【発明が解決しようとする課題】しかしながら、上述し
た光アイソレータでは、図3に示すようにファラデー効
果によるファラデー回転角度は、波長が長くなるにつれ
て指数関数的に減少するような波長依存性を有している
ため、ある波長λ1に対してファラデー回転角度が45
°になるようにファラデー素子を作製する必要があり、
また、波長λ2に対してもファラデー回転角度が45°
になるようにファラデー素子を作製する必要があった。 つまり、使用する光源の波長に応じて最適な光アイソレ
ータを用意しなければならなく、一つの光アイソレータ
で所望の複数の波長で使用することができなかった。
However, in the optical isolator described above, as shown in FIG. 3, the Faraday rotation angle due to the Faraday effect has a wavelength dependence that decreases exponentially as the wavelength becomes longer. Therefore, the Faraday rotation angle is 45 for a certain wavelength λ1.
It is necessary to fabricate a Faraday element so that
Also, the Faraday rotation angle is 45° for wavelength λ2.
It was necessary to create a Faraday element so that In other words, it is necessary to prepare an optimal optical isolator according to the wavelength of the light source used, and one optical isolator cannot be used at a plurality of desired wavelengths.

【0005】また、波長λ1(λ2)においてファラデ
ー回転角度を45°に設定すると、異なる波長λ2(λ
1)ではファラデー回転角度が45°と異なり、下記の
〔表1〕に示すように波長λ2(λ1)では順方向の損
失の増加やアイソレーションの低下を招き、光アイソレ
ータの特性が大きく劣化するという問題があった。
Furthermore, when the Faraday rotation angle is set to 45° at wavelength λ1 (λ2), different wavelengths λ2 (λ
In 1), the Faraday rotation angle is different from 45°, and as shown in [Table 1] below, at wavelength λ2 (λ1), forward loss increases and isolation decreases, resulting in a significant deterioration of the optical isolator characteristics. There was a problem.

【0006】[0006]

【表1】[Table 1]

【0007】ところで、ある波長でアイソレーションが
最大となるのは、ファラデー素子のファラデー回転角度
が45°で、かつ偏光子と検光子の配設された相対角が
ファラデー回転方向に45°のときである  また、フ
ァラデー素子の回転角度の波長依存性は前述したように
、指数関数的に減少するため、使用する各波長λ1,λ
2の中間波長(λ3=(λ1+λ2)/2)のアイソレ
ータを作製してもλ1とλ2では同じ特性は得られない
。 例えば、1310nm(λ1)と1550nm(λ2)
の中間波長1430nm(λ3)でアイソレータを作製
した場合、図4に示すように波長1310nm(λ1)
と1550nm(λ2)におけるアイソレーションは異
なり、特に1310nmにおけるアイソレーションが劣
化していることが判る。
By the way, isolation is maximum at a certain wavelength when the Faraday rotation angle of the Faraday element is 45° and the relative angle at which the polarizer and analyzer are arranged is 45° in the Faraday rotation direction. In addition, as mentioned above, the wavelength dependence of the rotation angle of the Faraday element decreases exponentially, so each wavelength λ1, λ
Even if an isolator with an intermediate wavelength of 2 (λ3=(λ1+λ2)/2) is manufactured, the same characteristics cannot be obtained for λ1 and λ2. For example, 1310nm (λ1) and 1550nm (λ2)
When an isolator is manufactured with an intermediate wavelength of 1430 nm (λ3), the wavelength is 1310 nm (λ1) as shown in Figure 4.
It can be seen that the isolation at 1,550 nm (λ2) is different from that at 1,550 nm (λ2), and that the isolation at 1,310 nm is particularly deteriorated.

【0008】そこで、本発明は上記問題点に鑑みてなさ
れたものであって、その目的は、異なる波長において、
低挿入損失および高アイソレーションによるほぼ同一な
特性が得られ、所望の複数の波長で使用するのに適した
光アイソレータを提供することにある。
[0008] The present invention has been made in view of the above problems, and its purpose is to
The object of the present invention is to provide an optical isolator that has substantially the same characteristics due to low insertion loss and high isolation, and is suitable for use at a plurality of desired wavelengths.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
、本発明による光アイソレータは、特定の振動方向の偏
光を通す偏光子1と、該偏光子を透過した偏光の振動方
向をファラデー効果によりほぼ45°回転させるファラ
デー回転素子2と、偏光の透過する方向が前記偏光子に
対してファラデー回転方向に45°傾いて配設され、前
記ファラデー回転素子からほぼ45°回転された偏光の
みを透過させる検光子3と、前記ファラデー回転素子に
飽和磁場を与えてファラデー効果を生じさせる磁石4と
を備え、異なる2つの波長λ1,λ2の入射光に対して
使用される光アイソレータにおいて、波長λ1における
ファラデー回転角度をθ1=45°+α、波長λ2にお
けるファラデー回転角度をθ2=45°−αとし(θ1
>θ2)、θ1+θ2がほぼ90°となるように前記フ
ァラデー回転素子の膜厚Lが調整されて形成されている
ことを特徴としている。
[Means for Solving the Problems] In order to achieve the above object, an optical isolator according to the present invention includes a polarizer 1 that transmits polarized light in a specific vibration direction, and a vibration direction of the polarized light transmitted through the polarizer using the Faraday effect. A Faraday rotation element 2 rotated by approximately 45 degrees, and a direction in which polarized light is transmitted is inclined at 45 degrees in the Faraday rotation direction with respect to the polarizer, and only polarized light rotated by approximately 45 degrees is transmitted from the Faraday rotation element. An optical isolator used for incident light of two different wavelengths λ1 and λ2, which is equipped with an analyzer 3 that causes a saturation magnetic field to be applied to the Faraday rotation element to produce a Faraday effect, and is used for incident light of two different wavelengths λ1 and λ2. The Faraday rotation angle is θ1 = 45° + α, and the Faraday rotation angle at wavelength λ2 is θ2 = 45° − α (θ1
>θ2), and the film thickness L of the Faraday rotation element is adjusted so that θ1+θ2 is approximately 90°.

【0010】0010

【作用】波長λ1におけるファラデー回転角度をθ1=
45°+α、波長λ2におけるファラデー回転角度をθ
2=45°−αとし(θ1>θ2)、θ1+θ2がほぼ
90°となるようにファラデー回転素子2の膜厚Lを調
整して形成する。これにより、2つの波長λ1,λ2付
近で低挿入損失およびほぼ同一なアイソレーションを得
ることができる。
[Operation] The Faraday rotation angle at wavelength λ1 is θ1=
45° + α, Faraday rotation angle at wavelength λ2 is θ
2=45°-α (θ1>θ2), and the film thickness L of the Faraday rotation element 2 is adjusted and formed so that θ1+θ2 becomes approximately 90°. This makes it possible to obtain low insertion loss and approximately the same isolation near the two wavelengths λ1 and λ2.

【0011】[0011]

【実施例】図1は本発明による光アイソレータの概略構
成を示す斜視図である。この実施例による光アイソレー
タは、偏光子1、ファラデー回転素子2、検光子3、磁
石4を備えて構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a perspective view showing the schematic structure of an optical isolator according to the present invention. The optical isolator according to this embodiment includes a polarizer 1, a Faraday rotation element 2, an analyzer 3, and a magnet 4.

【0012】偏光子1は図示しない光源より入射される
所定波長の光で、特定の振動方向を持つ直線偏光のみを
通過させてファラデー回転素子2に入射している。ファ
ラデー回転素子2は偏光子1を通過した直線偏光の振動
方向をファラデー効果によってほぼ45°回転させてい
る。このファラデー回転素子2は異なる2つの波長λ1
,λ2の入射光に対し、波長λ1におけるファラデー回
転角度θ1をθ1=45°+α、波長λ2におけるファ
ラデー回転角度θ2をθ2=45°−α(θ1>θ2)
とした時に、θ1+θ2がほぼ90°になるように膜厚
が調整されている。
The polarizer 1 receives light of a predetermined wavelength from a light source (not shown), and allows only linearly polarized light having a specific vibration direction to pass therethrough and enters the Faraday rotation element 2 . The Faraday rotation element 2 rotates the vibration direction of the linearly polarized light that has passed through the polarizer 1 by approximately 45 degrees due to the Faraday effect. This Faraday rotation element 2 has two different wavelengths λ1.
, λ2, the Faraday rotation angle θ1 at the wavelength λ1 is θ1 = 45° + α, and the Faraday rotation angle θ2 at the wavelength λ2 is θ2 = 45° − α (θ1>θ2)
The film thickness is adjusted so that θ1+θ2 becomes approximately 90°.

【0013】ここで、ファラデー回転角度θは下記の式
で表現される。 θ=V・L・H V:ベルデ定数(物性値) L:ファラデー回転素子の光軸方向の長さH:ファラデ
ー回転素子に加える飽和磁界の強さ上記式において、V
およびHは一定なので、Lに相当するファラデー回転素
子2の膜厚を変化させることによってファラデー回転角
度が調整される。検光子3は直線偏光の透過する方向が
偏光子1に対して45°だけファラデー回転方向に傾い
て配設され、ファラデー回転素子2からほぼ45°回転
された直線偏光のみを透過している。磁石4は例えば永
久磁石や電磁石等で構成され、ファラデー回転素子2に
飽和磁場を与えてファラデー効果を生じさせている。
[0013] Here, the Faraday rotation angle θ is expressed by the following formula. θ=V・L・H V: Verdet constant (physical property value) L: Length of the Faraday rotation element in the optical axis direction H: Strength of the saturation magnetic field applied to the Faraday rotation element In the above formula, V
Since and H are constant, the Faraday rotation angle is adjusted by changing the film thickness of the Faraday rotation element 2 corresponding to L. The analyzer 3 is arranged such that the direction in which the linearly polarized light is transmitted is inclined by 45° to the Faraday rotation direction with respect to the polarizer 1, and only the linearly polarized light rotated by approximately 45° from the Faraday rotation element 2 is transmitted. The magnet 4 is composed of, for example, a permanent magnet or an electromagnet, and applies a saturation magnetic field to the Faraday rotation element 2 to produce the Faraday effect.

【0014】ここで、波長λ1=1310nm,λ2=
1550nmとし、α=9°(λ1+α=53.6°,
λ2−α=36.4°)に設定した時のアイソレーショ
ン特性を図2に、また、挿入損失特性を下記の〔表2〕
に示す。
[0014] Here, wavelength λ1=1310 nm, λ2=
1550 nm, α=9° (λ1+α=53.6°,
The isolation characteristics when set to λ2-α=36.4° are shown in Figure 2, and the insertion loss characteristics are shown in Table 2 below.
Shown below.

【0015】[0015]

【表2】[Table 2]

【0016】これより、波長λ1=1310nm,λ2
=1550nmにおけるアイソレーションは共に16.
5dBで同じ特性が得られる。また、挿入損失は従来に
比べて低くでき、特性の向上を図ることができる。
From this, wavelength λ1=1310 nm, λ2
= 1550 nm isolation is both 16.
The same characteristics can be obtained at 5 dB. In addition, the insertion loss can be lowered than in the past, and the characteristics can be improved.

【0017】ところで、この実施例による光アイソレー
タでは、選択される波長をλ1=1310nm,λ2=
1550nmとし、α=9°の場合を例にとって説明し
たが、2つの波長は使用する光源によって適宜選択され
るもので、各波長λ1,λ2付近において低挿入損失お
よびほぼ同一なアイソレーションを得られるのは勿論の
こと、波長λ1,λ2の間の波長においても、同様に低
挿入損失で高アイソレーションを実現することができる
By the way, in the optical isolator according to this embodiment, the selected wavelengths are λ1=1310 nm, λ2=
1550 nm and α=9°, but the two wavelengths are selected appropriately depending on the light source used, and low insertion loss and almost the same isolation can be obtained near each wavelength λ1 and λ2. Needless to say, high isolation can be similarly achieved with low insertion loss at wavelengths between λ1 and λ2.

【0018】[0018]

【発明の効果】以上説明したように、本発明の光アイソ
レータによれば、異なる波長において、低挿入損失およ
び高アイソレーションによるほぼ同一な特性を得ること
ができ、また所望の複数の波長で使用するのに適した光
アイソレータを提供することができる。
As explained above, according to the optical isolator of the present invention, almost the same characteristics due to low insertion loss and high isolation can be obtained at different wavelengths, and it can be used at a plurality of desired wavelengths. We can provide optical isolators suitable for

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明による光アイソレータの概略構成を示す
斜視図
FIG. 1 is a perspective view showing a schematic configuration of an optical isolator according to the present invention.

【図2】同アイソレータにおいて、波長λ1=1310
nm,λ2=1550nm,α=9°に設定した時のア
イソレーション特性を示す図
[Figure 2] In the same isolator, wavelength λ1 = 1310
Diagram showing the isolation characteristics when setting nm, λ2 = 1550 nm, α = 9°

【図3】波長に対するファラデー回転角度の関係を示す
[Figure 3] Diagram showing the relationship between Faraday rotation angle and wavelength

【図4】従来の光アイソレータにおいて、中心波長にア
イソレーションのピークを合わせた場合のアイソレーシ
ョン特性を示す図
[Figure 4] A diagram showing the isolation characteristics when the isolation peak is aligned with the center wavelength in a conventional optical isolator.

【符号の説明】[Explanation of symbols]

1  偏光子 2  ファラデー回転素子 3  検光子 4  磁石 1 Polarizer 2 Faraday rotation element 3 Analyzer 4 Magnet

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  特定の振動方向の偏光を通す偏光子(
1)と、該偏光子を透過した偏光の振動方向をファラデ
ー効果によりほぼ45°回転させるファラデー回転素子
(2)と、偏光の透過する方向が前記偏光子に対してフ
ァラデー回転方向に45°傾いて配設され、前記ファラ
デー回転素子からほぼ45°回転された偏光のみ透過さ
せる検光子(3)と、前記ファラデー回転素子に飽和磁
場を与えてファラデー効果を生じさせる磁石(4)とを
備えて構成され、異なる2つの波長λ1,λ2の入射光
に対して使用される光アイソレータにおいて、波長λ1
におけるファラデー回転角度をθ1=45°+α、波長
λ2におけるファラデー回転角度をθ2=45°−αと
し(θ1>θ2)、θ1+θ2がほぼ90°となるよう
に前記ファラデー回転素子の膜厚(L)が調整されて形
成されていることを特徴とする光アイソレータ。
[Claim 1] A polarizer (
1), a Faraday rotation element (2) that rotates the vibration direction of the polarized light transmitted through the polarizer by approximately 45 degrees due to the Faraday effect, and a Faraday rotation element (2) in which the direction of transmission of the polarized light is tilted by 45 degrees in the Faraday rotation direction with respect to the polarizer. an analyzer (3) that is disposed so as to transmit only polarized light rotated by approximately 45 degrees from the Faraday rotation element; and a magnet (4) that applies a saturation magnetic field to the Faraday rotation element to produce a Faraday effect. In the optical isolator configured and used for incident light of two different wavelengths λ1 and λ2, the wavelength λ1
The Faraday rotation angle at θ1 = 45° + α, the Faraday rotation angle at wavelength λ2 is θ2 = 45° - α (θ1 > θ2), and the film thickness (L) of the Faraday rotation element is set so that θ1 + θ2 is approximately 90°. An optical isolator characterized in that the optical isolator is formed by adjusting.
JP9099891A 1991-03-30 1991-03-30 Optical isolator Withdrawn JPH04303814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9099891A JPH04303814A (en) 1991-03-30 1991-03-30 Optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9099891A JPH04303814A (en) 1991-03-30 1991-03-30 Optical isolator

Publications (1)

Publication Number Publication Date
JPH04303814A true JPH04303814A (en) 1992-10-27

Family

ID=14014170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9099891A Withdrawn JPH04303814A (en) 1991-03-30 1991-03-30 Optical isolator

Country Status (1)

Country Link
JP (1) JPH04303814A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007079074A (en) * 2005-09-14 2007-03-29 Seikoh Giken Co Ltd Optical isolator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007079074A (en) * 2005-09-14 2007-03-29 Seikoh Giken Co Ltd Optical isolator

Similar Documents

Publication Publication Date Title
US4756607A (en) Optical isolator device having two cascaded isolator elements with different light beam rotation angles
Burns et al. Polarizer requirements for fiber gyroscopes with high-birefringence fiber and broad-band sources
KR0142017B1 (en) Method for assembling optical isolator and method for measuring isolation
US5375009A (en) Optical isolator device having a wider cutoff wavelength band for a return light beam
CN110554464B (en) Miniaturized single polarization fiber resonant cavity
JPH04303814A (en) Optical isolator
JPH07151555A (en) Optical fiber gyro taking out signal from light source
US20240121001A1 (en) Reduced thickness optical isolator and method of use thereof in a laser optic system
JP4812342B2 (en) Optical connector
JPH04221922A (en) Polarization independent type optical isolator
JP2004093153A (en) Optical loss measuring method for optical fiber pigtail with optical isolator
JPH04303807A (en) Laser diode module
JPH0894494A (en) Apparatus for measuring wavelength dependency of optical isolator
JP4713769B2 (en) High-frequency superposition operation inspection system for semiconductor laser
JP2553358B2 (en) Optical isolator
JPH03135515A (en) Optical isolator
JPH0720407A (en) Optical isolator
JPH02240620A (en) Optical isolator
JPH0375614A (en) Optical isolator
JPH0375613A (en) Optical isolator
JP2004061996A (en) Polarization-preserving optical fiber pigtail with optical isolator
Tateda et al. Optical isolator independent of input polarization direction utilizing a quarter-wave plate
JPH03189611A (en) Optical collimator and optical sensor using this collimator
JPS61102621A (en) Optical isolator
JPH03135517A (en) Optical isolator

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514