JP2007079074A - Optical isolator - Google Patents

Optical isolator Download PDF

Info

Publication number
JP2007079074A
JP2007079074A JP2005266185A JP2005266185A JP2007079074A JP 2007079074 A JP2007079074 A JP 2007079074A JP 2005266185 A JP2005266185 A JP 2005266185A JP 2005266185 A JP2005266185 A JP 2005266185A JP 2007079074 A JP2007079074 A JP 2007079074A
Authority
JP
Japan
Prior art keywords
wavelength
optical isolator
loss
incident
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005266185A
Other languages
Japanese (ja)
Inventor
Masataka Suzuki
正孝 鈴木
Takuya Kawamura
卓也 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikoh Giken Co Ltd
Original Assignee
Seikoh Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikoh Giken Co Ltd filed Critical Seikoh Giken Co Ltd
Priority to JP2005266185A priority Critical patent/JP2007079074A/en
Publication of JP2007079074A publication Critical patent/JP2007079074A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical isolator capable of setting so that a forward loss may become the minimum related to a specified wavelength, and a backward loss may become the maximum related to other specified wavelengths in the case of using the optical isolator in a wavelength multiple communication system, and then, capable of enhancing the degree of freedom in design. <P>SOLUTION: In the optical isolator comprising an incident side glass polarizer 5, an exit side glass polarizer 7 and a Faraday rotator constituted of garnet crystal 6 and a magnet 8 for applying a magnetic field on the garnet crystal 6, provided that the rotating angle of the Faraday rotator in the case the wavelength is λ1 is expressed by θ1, and the rotating angle in the case the wavelength is λ2 is expressed by θ2, the optical isolator is set so as to satisfy θ1+θ2=90°±5°, and also, so that an angle difference between the polarization axes of the incident side polarizer and the exit side polarizer may be θ1±5°. The optical isolator can be set so that the forward loss may become the minimum related to the specified wavelength and that the backward loss may become the maximum related to other specified wavelengths, then, the degree of freedom in design can be enhanced. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光通信システムや光計測装置などに用いる光部品である光アイソレータに関する。   The present invention relates to an optical isolator that is an optical component used in an optical communication system, an optical measurement device, or the like.

光通信システムや光計測システムにおいては、光伝送路途中からの反射光が、光源である半導体レーザに戻ると、発振が不安定になったり、雑音が増加したりする。この戻り光を遮断するために、光アイソレータが用いられる。   In an optical communication system or an optical measurement system, when reflected light from the middle of an optical transmission path returns to a semiconductor laser as a light source, oscillation becomes unstable or noise increases. In order to block the return light, an optical isolator is used.

図5は、従来の光アイソレータの基本的な構造を示す斜視図である。下記特許文献1及び非特許文献1に示されているように、ファラデー回転子を構成するガーネット結晶16とそれに磁界を印加する磁石8、入射側偏光子15、出射側偏光子17によりなる。順方向の入射光9は光源の偏光方向に偏光軸を合わせた入射側偏光子15を通過してガーネット結晶16中で偏光方向が45度回転し、その回転された偏光方向に偏光軸を合わせた出射側偏光子17を出射してそのほとんどの光パワーが出射する。   FIG. 5 is a perspective view showing a basic structure of a conventional optical isolator. As shown in the following Patent Document 1 and Non-Patent Document 1, the garnet crystal 16 that constitutes a Faraday rotator, a magnet 8 that applies a magnetic field thereto, an incident-side polarizer 15, and an output-side polarizer 17 are included. The incident light 9 in the forward direction passes through the incident side polarizer 15 whose polarization axis is aligned with the polarization direction of the light source, and the polarization direction is rotated by 45 degrees in the garnet crystal 16, and the polarization axis is aligned with the rotated polarization direction. Most of the optical power is emitted from the exiting polarizer 17.

一方、逆方向からの入射光10は、出射側偏光子17を通過してガーネット結晶16中で偏光方向が順方向の入射光9の場合とは反対方向(例えば順方向が進行方向に対して右回転とした場合は逆方向は左回転)に45度回転して順方向の入射光9と偏光方向が直交し、入射側偏光子15により、そのほとんどの光パワーが遮断されるので逆方向の損失は大きくなる。   On the other hand, the incident light 10 from the reverse direction passes through the output-side polarizer 17 and is opposite to the incident light 9 whose polarization direction is the forward direction in the garnet crystal 16 (for example, the forward direction is the direction of travel. If the rotation is clockwise, the reverse direction is counterclockwise), and the incident light 9 in the forward direction and the polarization direction are orthogonal to each other. The loss of

一般的に、光アイソレータは使用するガーネット結晶のファラデー回転子の回転角度に波長依存性があるため、順方向損失、逆方向損失にも波長依存性が生ずる。通常は使用される光源の中心波長において、順方向損失は最も小さくなり、かつ逆方向損失は最も大きくなるように設定されている。すなわち、上述のように中心波長でファラデー回転子の回転角は45°、入射側と出射側偏光子の偏光軸間の角度差は45°に設定され、順方向損失と逆方向損失のピークは同じ波長になりその波長での順方向損失と逆方向損失の差、すなわちアイソレーションが最大となるように設定される。   In general, since the optical isolator has a wavelength dependency on the rotation angle of the Faraday rotator of the garnet crystal to be used, the forward loss and the reverse loss also have wavelength dependency. Normally, the forward loss is set to be the smallest and the backward loss is set to be the largest at the center wavelength of the light source used. That is, as described above, the rotation angle of the Faraday rotator is set to 45 ° at the center wavelength, and the angle difference between the polarization axes of the entrance side and exit side polarizers is set to 45 °. The peak of forward loss and reverse loss is The difference between the forward loss and the reverse loss at the same wavelength, that is, the isolation, is set to be the maximum.

このように、中心波長λ0=1550nmで設計された順方向および逆方向損失の波長特性の一例をそれぞれ図6(a)および図6(b)に示す。   An example of the wavelength characteristics of the forward and reverse losses designed with the center wavelength λ0 = 1550 nm is shown in FIGS. 6 (a) and 6 (b), respectively.

特開平11−125796号公報Japanese Patent Laid-Open No. 11-12596 エヌ・イー・シー・トーキン・テクニカルレビュー(NEC TOKIN TECHNICAL REVIEW)31巻 p.7〜9NEC TOKIN TECHNICAL REVIEW, vol. 31, p. 7-9

近年、光通信システムでは、通信容量を拡大するために波長多重通信方式を用いるのが一般的となっており、光源にも多波長の光源が使用される。このような場合、上記のように通常の光アイソレータではその中の特定の波長に対して順方向損失最小、逆方向損失最大となるように常に設定されているため、自由度が制限される。すなわち、ある波長成分は出力が小さいため順方向損失を小さくしたいが、他の別の波長成分はシステム中での反射光が大きい、またはその波長の光源が反射光に対してノイズを発生しやすいため逆方向損失を大きくしたい等の要求がある場合には対応できない。   In recent years, in an optical communication system, it is common to use a wavelength multiplexing communication system in order to expand communication capacity, and a multi-wavelength light source is also used as a light source. In such a case, as described above, a normal optical isolator is always set to have a minimum forward loss and a maximum reverse loss with respect to a specific wavelength therein, so that the degree of freedom is limited. That is, a certain wavelength component has a small output, so it is desirable to reduce the forward loss, but another wavelength component has a large reflected light in the system, or a light source of that wavelength easily generates noise with respect to the reflected light. For this reason, it is not possible to meet the demand for increasing the reverse loss.

すなわち、光アイソレータをシステム中で使用する場合の波長に対する順方向損失、逆方向損失の設計の自由度が取れないという問題があった。そこで、本発明の課題は、波長多重通信システム中で使用する場合に、特定の波長に対しては順方向損失が最小となり、他の特定の波長に対して逆方向損失を最大となるように設定でき、設計の自由度を大きくできる光アイソレータを提供することにある。   That is, there is a problem that the degree of freedom in designing the forward loss and the reverse loss with respect to the wavelength when the optical isolator is used in the system cannot be obtained. Therefore, an object of the present invention is to minimize the forward loss for a specific wavelength and maximize the reverse loss for other specific wavelengths when used in a wavelength division multiplexing communication system. An object of the present invention is to provide an optical isolator that can be set and has a high degree of design freedom.

上記課題を解決するため、本発明では、入射側および出射側偏光子とファラデー回転子から構成される光アイソレータにおいて、前記ファラデー回転子の波長がλ1のときの回転角をθ1、波長がλ2のときの回転角をθ2としたときに、θ1+θ2=90°±5°を満たし、入射側と出射側の偏光子間の偏光軸間の角度差がθ1±5°となるように設定されている。   In order to solve the above problems, in the present invention, in an optical isolator composed of an incident-side and output-side polarizer and a Faraday rotator, the rotation angle when the wavelength of the Faraday rotator is λ1 is θ1, and the wavelength is λ2. When the rotation angle is θ2, θ1 + θ2 = 90 ° ± 5 ° is satisfied, and the angle difference between the polarization axes between the incident side and outgoing side polarizers is set to be θ1 ± 5 °. .

すなわち、本発明の光アイソレータにおいては順方向損失と逆方向損失の最適波長(順方向損失が最も小さくなる波長と逆方向損失が最も大きくなる波長)が異なっている。   That is, in the optical isolator according to the present invention, the optimum wavelengths of the forward loss and the reverse loss (the wavelength with the smallest forward loss and the wavelength with the largest backward loss) are different.

光アイソレータを構成するファラデー回転子がθ1+θ2=90°を満たし、入射側と出射側の偏光子間の偏光軸の角度差がθ1となっている場合、光アイソレータの順方向から入射した波長λ1の光は、その偏光方向に合わせた入射側偏光子を通過してファラデー回転子により偏光方向がθ1回転し、その方向に軸を合わせた出射側の偏光子を通過するので損失は最小となる。   When the Faraday rotator constituting the optical isolator satisfies θ1 + θ2 = 90 ° and the angle difference of the polarization axis between the incident side and outgoing side polarizers is θ1, the wavelength λ1 incident from the forward direction of the optical isolator is The light passes through the incident-side polarizer aligned with the polarization direction, rotates the polarization direction by θ1 by the Faraday rotator, and passes through the output-side polarizer aligned with that direction, so that the loss is minimized.

ここで、本発明の原理から上記の設定角度に対して±5°程度のずれは特性にそれほど大きな影響を及ぼさない許容範囲である。   Here, based on the principle of the present invention, a deviation of about ± 5 ° with respect to the set angle is an allowable range that does not greatly affect the characteristics.

一方、逆方向から入射した波長λ2の光は出射側の偏光子の角度θ1からファラデー回転子によりθ2回転するので、上記式により波長λ1の入射光の偏光方向、すなわち入射側偏光子の偏光軸に直交することになり損失が最大となる。   On the other hand, the light having the wavelength λ2 incident from the opposite direction is rotated by θ2 by the Faraday rotator from the angle θ1 of the output-side polarizer. And the loss is maximized.

以上述べたように、本発明による光アイソレータは、波長多重通信システム中で使用する場合に、特定の波長に対しては順方向損失が最小となり、他の特定の波長に対して逆方向損失を最大となるように設定でき、設計の自由度が大きくできるという効果を有する。   As described above, the optical isolator according to the present invention has a minimum forward loss for a specific wavelength and a reverse loss for other specific wavelengths when used in a wavelength division multiplexing communication system. It can be set so as to be maximized, and there is an effect that the degree of freedom of design can be increased.

以下、本発明を実施するための最良の形態を実施例に基づき説明する。   Hereinafter, the best mode for carrying out the present invention will be described based on examples.

図1は、本発明による光アイソレータの一実施例の構造を示す斜視図である。基本的な構成は、図5に示す従来の光アイソレータと同じであり、ファラデー回転子を構成するガーネット結晶6とそれに磁界を印加する磁石8、入射側ガラス偏光子5、出射側ガラス偏光子7によりなる。   FIG. 1 is a perspective view showing the structure of an embodiment of an optical isolator according to the present invention. The basic configuration is the same as that of the conventional optical isolator shown in FIG. 5, and a garnet crystal 6 constituting a Faraday rotator, a magnet 8 for applying a magnetic field thereto, an incident side glass polarizer 5 and an output side glass polarizer 7. It becomes by.

本実施例においては波長λ1=1400nmの入射光に対しては順方向損失が最小となり、波長λ2=1610nmの入射光に対しては逆方向損失最大となるよう設定されている。このため、ガーネット結晶6としては波長係数が−0.07deg/nmのGd系ガーネット結晶を用い、波長λ1=1400nmの入射光に対してファラデー回転角θ1=52°となるようにその厚さを設定した。この場合、波長λ2=1610nmの入射光に対しては上記の波長係数よりファラデー回転角はθ2=38°となり条件θ1+θ2=90±5°が満たされる。   In the present embodiment, the forward loss is minimized for incident light having a wavelength λ1 = 1400 nm, and the reverse loss is maximized for incident light having a wavelength λ2 = 1610 nm. Therefore, a Gd-based garnet crystal having a wavelength coefficient of −0.07 deg / nm is used as the garnet crystal 6 and the thickness thereof is set so that the Faraday rotation angle θ1 = 52 ° with respect to incident light having a wavelength λ1 = 1400 nm. Set. In this case, for incident light having a wavelength of λ2 = 1610 nm, the Faraday rotation angle is θ2 = 38 ° from the above wavelength coefficient, and the condition θ1 + θ2 = 90 ± 5 ° is satisfied.

波長λ1の順方向の入射光9は光源の偏光方向に偏光軸を合わせた入射側ガラス偏光子5を通過してガーネット結晶6中で偏光方向が52度回転し、その回転された偏光方向に偏光軸を合わせた出射側ガラス偏光子7を出射してそのほとんどの光パワーが出射する。一方、波長λ2の逆方向からの入射光10は出射側ガラス偏光子7を通過してガーネット結晶6中で偏光方向が順方向の入射光9の場合とは反対方向に38度回転して順方向の入射光9と偏光方向が直交し、入射側ガラス偏光子5によりそのほとんどの光パワーが遮断されるので逆方向の損失は大きくなる。   The incident light 9 in the forward direction of the wavelength λ1 passes through the incident-side glass polarizer 5 whose polarization axis is aligned with the polarization direction of the light source, and the polarization direction is rotated by 52 degrees in the garnet crystal 6, and in the rotated polarization direction. Most of the optical power is emitted from the exit side glass polarizer 7 with the polarization axis aligned. On the other hand, the incident light 10 from the opposite direction of the wavelength λ2 passes through the exit side glass polarizer 7 and is rotated by 38 degrees in the opposite direction to the incident light 9 having the forward polarization direction in the garnet crystal 6. The incident light 9 in the direction is orthogonal to the polarization direction, and most of the optical power is blocked by the incident-side glass polarizer 5, so that the loss in the reverse direction becomes large.

本実施例における順方向損失の波長特性を図2(a)に、逆方向損失の波長特性を図2(b)に示す。波長λ1、λ2それぞれの光に対する順方向損失はそれぞれ0.2dB、0.5dBとなり、逆方向損失はそれぞれ12dB、41dBとなった。すなわち、波長λ1=1400nmの入射光に対しては順方向損失を小さくし、波長λ2=1610nmの入射光に対しては逆方向損失を大きくできた。   FIG. 2A shows the wavelength characteristic of the forward loss in this example, and FIG. 2B shows the wavelength characteristic of the reverse loss. The forward loss for the light of each of the wavelengths λ1 and λ2 was 0.2 dB and 0.5 dB, respectively, and the reverse loss was 12 dB and 41 dB, respectively. That is, the forward loss can be reduced for incident light having a wavelength λ1 = 1400 nm, and the reverse loss can be increased for incident light having a wavelength λ2 = 1610 nm.

次に、本発明による光アイソレータの他の実施例を説明する。光通信システムでは、加入者端との間の通信において、対向する2つの端末の送信光源に異なる波長を用いて1本の光ファイバで双方向通信を行う方式があり、図3は、このようなシステムに用いる本発明による光アイソレータの実施例である双方向光モジュールの断面図を示す。   Next, another embodiment of the optical isolator according to the present invention will be described. In an optical communication system, there is a system in which bidirectional communication is performed with one optical fiber using different wavelengths for transmission light sources of two opposing terminals in communication with a subscriber end. FIG. FIG. 2 shows a cross-sectional view of a bidirectional optical module which is an embodiment of an optical isolator according to the present invention used in a simple system.

送信用の光源である波長1490nmのレーザーダイオード(以後、LDとする)20、受信する波長1310nm用の光検出器であるフォトダイオード(以後、PDとする)21、送信波長と受信波長を分離する波長フィルタ23、光ファイバ端末24が一体型になり双方向光モジュールが構成されている。さらに図3においては光ファイバ端末24の光入出射端面に本発明による光アイソレータが設置されている。   A laser diode (hereinafter referred to as LD) 20 that is a light source for transmission, a photodiode (hereinafter referred to as PD) 21 that is a photodetector for a wavelength of 1310 nm, and a transmission wavelength and a reception wavelength are separated. The bidirectional filter module is constructed by integrating the wavelength filter 23 and the optical fiber terminal 24. Further, in FIG. 3, the optical isolator according to the present invention is installed on the light incident / exit end face of the optical fiber terminal 24.

すなわち光ファイバ端末24の光入出射端面にファラデー回転子を構成するガーネット結晶26と入射側ガラス偏光子25、出射側ガラス偏光子27が一体となった光アイソレータ素子が接着などの方法により固定され、その外側に磁界を印加する磁石28が固定されている。また、モジュール内には、LD20の出射光をコリメートするためのレンズ31、そのコリメート光を光ファイバ端末24に入射し、かつ、光ファイバ端末24からモジュール内に出射する光をコリメートするためのレンズ32、光ファイバ端末24からの光をPD21に入射するためのレンズ33がそれぞれ設置されている。   That is, an optical isolator element in which the garnet crystal 26 constituting the Faraday rotator, the incident side glass polarizer 25, and the output side glass polarizer 27 are integrated is fixed to the light incident / exit end face of the optical fiber terminal 24 by a method such as adhesion. A magnet 28 for applying a magnetic field is fixed to the outside. Further, in the module, a lens 31 for collimating the light emitted from the LD 20, a lens for collimating the light incident on the optical fiber terminal 24 from the optical fiber terminal 24 and collimated from the optical fiber terminal 24 into the module. 32, and a lens 33 for making light from the optical fiber terminal 24 incident on the PD 21 is provided.

本実施例においては光アイソレータに用いるガーネット結晶26としては上述の実施例と同様に波長係数が−0.07deg/nmのGd系のガーネットを用いた。また、LDから出射される波長は1490nmなので、光アイソレータの順方向損失は1490nmの光に対して最小、すなわちλ1を1490nmとし、また、LD20への戻り光の逆方向損失を本実施例が用いられる加入者端で実用上必要とされる10dB以上で、かつ、加入者端で受信する1310nmの光が光アイソレータの逆方向から入射したときの光アイソレータによる損失が6dB程度以下となるように逆方向損失最大となる波長λ2を設計した。   In this embodiment, as the garnet crystal 26 used for the optical isolator, a Gd garnet having a wavelength coefficient of −0.07 deg / nm is used as in the above-described embodiment. Further, since the wavelength emitted from the LD is 1490 nm, the forward loss of the optical isolator is the minimum with respect to the light of 1490 nm, that is, λ1 is 1490 nm, and the backward loss of the return light to the LD 20 is used in this embodiment. So that the loss caused by the optical isolator when the light of 1310 nm received at the subscriber end is incident from the opposite direction of the optical isolator is about 6 dB or less. The wavelength λ2 that maximizes the directional loss was designed.

この結果、λ2=1700nmとし、その波長の入射光に対してファラデー回転角θ2=38°となるようにその厚さを設定した。この場合、波長λ1=1490nmの入射光に対しては上記の波長係数よりファラデー回転角はθ1=52°となり条件θ1+θ2=90±5°が満たされる。   As a result, λ2 = 1700 nm, and the thickness was set so that the Faraday rotation angle θ2 = 38 ° with respect to incident light of that wavelength. In this case, for incident light having a wavelength λ1 = 1490 nm, the Faraday rotation angle is θ1 = 52 ° from the above-described wavelength coefficient, and the condition θ1 + θ2 = 90 ± 5 ° is satisfied.

入射側ガラス偏光子25はLD20の偏光方向に偏光軸を合わせ、出射側ガラス偏光子27はそこから52°回転された偏光方向に偏光軸を合わせる。   The incident side glass polarizer 25 aligns the polarization axis with the polarization direction of the LD 20, and the exit side glass polarizer 27 aligns the polarization axis with the polarization direction rotated 52 ° therefrom.

本実施例のアイソレータ特性の順方向損失特性、逆方向損失特性を、それぞれ図4(a)および図4(b)に示す。1490nmの光を順方向から入射したときの順方向損失は0.2dB、1490nmの光を逆方向から入射させたときの逆方向損失は約12dBになった。一方、光ファイバ端末24側から双方向光モジュールに1310nmの光が入射したときの光アイソレータによる損失、すなわち、波長1310nmに対する逆方向損失は6.5dBになり、上述の実用上の必要性能が得られることが確認できた。   FIG. 4A and FIG. 4B show the forward loss characteristic and reverse loss characteristic of the isolator characteristic of the present embodiment, respectively. When 1490 nm light was incident from the forward direction, the forward loss was 0.2 dB, and when 1490 nm light was incident from the reverse direction, the reverse loss was about 12 dB. On the other hand, the loss due to the optical isolator when light of 1310 nm is incident on the bidirectional optical module from the optical fiber terminal 24 side, that is, the reverse loss with respect to the wavelength of 1310 nm is 6.5 dB. It was confirmed that

現在、アイソレータを組み込んだ光モジュールでは、小型、低価格対応のため、上記文献に示されるように光ファイバ端面に小型の光アイソレータを設置したピグテールタイプの光アイソレータが使用されることが多い。しかし、本実施例のような双方向光モジュールでは光ファイバ出射端では双方向に光を通過させる必要があるためこのタイプは使用できない。結局、従来は光アイソレータをLD20と波長フィルタ23の間に入れるしかなく、光アイソレータ部分の小型化、低価格化が困難となっている。   At present, in an optical module incorporating an isolator, a pigtail type optical isolator in which a small optical isolator is installed on an end face of an optical fiber as shown in the above-mentioned literature is often used because of its small size and low cost. However, in the bidirectional optical module as in the present embodiment, this type cannot be used because it is necessary to transmit light bidirectionally at the optical fiber exit end. After all, conventionally, an optical isolator must be inserted between the LD 20 and the wavelength filter 23, and it is difficult to reduce the size and cost of the optical isolator portion.

これに比べて本実施例では、上述のように順方向損失が最小となる波長と逆方向損失が最大となる波長を大きく変えることにより双方向光モジュールにピグテールタイプの光アイソレータを使用することが可能となり、双方向光モジュールの小型、低価格化が可能となる。   In contrast, in this embodiment, as described above, it is possible to use a pigtail type optical isolator for the bidirectional optical module by greatly changing the wavelength at which the forward loss is minimum and the wavelength at which the reverse loss is maximum. This makes it possible to reduce the size and price of the bidirectional optical module.

本発明による光アイソレータの一実施例の構造を示す斜視図。The perspective view which shows the structure of one Example of the optical isolator by this invention. 本発明による光アイソレータの特性を示す図。図2(a)は、順方向損失特性を示す図、図2(b)は、逆方向損失特性を示す図。The figure which shows the characteristic of the optical isolator by this invention. FIG. 2A is a diagram illustrating forward loss characteristics, and FIG. 2B is a diagram illustrating reverse loss characteristics. 本発明による光アイソレータの実施例に係る双方向光モジュールの断面図。Sectional drawing of the bidirectional optical module which concerns on the Example of the optical isolator by this invention. 図3に示す光アイソレータの特性を示す図。図4(a)は、光アイソレータの順方向損失特性を示す図、図4(b)は、光アイソレータの逆方向損失特性を示す図。The figure which shows the characteristic of the optical isolator shown in FIG. FIG. 4A is a diagram showing the forward loss characteristic of the optical isolator, and FIG. 4B is a diagram showing the reverse loss characteristic of the optical isolator. 従来の光アイソレータの構造を示す斜視図。The perspective view which shows the structure of the conventional optical isolator. 従来の光アイソレータの特性を示す図。図6(a)は、順方向損失特性の一例を示す図、図6(b)は、逆方向損失特性の一例を示す図。The figure which shows the characteristic of the conventional optical isolator. FIG. 6A is a diagram illustrating an example of forward loss characteristics, and FIG. 6B is a diagram illustrating an example of reverse loss characteristics.

符号の説明Explanation of symbols

5,25 入射側ガラス偏光子
6,16,26 ガーネット結晶
7,27 出射側ガラス偏光子
8,28 磁石
9 順方向の入射光
10 逆方向からの入射光
15 入射側偏光子
17 出射側偏光子
20 LD
21 PD
23 波長フィルタ
24 光ファイバ端末
31,32,33 レンズ
5,25 Incident-side glass polarizers 6, 16, 26 Garnet crystals 7, 27 Emission-side glass polarizers 8, 28 Magnet 9 Forward incident light 10 Incident light 15 from opposite direction Incident-side polarizer 17 Emission-side polarizer 20 LD
21 PD
23 wavelength filter 24 optical fiber terminal 31, 32, 33 lens

Claims (1)

入射側および出射側偏光子とファラデー回転子とから構成される光アイソレータにおいて、前記ファラデー回転子の波長がλ1のときの回転角をθ1、波長がλ2のときの回転角をθ2としたときに、θ1+θ2=90°±5°を満たし、入射側と出射側の偏光子の偏光軸間の角度差がθ1±5°となるように設定されていることを特徴とする光アイソレータ。   In an optical isolator composed of an entrance-side and exit-side polarizer and a Faraday rotator, when the rotation angle when the wavelength of the Faraday rotator is λ1 is θ1, and when the rotation angle when the wavelength is λ2 is θ2, , Θ1 + θ2 = 90 ° ± 5 °, and the optical isolator is set so that the angle difference between the polarization axes of the incident side and outgoing side polarizers is θ1 ± 5 °.
JP2005266185A 2005-09-14 2005-09-14 Optical isolator Pending JP2007079074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005266185A JP2007079074A (en) 2005-09-14 2005-09-14 Optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005266185A JP2007079074A (en) 2005-09-14 2005-09-14 Optical isolator

Publications (1)

Publication Number Publication Date
JP2007079074A true JP2007079074A (en) 2007-03-29

Family

ID=37939461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005266185A Pending JP2007079074A (en) 2005-09-14 2005-09-14 Optical isolator

Country Status (1)

Country Link
JP (1) JP2007079074A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074117A1 (en) * 2009-12-18 2011-06-23 三菱電機株式会社 Optical module
JP2014503857A (en) * 2011-01-21 2014-02-13 フィニサー コーポレイション Multi-laser transmitter optical subassembly and photoelectric transceiver module
CN108110610A (en) * 2017-12-27 2018-06-01 厦门思科图光电科技有限公司 A kind of adjustable light isolator and its regulative mode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04245216A (en) * 1991-01-31 1992-09-01 Shin Etsu Chem Co Ltd Optical isolator
JPH04303814A (en) * 1991-03-30 1992-10-27 Anritsu Corp Optical isolator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04245216A (en) * 1991-01-31 1992-09-01 Shin Etsu Chem Co Ltd Optical isolator
JPH04303814A (en) * 1991-03-30 1992-10-27 Anritsu Corp Optical isolator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074117A1 (en) * 2009-12-18 2011-06-23 三菱電機株式会社 Optical module
KR101386325B1 (en) * 2009-12-18 2014-04-17 미쓰비시덴키 가부시키가이샤 Optical module
US8915602B2 (en) 2009-12-18 2014-12-23 Mitsubishi Electric Corporation Optical module
CN102656502B (en) * 2009-12-18 2015-02-04 三菱电机株式会社 Optical module
JP2014503857A (en) * 2011-01-21 2014-02-13 フィニサー コーポレイション Multi-laser transmitter optical subassembly and photoelectric transceiver module
CN108110610A (en) * 2017-12-27 2018-06-01 厦门思科图光电科技有限公司 A kind of adjustable light isolator and its regulative mode
CN108110610B (en) * 2017-12-27 2019-09-13 厦门思科图光电科技有限公司 A kind of adjustable light isolator and its regulative mode

Similar Documents

Publication Publication Date Title
US8149501B2 (en) Quantum entangled photon pair generating device
US5689359A (en) Polarization independent optical isolator
JP4798106B2 (en) Bidirectional light emitting / receiving module
JP2009222893A (en) Single-core bidirectional optical module
JP2008090019A (en) Bidirectional optical module
EP3330778B1 (en) Polarization independent optical isolator
JP2005085942A (en) Optical module and optical transmitter
JPH08254668A (en) Laser diode module and depolarizer
US10746933B2 (en) Fiber coupled laser source pump with wavelength division multiplexer, isolator, tap filter, and photodetector
US20020089745A1 (en) Method and apparatus for a polarization beam splitter/combiner with an integrated optical isolator
US10007041B2 (en) Optical depolarizer
JP2008262109A (en) Optical transmitter/receiver
JP2007079074A (en) Optical isolator
JP4714811B2 (en) Optical isolator and optical device
JPH03144602A (en) Two-way light emission and reception module
JP2004037812A (en) Embedded type optical irreversible circuit device
JP2006208710A (en) Optical isolator element, its manufacturing method, and fiber with optical isolator
JP2004145136A (en) Optical demultiplexer and otdr device
WO2018216216A1 (en) Optical multiplexer
JP2005134803A (en) Ferrule with optical isolator and optical transmission/reception module equipped with the same
JP4295192B2 (en) Optical terminal with optical isolator
US9791627B1 (en) Integrated optical components with wavelength tuning and power isolation functions
US20240142706A1 (en) Multiple filter component configuration for wavelength division multiplexing device
US11768329B2 (en) High isolation optical splitter
JP2008003211A (en) In-line type hybrid optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110823