JPH04302897A - Dynamic semiconductor storage device - Google Patents

Dynamic semiconductor storage device

Info

Publication number
JPH04302897A
JPH04302897A JP3093457A JP9345791A JPH04302897A JP H04302897 A JPH04302897 A JP H04302897A JP 3093457 A JP3093457 A JP 3093457A JP 9345791 A JP9345791 A JP 9345791A JP H04302897 A JPH04302897 A JP H04302897A
Authority
JP
Japan
Prior art keywords
circuit
bias
dram
peripheral circuit
circuit section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3093457A
Other languages
Japanese (ja)
Inventor
Shigeyoshi Watanabe
重佳 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3093457A priority Critical patent/JPH04302897A/en
Publication of JPH04302897A publication Critical patent/JPH04302897A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0214Particular design considerations for integrated circuits for internal polarisation, e.g. I2L
    • H01L27/0218Particular design considerations for integrated circuits for internal polarisation, e.g. I2L of field effect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components

Abstract

PURPOSE:To provide a DRAM which has compatible characteristics of a high speed operation and a low power consumption. CONSTITUTION:A memory cell array 2 on which dynamic type memory cells are placed, core circuits 3 and 4 which include address decoders and sense amplifiers, a peripheral circuit 5 which performs data input and output control and a bias circuit 6, which generates bias potentials for each circuit section, are provided. The bias circuit 6 has at least the capability in which different base plate biases are supplied to MOS transistors used in the peripheral circuit 5 during an active period and a precharge period.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] [Purpose of the invention]

【0001】0001

【産業上の利用分野】本発明は、ダイナミック型半導体
記憶装置(DRAM)の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvements in dynamic semiconductor memory devices (DRAMs).

【0002】0002

【従来の技術】半導体記憶装置の中で最も大容量化が進
んでいるDRAMは、現在16MビットDRAMが製品
開発段階にあり、64MビットDRAMが研究開発段階
にある。大容量化と共にDRAMでは、高速化と低消費
電力化がますます大きな問題になっている。
BACKGROUND OF THE INVENTION Among semiconductor memory devices, DRAMs, which have the most increased capacity, are currently in the product development stage of 16 Mbit DRAM, and in the research and development stage of 64 Mbit DRAM. As DRAMs increase in capacity, higher speeds and lower power consumption are becoming increasingly important issues.

【0003】16MビットDRAMでは、アクティブ時
の高速動作を実現するために、特に高速動作が必要とな
る周辺回路部は、アクティブ時/スタンバイ時共に基板
バイアスをかけない。メモリセルアレイ部は、ビット線
容量の低減やセル間リークの防止のため、アクティブ時
/スタンバイ時共に基板バイアスをかける。
In a 16 Mbit DRAM, in order to achieve high-speed operation during active operation, the peripheral circuit section that requires particularly high-speed operation is not subjected to substrate bias during both active and standby periods. A substrate bias is applied to the memory cell array section both during active and standby periods in order to reduce bit line capacitance and prevent leakage between cells.

【0004】一方、スタンバイ時の消費電流について見
ると、16MビットDRAMでは、大部分が基板電位や
プレート電位を発生するためのバイアス回路部で流れ、
周辺回路部のトランジスタのサブスレッショルド電流に
よる寄与分はほとんどない。したがって16MビットD
RAMでは、バイアス回路部の回路設計に十分留意すれ
ば、高速性能とスタンバイ時の低消費電力特性を共に実
現することができる。
On the other hand, when looking at the current consumption during standby, in a 16 Mbit DRAM, most of it flows in the bias circuit section for generating the substrate potential and plate potential.
There is almost no contribution from the subthreshold current of transistors in the peripheral circuit section. Therefore 16 Mbit D
In a RAM, if sufficient attention is paid to the circuit design of the bias circuit section, it is possible to achieve both high-speed performance and low power consumption characteristics during standby.

【0005】DRAMがさらに大容量化して、例えば1
Gビットレベルになると、外部電源電位は1.5Vまで
下げられると予想される。ここまで外部電源電位を下げ
て、しかも高速性能を確保するためには、各部のMOS
トランジスタのしきい値も例えば、0.2V程度まで下
げることが必要になる。しかし、この様にしきい値電圧
を下げると、MOSトランジスタのサブスレッショルド
電流成分が無視できない大きさになる。
[0005] As the capacity of DRAM continues to increase, for example, 1
When the G bit level is reached, the external power supply potential is expected to be lowered to 1.5V. In order to lower the external power supply potential to this extent and ensure high-speed performance, the MOS of each part must be
It is also necessary to lower the threshold voltage of the transistor to, for example, about 0.2V. However, when the threshold voltage is lowered in this way, the subthreshold current component of the MOS transistor becomes too large to be ignored.

【0006】何故ならMOSトランジスタのサブスレッ
ショルド特性を示すSファクターは、ゲート絶縁膜厚T
ox、基板不純物濃度NA のみにより決定されるが、
ゲート絶縁膜厚はTDDB(Time   Depen
dent  Dielectric   Breakd
own)寿命の点から余り薄くすることはできないから
である。
This is because the S factor, which indicates the subthreshold characteristics of a MOS transistor, depends on the gate insulating film thickness T.
ox, which is determined only by the substrate impurity concentration NA,
The gate insulating film thickness is TDDB (Time Dependency
dent Dielectric Breakd
This is because it cannot be made too thin from the viewpoint of longevity.

【0007】したがって、1Gビットレベルまで大容量
化すると、スタンバイ電流に占めるサブスレッショルド
電流が非常に大きいものとなる。この様子を図7に示す
。図示のように、16Mビットでは、スタンバイ電流は
バイアス回路部の電流が支配的であったのに対して、1
Gビットになるとサブスレッショルド電流が支配的にな
る。
[0007] Therefore, when the capacity is increased to 1 Gbit level, the subthreshold current that occupies the standby current becomes extremely large. This situation is shown in FIG. As shown in the figure, for 16M bits, the standby current was dominated by the current in the bias circuit, whereas
When it comes to G bits, subthreshold current becomes dominant.

【0008】サブスレッショルド電流成分を減少させる
には、基板不純物濃度NA を高くしてMOSトランジ
スタのしきい値電圧を高くするか、または基板バイアス
をかけてMOSトランジスタのしきい値電圧を高くすれ
ばよい。しかし、MOSトランジスタのしきい値電圧を
高くすると、高速性能が損なわれる。
In order to reduce the subthreshold current component, the threshold voltage of the MOS transistor can be increased by increasing the substrate impurity concentration NA, or by increasing the threshold voltage of the MOS transistor by applying a substrate bias. good. However, increasing the threshold voltage of the MOS transistor impairs high-speed performance.

【0009】またDRAMは、今後ますます、バッテリ
ー・バックアップが可能な低スタンバイ電流の用途が増
大すると考えられ、その意味でもサブスレッショルド電
流の低減が望まれる。
[0009] Furthermore, DRAMs are expected to be increasingly used for low standby currents that can be backed up by batteries, and in this sense, it is desired to reduce subthreshold currents.

【0010】0010

【発明が解決しようとする課題】以上のように、従来の
DRAM方式では、さらに大容量化した場合に高速性能
とスタンバイ時の低消費電力特性を両立させることが困
難になるという問題があった。
[Problems to be Solved by the Invention] As described above, the conventional DRAM system has the problem that it becomes difficult to achieve both high-speed performance and low power consumption characteristics during standby when the capacity is further increased. .

【0011】本発明はこの様に点に鑑み、大容量化した
ときにも高速性能と低消費電力特性を両立させることを
可能としたDRAMを提供することを目的とする。
In view of the above, an object of the present invention is to provide a DRAM that can achieve both high-speed performance and low power consumption characteristics even when the capacity is increased.

【0012】[発明の構成][Configuration of the invention]

【0013】[0013]

【課題を解決するための手段】本発明にかかるDRAM
は、ダイナミック型メモリセルが配列されたメモリセル
アレイ、アドレスデコーダおよびセンスアンプを含むコ
ア回路、データの入出力制御を行う周辺回路、および各
回路部のバイアス電位を発生するバイアス回路とを備え
、バイアス回路は少なくとも周辺回路に用いられるMO
Sトランジスタにアクティブ時とプリチャージ時とで異
なる基板バイアスを与える機能を有することを特徴とす
る。
[Means for solving the problems] DRAM according to the present invention
The system includes a memory cell array in which dynamic memory cells are arranged, a core circuit including an address decoder and a sense amplifier, peripheral circuits that control data input/output, and a bias circuit that generates bias potentials for each circuit section. The circuit is at least an MO used for peripheral circuits.
It is characterized by having a function of applying different substrate biases to the S transistor when active and when precharging.

【0014】[0014]

【作用】本発明によれば、DRAMチップのアクティブ
時とスタンバイ時とで少なくとも周辺回路を構成するM
OSトランジスタの基板バイアスを異ならせて、スタン
バイ時にはアクティブ時と比較してしきい値電圧の絶対
値を大きくすることができる。これにより、アクティブ
時にはしきい値電圧の低い状態で高速動作を確保し、ス
タンバイ時にはサブスレッショルド電流を減少させて低
消費電力特性を実現することができる。
[Operation] According to the present invention, the M
By varying the substrate bias of the OS transistor, the absolute value of the threshold voltage can be made larger during standby compared to when active. This ensures high-speed operation with a low threshold voltage when active, and reduces subthreshold current during standby to achieve low power consumption characteristics.

【0015】[0015]

【実施例】以下、図面を参照しながら本発明の実施例を
説明する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0016】図1は、本発明の一実施例に係るDRAM
のチップ構成を示す。DRAMチップ1は、図に示すよ
うに、メモリセルアレイ2、コア回路部3,4,周辺回
路部5、バイアス回路部6等により構成される。
FIG. 1 shows a DRAM according to an embodiment of the present invention.
The chip configuration is shown below. As shown in the figure, the DRAM chip 1 includes a memory cell array 2, core circuit sections 3 and 4, a peripheral circuit section 5, a bias circuit section 6, and the like.

【0017】メモリセルアレイ2は、1トランジスタ/
1キャパシタのダイナミック型メモリセルがマトリクス
配列されて構成される。コア回路部3,4は、センスア
ンプセンスアンプ、ロウデコーダ、カラムデコーダ等を
含む。周辺回路部5は、アドレスバッファや入出力バッ
ファ、クロック発生回路等のデータ入出力を制御する各
種回路を含む。バイアス回路部6は、各回路を構成する
MOSトランジスタの基板バイアスやプレート電位等を
発生する部分である。
The memory cell array 2 has one transistor/
Dynamic memory cells each having one capacitor are arranged in a matrix. The core circuit units 3 and 4 include a sense amplifier, a row decoder, a column decoder, and the like. The peripheral circuit section 5 includes various circuits that control data input and output, such as an address buffer, an input/output buffer, and a clock generation circuit. The bias circuit section 6 is a section that generates substrate bias, plate potential, etc. of the MOS transistors forming each circuit.

【0018】ここで、バイアス回路6は、少なくとも周
辺回路部5のMOSトランジスタにについて、アクティ
ブ時とスタンバイ時とで異なる基板バイアスを与える機
能を有する。
The bias circuit 6 has a function of applying different substrate biases to at least the MOS transistors of the peripheral circuit section 5 during active and standby states.

【0019】図2は、この実施例のDRAMの要部断面
構造を示している。この実施例では半導体基板11とし
てn型を用いている。
FIG. 2 shows a cross-sectional structure of the main part of the DRAM of this embodiment. In this embodiment, an n-type semiconductor substrate 11 is used.

【0020】コア回路部3,4は、基板11に形成され
たp型ウェル121 と、p型ウェル122 内に形成
されたn型ウェル131 を用いて構成されたCMOS
回路である。図では、p型ウェル121 に一つのNM
OSトランジスタQn1を示し、n型ウェル131 に
一つのPMOSトランジスタQp1を示している。
[0020] The core circuit parts 3 and 4 are CMOS configured using a p-type well 121 formed in the substrate 11 and an n-type well 131 formed in the p-type well 122.
It is a circuit. In the figure, one NM is placed in the p-type well 121.
An OS transistor Qn1 is shown, and one PMOS transistor Qp1 is shown in the n-type well 131.

【0021】周辺回路部5も同様に、p型ウェル123
 と、p型ウェル124 内に形成されたn型ウェル1
32 を用いて構成されたCMOS回路である。図では
、p型ウェル123 に一つのNMOSトランジスタQ
n2を示し、n型ウェル132 に一つのPMOSトラ
ンジスタQp2を示している。
Similarly, the peripheral circuit section 5 also has a p-type well 123.
and the n-type well 1 formed in the p-type well 124.
This is a CMOS circuit constructed using .32. In the figure, one NMOS transistor Q is placed in the p-type well 123.
n2, and one PMOS transistor Qp2 is shown in the n-type well 132.

【0022】メモリセルアレイ2は、p型ウェル125
 に形成されている。ここでもp型ウェル125 にN
MOSトランジスタQM とキャパシタCM からなる
一つのメモリセルを示している。
The memory cell array 2 has a p-type well 125
is formed. Here again, N is applied to the p-type well 125.
One memory cell consisting of a MOS transistor QM and a capacitor CM is shown.

【0023】図3は、この様なウェル構造の各回路部に
バイアス回路6から与えられるウェル電位を示している
。なお外部電源電位は1.5Vとする。
FIG. 3 shows the well potential applied from the bias circuit 6 to each circuit portion of such a well structure. Note that the external power supply potential is 1.5V.

【0024】コア回路部3,4では、アクティブ時,ス
タンバイ時を通してp型ウェル121 には−0.1V
、n型ウェル131 には昇圧された2Vが与えられる
。したがってコア回路部3,4では、NMOSトランジ
スタQn1,PMOSトランジスタQp1共に、常に一
定のしきい値電圧を持つ。p型ウェル122 は、常に
−0.5Vとする。
In the core circuit sections 3 and 4, -0.1V is applied to the p-type well 121 throughout the active and standby periods.
, a boosted voltage of 2V is applied to the n-type well 131. Therefore, in the core circuit sections 3 and 4, both the NMOS transistor Qn1 and the PMOS transistor Qp1 always have a constant threshold voltage. The p-type well 122 is always at -0.5V.

【0025】周辺回路部5では、アクティブ時とスタン
バイ時とで異なるウェル電位が与えられる。アクティブ
時にはp型ウェル123 に0V、n型ウェル132 
に電源電位と同じ1.5Vが与えられる。このとき、N
MOSトランジスタQn2,PMOSトランジスタQo
2共に基板バイアスはかからない。スタンバイ時には、
p型ウェル123 に−0.5V、n型ウェル132 
に昇圧電位2.0Vが与えられる。これにより、NMO
SトランジスタQn2,PMOSトランジスタQp2と
もに、しきい値の絶対値が大きくなる方向で0.5V分
の基板バイアスがかかる。なおp型ウェル124 は常
に−0.5Vとする。
Different well potentials are applied to the peripheral circuit section 5 during active and standby states. When active, 0V to p-type well 123, n-type well 132
1.5V, which is the same as the power supply potential, is applied to . At this time, N
MOS transistor Qn2, PMOS transistor Qo
No substrate bias is applied to both. During standby,
-0.5V to p-type well 123, n-type well 132
A boosted potential of 2.0V is applied to. This allows N.M.O.
A substrate bias of 0.5 V is applied to both the S transistor Qn2 and the PMOS transistor Qp2 in the direction in which the absolute value of the threshold value increases. Note that the p-type well 124 is always at -0.5V.

【0026】メモリセルアレイ部2のp型ウェル125
 は、アクティブ時,スタンバイ時を通して、−0.5
V一定のバイアスが与えられる。
P-type well 125 in memory cell array section 2
is -0.5 throughout active and standby
V constant bias is applied.

【0027】図4は、周辺回路部5のMOSトランジス
タの特性を、アクティブ時(a) とスタンバイ時(b
) について示している。ゲート・ソース間電圧VGS
、ドレイン電流IDSおよびしきい値電圧Vth0 ,
Vth1 は、PMOS,NMOS同時に示すため、絶
対値で表している。これらはNMOSトランジスタの場
合正であり、PMOSでは負である。上述したウェル電
位の制御によって、アクティブ時のしきい値電圧Vth
0 に対してスタンバイ時のしきい値電圧Vth1 は
高くなる。これにより、スタンバイ時の周辺回路部5で
のサブスレッショルド電流は、オーダーが変わる程大き
く減少する。
FIG. 4 shows the characteristics of the MOS transistor in the peripheral circuit section 5 when it is active (a) and when it is in standby (b).
). Gate-source voltage VGS
, drain current IDS and threshold voltage Vth0,
Since Vth1 is shown for both PMOS and NMOS, it is expressed as an absolute value. These are positive for NMOS transistors and negative for PMOS. By controlling the well potential as described above, the threshold voltage Vth during active
0, the threshold voltage Vth1 during standby is higher. As a result, the subthreshold current in the peripheral circuit section 5 during standby decreases more greatly as the order changes.

【0028】図5は、この実施例のDRAMのスタンバ
イ電流を、従来の図7に対応させて示したものである。 サブスレッショルド電流の低減によって、1GビットD
RAMであっても、スタンバイ時の消費電流は、16M
ビットDRAMとほぼ同じ値(1mA程度)に抑えるこ
とができる。
FIG. 5 shows the standby current of the DRAM of this embodiment, corresponding to FIG. 7 of the prior art. By reducing subthreshold current, 1Gbit D
Even with RAM, the current consumption during standby is 16M
It is possible to suppress the current value to approximately the same value (approximately 1 mA) as that of a bit DRAM.

【0029】この様にしてこの実施例によれば、周辺回
路部のウェル電位を制御することにより、アクティブ時
の高速性能を維持しながら、スタンバイ時のサブスレッ
ショルド電流を低減して低消費電力特性を実現すること
ができる。
In this manner, according to this embodiment, by controlling the well potential of the peripheral circuit section, the subthreshold current during standby is reduced while maintaining high-speed performance during active, resulting in low power consumption characteristics. can be realized.

【0030】上記実施例では、メモリセルアレイ部およ
びコア回路部のMOSトランジスタのしきい値はアクテ
ィブ時,スタンバイ時を通して一定に保っている。これ
は、MOSトランジスタのサブスレッショルド電流が主
として周辺回路部で流れるためである。しかし、4G,
16GとさらにDRAMが大容量化されると、コア回路
部でのサブスレッショルド電流の増大も無視できなくな
る。その場合には、コア回路部についても、周辺回路部
と同様に、ウェル電位制御を行うことが好ましい。
In the above embodiment, the threshold values of the MOS transistors in the memory cell array section and the core circuit section are kept constant throughout the active and standby periods. This is because the subthreshold current of the MOS transistor mainly flows in the peripheral circuit section. However, 4G,
As the capacity of DRAM increases further to 16G, the increase in subthreshold current in the core circuit section cannot be ignored. In that case, it is preferable to perform well potential control on the core circuit section as well as on the peripheral circuit section.

【0031】図6は、その様な実施例での各部ウェル電
位を図3に対応させて示している。周辺回路部5のウェ
ル電位制御は、図3と同じである。コア回路部3,4の
p型ウェル121 は−0.5V一定ではなく、スタン
バイ時にはこれを−0.8Vに下げる。またコア回路部
3,4のn型ウェル131 も、2.0V一定ではなく
、スタンバイ時にはこれを2.3Vまで上げる。
FIG. 6 shows the well potentials of various parts in such an embodiment, corresponding to FIG. Well potential control of the peripheral circuit section 5 is the same as in FIG. The p-type well 121 of the core circuit sections 3 and 4 is not kept at a constant voltage of -0.5V, but is lowered to -0.8V during standby. Furthermore, the n-type wells 131 of the core circuit sections 3 and 4 are not kept at a constant 2.0V, but are increased to 2.3V during standby.

【0032】これによって、コア回路部3,4でもMO
Sトランジスタのしきい値が制御されて、スタンバイ時
のサブスレッショルド電流が低減される。
[0032] As a result, even in the core circuit parts 3 and 4, the MO
The threshold of the S transistor is controlled to reduce the subthreshold current during standby.

【0033】[0033]

【発明の効果】以上述べたように本発明によれば、周辺
回路部のMOSトランジスタの基板バイアス制御によっ
て、アクティブ時の高速動作とスタンバイ時の低消費電
力特性を両立させた大容量DRAMを得ることができる
As described above, according to the present invention, by controlling the substrate bias of MOS transistors in the peripheral circuit section, it is possible to obtain a large-capacity DRAM that achieves both high-speed operation during active operation and low power consumption during standby. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例に係るDRAMのチップ構成
を示す図。
FIG. 1 is a diagram showing a chip configuration of a DRAM according to an embodiment of the present invention.

【図2】同実施例のDRAMの要部断面構造を示す図。FIG. 2 is a diagram showing a cross-sectional structure of a main part of the DRAM of the same embodiment.

【図3】同実施例のDRAMの各部ウェル電位の変化を
示す図。
FIG. 3 is a diagram showing changes in well potential at various parts of the DRAM of the same example.

【図4】同実施例の周辺回路部のMOSトランジスタ特
性を示す図。
FIG. 4 is a diagram showing MOS transistor characteristics of the peripheral circuit section of the same embodiment.

【図5】同実施例のDRAMのスタンバイ電流と集積度
の関係を示す図。
FIG. 5 is a diagram showing the relationship between standby current and degree of integration of the DRAM of the same embodiment.

【図6】他の実施例のDRAMの各部ウェル電位の変化
を示す図。
FIG. 6 is a diagram showing changes in well potential at various parts of a DRAM according to another embodiment.

【図7】従来のDRAMのスタンバイ電流と集積度の関
係を示す図。
FIG. 7 is a diagram showing the relationship between standby current and degree of integration of a conventional DRAM.

【符号の説明】[Explanation of symbols]

1…DRAMチップ、 2…メモリセルアレイ、 3,4…コア回路部、 5…周辺回路部、 6…バイアス回路部、 11…n型半導体基板、 121 〜125 …p型ウェル、 131 ,132 …n型ウェル。 1...DRAM chip, 2...Memory cell array, 3, 4...core circuit section, 5...peripheral circuit section, 6...bias circuit section, 11...n-type semiconductor substrate, 121-125...p-type well, 131, 132...n-type well.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ダイナミック型メモリセルが配列されたメ
モリセルアレイと、アドレスデコーダおよびセンスアン
プを含むコア回路と、データの入出力制御を行う周辺回
路と、各回路部のバイアス電位を発生し、少なくとも前
記周辺回路に用いられるMOSトランジスタにアクティ
ブ時とプリチャージ時とで異なる基板バイアスを与える
バイアス回路と、を備えたことを特徴とするダイナミッ
ク型半導体記憶装置。
1. A memory cell array in which dynamic memory cells are arranged, a core circuit including an address decoder and a sense amplifier, a peripheral circuit for controlling data input/output, and a bias potential for each circuit section, and at least A dynamic semiconductor memory device comprising: a bias circuit that applies different substrate biases to a MOS transistor used in the peripheral circuit during active and precharge times.
JP3093457A 1991-03-30 1991-03-30 Dynamic semiconductor storage device Pending JPH04302897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3093457A JPH04302897A (en) 1991-03-30 1991-03-30 Dynamic semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3093457A JPH04302897A (en) 1991-03-30 1991-03-30 Dynamic semiconductor storage device

Publications (1)

Publication Number Publication Date
JPH04302897A true JPH04302897A (en) 1992-10-26

Family

ID=14082862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3093457A Pending JPH04302897A (en) 1991-03-30 1991-03-30 Dynamic semiconductor storage device

Country Status (1)

Country Link
JP (1) JPH04302897A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09128967A (en) * 1995-10-12 1997-05-16 Lg Semicon Co Ltd Supply control circuit for memory substrate voltage
US5814899A (en) * 1995-01-27 1998-09-29 Nec Corporation SOI-type semiconductor device with variable threshold voltages

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814899A (en) * 1995-01-27 1998-09-29 Nec Corporation SOI-type semiconductor device with variable threshold voltages
US5892260A (en) * 1995-01-27 1999-04-06 Nec Corporation SOI-type semiconductor device with variable threshold voltages
EP0724295B1 (en) * 1995-01-27 2003-04-02 Nec Corporation SOI-type semiconductor device with variable threshold voltages
JPH09128967A (en) * 1995-10-12 1997-05-16 Lg Semicon Co Ltd Supply control circuit for memory substrate voltage

Similar Documents

Publication Publication Date Title
US5471421A (en) Storage cell using low powered/low threshold CMOS pass transistors having reduced charge leakage
US6147914A (en) On-chip word line voltage generation for DRAM embedded in logic process
JP4558410B2 (en) Method of accessing memory of unloaded 4TSRAM cell
JP2002368135A (en) Semiconductor memory device
JP2003132683A (en) Semiconductor device
JPH10135424A (en) Semiconductor integrated circuit device
JPH07254685A (en) Semiconductor memory
JP3102179B2 (en) Semiconductor integrated circuit
US7035128B2 (en) Semiconductor memory device and semiconductor integrated circuit device
JPH10144879A (en) Word line driver circuit and semiconductor memory
JPH05274876A (en) Semiconductor storage device
JP2018137033A (en) Semiconductor device
JPH08203270A (en) Semiconductor integrated circuit
JPH0869693A (en) Static semiconductor storage device
JP5745668B2 (en) Semiconductor device
JP3362729B2 (en) Semiconductor integrated circuit
JPH04302897A (en) Dynamic semiconductor storage device
JP2016177864A (en) Semiconductor device
JP6383041B2 (en) Semiconductor device
JP3053178B2 (en) Semiconductor integrated circuit
JP2001024168A (en) Semiconductor storage device
JP3135890B2 (en) Semiconductor integrated circuit
JP3020944B2 (en) Semiconductor integrated circuit
JP3179768B2 (en) Semiconductor integrated circuit
JP3591530B2 (en) Semiconductor integrated circuit