JPH04302176A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH04302176A
JPH04302176A JP3065972A JP6597291A JPH04302176A JP H04302176 A JPH04302176 A JP H04302176A JP 3065972 A JP3065972 A JP 3065972A JP 6597291 A JP6597291 A JP 6597291A JP H04302176 A JPH04302176 A JP H04302176A
Authority
JP
Japan
Prior art keywords
semiconductor device
semiconductor
optical
cooling structure
optical signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3065972A
Other languages
Japanese (ja)
Inventor
Takeshi Kato
猛 加藤
Katsuya Tanaka
勝也 田中
Fumio Yuki
文夫 結城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3065972A priority Critical patent/JPH04302176A/en
Publication of JPH04302176A publication Critical patent/JPH04302176A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15312Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA

Abstract

PURPOSE:To provide a means of optical interconnection including a semiconductor device provided with a cooling structure. CONSTITUTION:A light propagation section 7 is provided to a cooling structure 6, and light signals 8 are transmitted from or received by an optoelectronic element 2 provided to a semiconductor element 1 through the intermediary of the light propagation section 7. As light signals can be transmitted without being blocked by the cooling structure 6, an ultrahigh speed semiconductor device can be realized taking advantage of the merits of light signals such as high speed and large bandwidth.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は光インタコネクションを
行う半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device for optical interconnection.

【0002】0002

【従来の技術】従来の半導体装置は、例えば応用物理学
会、日本光学会、微小光学研究グループ編集、微小光学
特別セミナーVIII(1990)、微小光学と実装技
術、PP.22−31に記載のように、配線基板に接続
された半導体素子に熱伝導体や冷却フィンなどの冷却構
造体を取り付けていた。特に、マシンサイクルがnse
cオーダの超高速計算機に用いられる半導体装置では、
高性能化するため半導体素子を高集積化し、高密度実装
により素子間や装置間の信号伝送を高速化する必要があ
った。今後もマシンサイクルは短縮される方向にあり、
半導体装置はいっそう高集積化かつ高密度実装されるの
で、装置の発熱量は益々増大する傾向にある。より信号
伝送を高速化する方法としては、例えば同誌、pp.8
0−92に記載のように、光インタコネクションが提案
されている。これは、基板に接続された半導体素子に光
電子素子部を設け、素子間を光導波路やホログラムなど
によって配線するものである。光配線は高速・広帯域性
を有するので、電気配線に比べて信号の波形劣化や遅延
が生じにくい。将来的には、特にGHzオーダ以上の高
速な信号伝送が必要になるクロック信号配線に有用と言
われている。なお、従来の提案例には半導体素子に冷却
構造体が取り付けられていなかった。
2. Description of the Related Art Conventional semiconductor devices are manufactured by, for example, the Society of Applied Physics, Optical Society of Japan, edited by the Micro-Optics Research Group, Micro-Optics Special Seminar VIII (1990), Micro-optics and Packaging Technology, PP. As described in No. 22-31, a cooling structure such as a heat conductor or cooling fins was attached to a semiconductor element connected to a wiring board. In particular, the machine cycle is nse
In semiconductor devices used in c-order ultra-high-speed computers,
In order to improve performance, it was necessary to increase the integration of semiconductor elements and increase the speed of signal transmission between elements and devices through high-density packaging. Machine cycles will continue to be shortened in the future.
As semiconductor devices become more highly integrated and packaged at a higher density, the amount of heat generated by the devices tends to increase. As a method to further speed up signal transmission, for example, the same magazine, pp. 8
Optical interconnections have been proposed as described in No. 0-92. In this method, an optoelectronic element section is provided on a semiconductor element connected to a substrate, and wiring is established between the elements using an optical waveguide, a hologram, or the like. Optical wiring has high speed and broadband characteristics, so signal waveform deterioration and delay are less likely to occur compared to electrical wiring. In the future, it is said to be particularly useful for clock signal wiring that will require high-speed signal transmission on the order of GHz or higher. Note that in the conventional proposed example, a cooling structure was not attached to the semiconductor element.

【0003】0003

【発明が解決しようとする課題】将来の超高速半導体装
置では装置の発熱量が大きくなるので冷却構造体が不可
欠であり、信号伝送には光インタコネクションの適用が
必要となる。上記従来技術では冷却構造体が光を遮蔽す
る金属材から構成されている上、この冷却構造体を回避
するような光配線方式について配慮がされておらず、実
際には光インタコネクションを行えないという問題があ
った。
[Problems to be Solved by the Invention] In future ultra-high-speed semiconductor devices, since the amount of heat generated by the devices will increase, a cooling structure will be essential, and optical interconnection will need to be applied for signal transmission. In the above conventional technology, the cooling structure is made of a metal material that blocks light, and no consideration is given to an optical wiring method that avoids the cooling structure, so optical interconnection cannot actually be performed. There was a problem.

【0004】本発明の目的は、冷却構造体を有する半導
体装置において光インタコネクションを実施可能とする
技術手段を提供することにある。
An object of the present invention is to provide technical means that enable optical interconnection to be implemented in a semiconductor device having a cooling structure.

【0005】また、本発明の他の目的はより具体的に冷
却構造体に対する光配線方式を提供することにある。
Another object of the present invention is to more specifically provide an optical wiring system for a cooling structure.

【0006】他の目的は、光信号の迷光を防止する手段
、或いは光信号と光電子素子部の光結合効率を高める手
段を提供することにある。
Another object of the present invention is to provide a means for preventing stray light of an optical signal, or a means for increasing the efficiency of optical coupling between an optical signal and an optoelectronic element.

【0007】その他の目的は、より構成材料や製作性を
考慮した半導体装置を提供することにある。
Another object of the present invention is to provide a semiconductor device that takes into consideration constituent materials and manufacturability.

【0008】さらに他の目的は、半導体装置へ光信号に
よりクロック信号配線を行う手段を提供することにある
Still another object is to provide a means for wiring a clock signal to a semiconductor device using an optical signal.

【0009】本発明は、半導体装置を複数用いてシステ
ムとして使用するための技術手段を提供することも目的
とする。
Another object of the present invention is to provide technical means for using a plurality of semiconductor devices as a system.

【0010】0010

【課題を解決するための手段】本発明は、光インタコネ
クションを実施可能とする上記目的を達成するため、冷
却構造体の少なくとも一部に光信号を伝搬する部分を設
けたものである。より具体的には、冷却フィンなどの冷
却構造体に光透過部材を使用したもの、または貫通孔を
設けたものである。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object of enabling optical interconnection, the present invention provides at least a portion of a cooling structure with a portion for propagating an optical signal. More specifically, a cooling structure such as a cooling fin uses a light transmitting member or has through holes.

【0011】また、迷光を防止するため光伝搬部以外の
部分に光信号の遮蔽部材を設け、光結合効率を高めるた
め半導体素子または冷却構造体にレンズなどの波面変換
光学素子を設け、あるいは冷却フィンをピン形状とした
ものである。
[0011] Furthermore, in order to prevent stray light, an optical signal shielding member is provided in a portion other than the light propagation section, and in order to increase optical coupling efficiency, a wavefront converting optical element such as a lens is provided in the semiconductor element or the cooling structure, or a cooling The fins are pin-shaped.

【0012】そのほか構成材料として半導体素子と光電
子素子部をシリコン半導体により作成し、波長0.9μ
m 以下の光を透過する部材を冷却構造体に使用したも
のである。また、シリコン結晶材を加工して冷却フィン
を作成したものである。
In addition, the semiconductor element and the optoelectronic element are made of silicon semiconductor as constituent materials, and the wavelength is 0.9μ.
The cooling structure uses a member that transmits light of less than m. The cooling fins are also made by processing silicon crystal material.

【0013】さらに、光信号によりクロック配線を行う
ために、複数の光電子素子部に同一周波数で変調された
光信号を送信したものである。その上、光信号の位相を
揃え、光伝搬部の光路長を等しくしたものである。
Furthermore, in order to perform clock wiring using an optical signal, an optical signal modulated at the same frequency is transmitted to a plurality of optoelectronic element sections. Furthermore, the phases of the optical signals are aligned and the optical path lengths of the optical propagation sections are made equal.

【0014】複数の半導体装置をシステムとして使用す
るために、装置間を光信号により互いに接続、または各
装置を光信号により同期させて駆動したものである。
In order to use a plurality of semiconductor devices as a system, the devices are connected to each other by optical signals, or each device is driven in synchronization with optical signals.

【0015】[0015]

【作用】冷却フィンなどの冷却構造体に光伝搬部を設け
たことにより、この光伝搬部を介して半導体素子と光信
号の送受信を行うことができるので、光配線が可能とな
る。光伝搬部は光信号を透過する部材または貫通孔から
なるので、従来のように光信号が遮蔽されたり減衰する
ことがない。
[Operation] By providing a light propagation section in a cooling structure such as a cooling fin, optical signals can be transmitted and received to and from a semiconductor element via this light propagation section, making optical wiring possible. Since the light propagation section is composed of a member or a through hole that transmits the optical signal, the optical signal is not blocked or attenuated as in the conventional case.

【0016】また、迷光を遮蔽したことにより光信号の
クロストークを防止できる。波面変換光学素子を設けた
ことにより、光電子素子に対する光信号の入射効率や光
電子素子からの光信号の出射効率を高めることができる
。冷却フィンをピン形状にしたことにより、ピン自体を
光導波路として使用できる。
Furthermore, by shielding stray light, crosstalk of optical signals can be prevented. By providing the wavefront conversion optical element, it is possible to increase the efficiency of incidence of optical signals into the optoelectronic element and the efficiency of output of optical signals from the optoelectronic element. By making the cooling fins pin-shaped, the pins themselves can be used as optical waveguides.

【0017】そのほか、半導体素子と光電子素子部をシ
リコン半導体へモノリシックに形成でき、この光電子素
子部により波長0.9μm 以下の光信号を受信できる
。 冷却フィンの構成材料としてシリコンを用いることによ
り、機械加工によらず結晶異方性エッチングによりフィ
ンを加工できる。
In addition, the semiconductor element and the optoelectronic element can be monolithically formed on a silicon semiconductor, and the optoelectronic element can receive optical signals with a wavelength of 0.9 μm or less. By using silicon as a constituent material of the cooling fins, the fins can be processed by crystal anisotropic etching instead of mechanical processing.

【0018】さらに、クロック信号として同一周波数ま
たは同一位相の光信号を使用したことにより、電気配線
よりも高速なクロック信号を半導体素子に分配すること
ができる。
Furthermore, by using optical signals of the same frequency or the same phase as clock signals, it is possible to distribute clock signals faster than electrical wiring to semiconductor elements.

【0019】また、光信号により複数の半導体装置を互
いに信号接続したことにより分散処理を実施でき、同期
駆動させたことにより並列処理を実施できる。
Furthermore, distributed processing can be performed by signally connecting a plurality of semiconductor devices to each other using optical signals, and parallel processing can be performed by driving them synchronously.

【0020】[0020]

【実施例】以下、本発明を適用した半導体装置について
図面により説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A semiconductor device to which the present invention is applied will be explained below with reference to the drawings.

【0021】図1は本発明の第1実施例の構成図を示す
。図1において、半導体素子1は接続体3により配線基
板4に接続され、冷却構造体6が取り付けられている。 接続体3は半田バンプなどの突起電極の場合を示したが
、テープ・オートメイテッド・ボンディング等により接
続する場合もある。配線基板4はAlNやムライトなど
のセラミックスやシリコン・ウエハなどの多層配線基板
から成り、入出力端子5を有する。冷却構造体6は上述
の文献にも記載されているように冷却フィンや熱伝導体
などから構成される。本発明により、半導体素子1に光
電子素子部2を設け、冷却構造体6に光信号8(図1中
の矢印)を伝搬する部分7を設けた。本第1実施例によ
れば、伝搬部7と光電子素子部2を介して半導体素子1
に光信号8を送信あるいは受信させることができ、光に
よる信号配線が可能になる。
FIG. 1 shows a block diagram of a first embodiment of the present invention. In FIG. 1, a semiconductor element 1 is connected to a wiring board 4 by a connecting body 3, and a cooling structure 6 is attached. Although the connection body 3 is shown as a protruding electrode such as a solder bump, it may also be connected by tape automated bonding or the like. The wiring board 4 is made of a multilayer wiring board made of ceramics such as AlN or mullite, or silicon wafer, and has input/output terminals 5. The cooling structure 6 is composed of cooling fins, heat conductors, etc., as described in the above-mentioned literature. According to the invention, the semiconductor device 1 is provided with an optoelectronic device section 2, and the cooling structure 6 is provided with a section 7 for propagating an optical signal 8 (arrow in FIG. 1). According to the first embodiment, the semiconductor element 1
The optical signal 8 can be transmitted or received by the optical signal 8, and signal wiring using light becomes possible.

【0022】光伝搬部7の具体的な構成方法として、光
信号8を透過する部材により冷却構造体6を構成する方
法、および冷却構造体6に貫通孔を設ける方法などがあ
る。前者は後者に比べて冷却構造体6の構造設計を行い
やすく、後者は前者に比べて部材の選択が自由である利
点がある。
Specific methods for constructing the light propagation section 7 include a method of constructing the cooling structure 6 from a member that transmits the optical signal 8, and a method of providing through holes in the cooling structure 6. The former has the advantage that it is easier to design the structure of the cooling structure 6 than the latter, and the latter has the advantage that members can be selected more freely than the former.

【0023】ところで、半導体素子1への光電子素子部
2の構成方法として、半導体素子1と光電子素子部2を
GaAs系やInP系の化合物半導体によりモノリシッ
クに作成する方法や、シリコン半導体素子上に化合物半
導体素子をモノリシック形成またはハイブリッド実装す
る方法がある。また、光電子素子部2が受信のみ行う場
合は、シリコン半導体素子上に光電子素子部2をモノリ
シックに形成できる。この場合、光電子素子部2の受光
感度の点から光信号8として波長0.9μm 以下の光
を用いる必要があり、冷却構造体6の光伝搬部には波長
0.9μm 以下の光を透過する部材、例えばガラス系
材料や可視光透過性セラミックスを用いる必要がある。
By the way, as a method for constructing the optoelectronic element part 2 on the semiconductor element 1, there is a method in which the semiconductor element 1 and the optoelectronic element part 2 are monolithically formed using a GaAs-based or InP-based compound semiconductor, or a method in which a compound semiconductor is formed on a silicon semiconductor element. There are methods for monolithically forming semiconductor elements or for hybrid packaging. Furthermore, when the optoelectronic element section 2 only performs reception, the optoelectronic element section 2 can be monolithically formed on a silicon semiconductor element. In this case, it is necessary to use light with a wavelength of 0.9 μm or less as the optical signal 8 in view of the light receiving sensitivity of the optoelectronic element section 2, and the light with a wavelength of 0.9 μm or less is transmitted through the light propagation section of the cooling structure 6. It is necessary to use a member such as a glass-based material or a visible light-transmissive ceramic.

【0024】図2は本発明の第2実施例の構成図を示す
。図2において、半導体装置11は接続体13により多
層配線基板14に接続され、冷却構造体16が取り付け
られている。多層配線基板14は入出力端子15を有す
る。冷却構造体16は冷却フィン17と冷媒流路18か
ら構成されている。本発明により、半導体素子11に光
電子素子部12を設け、冷却フィン17を光信号21(
図2中の矢印)を透過する部材により構成し、光伝搬部
とした。例えば、光信号21として波長1.3μmの光
を用いた場合、冷却フィン17の部材としてシリコン、
サファイア、透光性AlNセラミックスなどを用いた。 またはガラスを埋め込んだ金属フィンなどの複合部材を
使用した。本第2実施例によれば、冷却フィン17を介
して半導体素子11は光信号21を送受信できる。
FIG. 2 shows a block diagram of a second embodiment of the present invention. In FIG. 2, a semiconductor device 11 is connected to a multilayer wiring board 14 by a connecting body 13, and a cooling structure 16 is attached. Multilayer wiring board 14 has input/output terminals 15. The cooling structure 16 is composed of cooling fins 17 and coolant channels 18. According to the present invention, the semiconductor element 11 is provided with the optoelectronic element part 12, and the cooling fin 17 is connected to the optical signal 21 (
It was composed of a member that transmits the arrows in FIG. 2, and was used as a light propagation section. For example, if light with a wavelength of 1.3 μm is used as the optical signal 21, the cooling fins 17 may be made of silicon,
Sapphire, translucent AlN ceramics, etc. were used. Alternatively, composite members such as metal fins embedded with glass were used. According to the second embodiment, the semiconductor element 11 can transmit and receive optical signals 21 via the cooling fins 17.

【0025】冷却構造体16に設けた光信号21を遮蔽
する部材19により、光信号21の迷光すなわちクロス
トークを防止できる。また、冷却構造体16に設けたレ
ンズやホログラム等の波面変換素子20により、光信号
21と光電子素子部12の光結合効率を高めて信号レベ
ルを上げることができる。さらに、冷却フィン17を薄
板形状からピン形状にすることにより冷却効率が向上す
るうえ、ピン自体を光信号21の導波路として利用でき
、光信号21の拡がりを防止して低損失な伝送を実施で
きる。すなわち、これらの効果により信頼度の高い信号
伝送を実現できる。
The member 19 provided in the cooling structure 16 for shielding the optical signal 21 can prevent stray light of the optical signal 21, that is, crosstalk. Furthermore, the wavefront conversion element 20 such as a lens or hologram provided in the cooling structure 16 can improve the optical coupling efficiency between the optical signal 21 and the optoelectronic element section 12, thereby increasing the signal level. Furthermore, by changing the cooling fin 17 from a thin plate shape to a pin shape, cooling efficiency is improved, and the pin itself can be used as a waveguide for the optical signal 21, preventing the optical signal 21 from spreading and achieving low-loss transmission. can. In other words, these effects make it possible to realize highly reliable signal transmission.

【0026】なお、冷却フィン17をシリコンにより構
成した場合、フィン形状を結晶異方性エッチングにより
一括加工できるので、機械加工に比べて生産性が良い利
点がある。
When the cooling fins 17 are made of silicon, the fin shape can be processed all at once by crystal anisotropic etching, which has the advantage of higher productivity than machining.

【0027】図3は本発明による半導体装置を複数用い
たシステムの一実施例の構成図を示す。図3において、
半導体素子101と配線基板102と冷却構造体103
から成る半導体装置と、半導体素子104と配線基板1
05と冷却構造体106から成る半導体装置が多層プリ
ント基板107に接続されている。半導体素子101,
104と配線基板102,105との接続体、および半
導体素子101,104の光電子素子部は簡単のため図
示していない。光源109は周波数源108により変調
されている。光源109から送信された光信号(図3中
の矢印)は空中を伝搬し、ホログラム110により偏向
され、冷却構造体103,106の光伝搬部を介して半
導体素子101,104の光電子素子部に到達する。
FIG. 3 shows a configuration diagram of an embodiment of a system using a plurality of semiconductor devices according to the present invention. In Figure 3,
Semiconductor element 101, wiring board 102, and cooling structure 103
A semiconductor device consisting of a semiconductor element 104 and a wiring board 1
A semiconductor device consisting of a cooling structure 106 and a cooling structure 106 is connected to a multilayer printed circuit board 107. semiconductor element 101,
104 and the wiring boards 102 and 105, and the optoelectronic element portions of the semiconductor elements 101 and 104 are not shown for simplicity. Light source 109 is modulated by frequency source 108 . The optical signal (arrow in FIG. 3) transmitted from the light source 109 propagates in the air, is deflected by the hologram 110, and is transmitted to the optoelectronic element portions of the semiconductor devices 101 and 104 via the optical propagation portions of the cooling structures 103 and 106. reach.

【0028】本実施例によれば、複数の光電子素子部に
同一周波数の光信号を分配することができ、特にGHz
オーダ以上の高速なクロック信号配線に有効である。ま
た、ホログラム110および冷却構造体103,106
の光伝搬部を等光路長に設計することにより、各光電子
素子部に同一位相の光信号を送ることができ、クロック
信号の位相調節は不要となる。さらに、複数の半導体装
置を互いに同期させてシステムとして駆動できるので、
より大規模な信号処理、例えば並列処理を行わせること
が可能になる。なお、光信号の分配方法として、上記ホ
ログラムによる方法のほか、レンズ,光ファイバ,光導
波路などによる方法がある。
According to this embodiment, it is possible to distribute optical signals of the same frequency to a plurality of optoelectronic element sections, and in particular, GHz
This is effective for clock signal wiring that is faster than the order of magnitude. In addition, the hologram 110 and the cooling structures 103 and 106
By designing the optical propagation sections to have equal optical path lengths, optical signals of the same phase can be sent to each optoelectronic element section, and phase adjustment of the clock signal becomes unnecessary. Furthermore, multiple semiconductor devices can be synchronized with each other and driven as a system.
It becomes possible to perform larger-scale signal processing, for example, parallel processing. In addition to the above method using a hologram, methods for distributing optical signals include methods using lenses, optical fibers, optical waveguides, and the like.

【0029】図4は本発明による半導体装置を複数用い
たシステムの一実施例の構成図を示す。図4において、
半導体素子201と配線基板202と冷却構造体203
から成る半導体装置と、半導体素子204と配線基板2
05と冷却構造体206から成る半導体装置が多層プリ
ント基板207に接続されている。半導体素子201,
204と配線基板202,205との接続体、および半
導体素子201,204の光電子素子部は簡単のため図
示していない。各光電子素子部は、冷却構造体203,
206の光伝搬部と光導波路基板208を介して、光信
号(図4中の矢印)によって相互に接続されている。光
導波路基板208の基板材料にはガラス,シリコン・ウ
エハ等、導波路材料にはガラス、高分子材料等が利用で
きる。本実施例によれば、複数の半導体装置間を高速に
信号配線でき、例えばnsecオーダ以下のマシンサイ
クルで分散処理を行うのに好適である。
FIG. 4 shows a configuration diagram of an embodiment of a system using a plurality of semiconductor devices according to the present invention. In Figure 4,
Semiconductor element 201, wiring board 202, and cooling structure 203
a semiconductor device consisting of a semiconductor element 204 and a wiring board 2;
05 and a cooling structure 206 is connected to a multilayer printed circuit board 207. semiconductor element 201,
204 and the wiring boards 202 and 205, and the optoelectronic element portions of the semiconductor elements 201 and 204 are not shown for simplicity. Each optoelectronic element section includes a cooling structure 203,
They are mutually connected by optical signals (arrows in FIG. 4) via the optical propagation section 206 and the optical waveguide substrate 208. The substrate material of the optical waveguide substrate 208 can be glass, silicon wafer, etc., and the waveguide material can be glass, polymer material, etc. According to this embodiment, it is possible to wire signals between a plurality of semiconductor devices at high speed, and it is suitable for performing distributed processing with a machine cycle on the order of nanoseconds or less, for example.

【0030】[0030]

【発明の効果】本発明によれば冷却構造体を有する半導
体装置において光インタコネクションを実施できるので
、nsecオーダ以下のマシンサイクルをもつ超高速半
導体装置を実現できる効果がある。冷却構造体の一部を
光配線経路として利用しているので、余分な光配線機構
を設ける必要はない。
According to the present invention, since optical interconnection can be implemented in a semiconductor device having a cooling structure, an ultra-high speed semiconductor device having a machine cycle on the order of nsec or less can be realized. Since a part of the cooling structure is used as an optical wiring path, there is no need to provide an extra optical wiring mechanism.

【0031】また、光信号のクロストークを防止し、信
号レベルを向上させ、冷却フィン自体を光導波路として
利用できるので、高信頼且つ低損失な光配線が得られる
という効果がある。
Further, crosstalk of optical signals can be prevented, the signal level can be improved, and the cooling fins themselves can be used as optical waveguides, so that highly reliable and low-loss optical wiring can be obtained.

【0032】そのほか、モノリシックに半導体素子へ光
電子素子部を形成できるので、半導体装置を小型・簡素
化できる効果がある。また、冷却フィンを結晶異方性エ
ッチングにより一括加工できるので、生産性が向上する
効果がある。
In addition, since the optoelectronic element portion can be monolithically formed in the semiconductor element, there is an effect that the semiconductor device can be made smaller and simpler. Furthermore, the cooling fins can be processed all at once by crystal anisotropic etching, which has the effect of improving productivity.

【0033】さらに、高速・広帯域な光信号によりGH
zオーダ以上のクロック信号を送信できるので、半導体
装置を高性能化できる効果がある。
Furthermore, the GH
Since a clock signal of z order or higher can be transmitted, there is an effect that the performance of the semiconductor device can be improved.

【0034】また、複数の半導体装置に分散処理や並列
処理を行わせることができるので、超高速な半導体装置
システムを構築できる効果がある。
Furthermore, since distributed processing or parallel processing can be performed on a plurality of semiconductor devices, an ultra-high speed semiconductor device system can be constructed.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の第1実施例を示す構成図である。FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】本発明の第2実施例を示す構成図である。FIG. 2 is a configuration diagram showing a second embodiment of the present invention.

【図3】本発明の半導体装置システムの一実施例の構成
図である。
FIG. 3 is a configuration diagram of an embodiment of the semiconductor device system of the present invention.

【図4】本発明の半導体装置システムの一実施例の構成
図である。
FIG. 4 is a configuration diagram of an embodiment of the semiconductor device system of the present invention.

【符号の説明】[Explanation of symbols]

1…半導体素子、2…光電子素子部、3…接続体、4…
配線基板、6…冷却構造体、7…光伝搬部、8…光信号
DESCRIPTION OF SYMBOLS 1...Semiconductor element, 2...Optoelectronic element part, 3...Connection body, 4...
Wiring board, 6... Cooling structure, 7... Light propagation section, 8... Optical signal.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】少なくとも一つの半導体素子と、該半導体
素子が接続された配線基板と、前記半導体素子に取り付
けられた冷却構造体を備えた半導体装置において、前記
半導体素子に少なくとも一つの光電子素子部を設け、前
記冷却構造体の少なくとも一部に光信号を伝搬する部分
を設け、該伝搬部を介して前記光電子素子部に前記光信
号を送信または受信させたことを特徴とする半導体装置
1. A semiconductor device comprising at least one semiconductor element, a wiring board to which the semiconductor element is connected, and a cooling structure attached to the semiconductor element, wherein the semiconductor element includes at least one optoelectronic element section. A semiconductor device comprising: a portion for propagating an optical signal in at least a portion of the cooling structure, and the optical signal is transmitted or received by the optoelectronic element portion via the propagation portion.
【請求項2】請求項1記載の半導体装置において、前記
伝搬部を前記光信号を透過する部材により構成したこと
を特徴とする半導体装置。
2. The semiconductor device according to claim 1, wherein the propagation section is made of a member that transmits the optical signal.
【請求項3】請求項1記載の半導体装置において、前記
伝搬部を前記冷却構造体に設けた貫通孔により構成した
ことを特徴とする半導体装置。
3. The semiconductor device according to claim 1, wherein the propagation section is constituted by a through hole provided in the cooling structure.
【請求項4】請求項2記載の半導体装置において、前記
冷却構造体に少なくとも一つの冷却フィンを設け、該冷
却フィンを前記光信号を透過する部材により構成したこ
とを特徴とする半導体装置。
4. The semiconductor device according to claim 2, wherein the cooling structure is provided with at least one cooling fin, and the cooling fin is made of a member that transmits the optical signal.
【請求項5】請求項2または請求項4記載の半導体装置
において、前記半導体素子または前記冷却構造体の少な
くとも一部に前記光信号を遮蔽する部材を設けたことを
特徴とする半導体装置。
5. The semiconductor device according to claim 2 or 4, wherein at least a portion of the semiconductor element or the cooling structure is provided with a member for shielding the optical signal.
【請求項6】請求項2または請求項4記載の半導体装置
において、前記半導体素子または前記冷却構造体の少な
くとも一部に前記光信号を波面変換する光学素子を設け
たことを特徴とする半導体装置。
6. The semiconductor device according to claim 2 or 4, wherein at least a portion of the semiconductor element or the cooling structure is provided with an optical element that converts the wavefront of the optical signal. .
【請求項7】請求項4記載の半導体装置において、前記
冷却フィンがピン形状を有することを特徴とする半導体
装置。
7. The semiconductor device according to claim 4, wherein the cooling fin has a pin shape.
【請求項8】請求項2記載の半導体装置において、前記
半導体素子と前記光電子素子部をシリコン半導体により
作成し、前記伝搬部を波長0.9μm 以下の光を透過
する部材により構成したことを特徴とする半導体装置。
8. The semiconductor device according to claim 2, wherein the semiconductor element and the optoelectronic element section are made of a silicon semiconductor, and the propagation section is made of a member that transmits light having a wavelength of 0.9 μm or less. semiconductor device.
【請求項9】請求項4記載の半導体装置において、前記
冷却フィンをシリコン結晶材により構成したことを特徴
とする半導体装置。
9. A semiconductor device according to claim 4, wherein said cooling fin is made of a silicon crystal material.
【請求項10】請求項1記載の半導体装置において、複
数の前記光電子素子部に同一周波数で変調された光信号
を送信したことを特徴とする半導体装置。
10. The semiconductor device according to claim 1, wherein an optical signal modulated at the same frequency is transmitted to a plurality of said optoelectronic element sections.
【請求項11】請求項10記載の半導体装置において、
複数の前記光電子素子部へ同一位相の光信号を送信した
ことを特徴とする半導体装置。
11. The semiconductor device according to claim 10,
A semiconductor device characterized in that optical signals of the same phase are transmitted to a plurality of the optoelectronic element sections.
【請求項12】請求項10記載の半導体装置において、
前記伝搬部の光路長を等しくしたことを特徴とする半導
体装置。
12. The semiconductor device according to claim 10,
A semiconductor device characterized in that the optical path lengths of the propagation section are made equal.
【請求項13】請求項1記載の半導体装置を複数用いた
システムにおいて、前記光信号により前記複数の半導体
装置を互いに信号接続したことを特徴とする半導体装置
システム。
13. A system using a plurality of semiconductor devices according to claim 1, wherein the plurality of semiconductor devices are signal-connected to each other by the optical signal.
【請求項14】請求項8記載の半導体装置を複数用いた
システムにおいて、前記光信号により前記複数の半導体
装置を互いに同期させて駆動したことを特徴とする半導
体装置システム。
14. A system using a plurality of semiconductor devices according to claim 8, wherein the plurality of semiconductor devices are driven in synchronization with each other by the optical signal.
JP3065972A 1991-03-29 1991-03-29 Semiconductor device Pending JPH04302176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3065972A JPH04302176A (en) 1991-03-29 1991-03-29 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3065972A JPH04302176A (en) 1991-03-29 1991-03-29 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH04302176A true JPH04302176A (en) 1992-10-26

Family

ID=13302424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3065972A Pending JPH04302176A (en) 1991-03-29 1991-03-29 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH04302176A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07336013A (en) * 1994-06-13 1995-12-22 Nec Corp Light-receiver module
US7720389B2 (en) 2008-02-27 2010-05-18 Hiroshima University Optical integrated circuit apparatus
JP2013182990A (en) * 2012-03-01 2013-09-12 Denso Corp Semiconductor device and substrate assembly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07336013A (en) * 1994-06-13 1995-12-22 Nec Corp Light-receiver module
US7720389B2 (en) 2008-02-27 2010-05-18 Hiroshima University Optical integrated circuit apparatus
JP2013182990A (en) * 2012-03-01 2013-09-12 Denso Corp Semiconductor device and substrate assembly

Similar Documents

Publication Publication Date Title
US11424837B2 (en) Method and system for large silicon photonic interposers by stitching
TWI695198B (en) Method and system for a chip-on-wafer-on-substrate assembly
JP3345143B2 (en) Manufacturing method of optical waveguide
JP3728147B2 (en) Opto-electric hybrid wiring board
US8796811B2 (en) Hybrid substrateless device with enhanced tuning efficiency
US8768123B2 (en) Three-dimensional macro-chip including optical interconnects
US20210392419A1 (en) Assembly of network switch asic with optical transceivers
US20060177173A1 (en) Vertical stacking of multiple integrated circuits including SOI-based optical components
JP2000081524A (en) Light transmitter-receiver system
JPS60169167A (en) Optical communication system
JPH06347655A (en) Optical interconnection integrated circuit system
US20220158736A1 (en) Optical Module and Method of Fabrication
Hornak et al. On the feasibility of through-wafer optical interconnects for hybrid wafer-scale-integrated architectures
Cinato et al. Optical interconnections within multichip modules
JP3684112B2 (en) Opto-electric hybrid board, driving method thereof, and electronic circuit device using the same
US11966090B2 (en) Heterogeneous packaging integration of photonic and electronic elements
JPH04302176A (en) Semiconductor device
JPS63291014A (en) Opto-electronic integrated circuit board device
US10120148B2 (en) Devices with optical ports in fan-out configurations
WO2005067062A1 (en) Substrate with light input, substrate with light output, substrate with light input/output, and semiconductor integrated circuit with optical element
JP2007019133A (en) Photoelectric conversion device, its manufacturing method, and optical information process device
WO2005067061A1 (en) Semiconductor integrated circuit with optical element
JP2002258080A (en) Optical and electrical composite circuit
Armiento Hybrid optoelectronic integration of transmitter arrays on silicon waferboard
JP2764127B2 (en) Optical connection integrated circuit