JPH0430155B2 - - Google Patents

Info

Publication number
JPH0430155B2
JPH0430155B2 JP58094697A JP9469783A JPH0430155B2 JP H0430155 B2 JPH0430155 B2 JP H0430155B2 JP 58094697 A JP58094697 A JP 58094697A JP 9469783 A JP9469783 A JP 9469783A JP H0430155 B2 JPH0430155 B2 JP H0430155B2
Authority
JP
Japan
Prior art keywords
frame
frame body
zinc
plate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58094697A
Other languages
Japanese (ja)
Other versions
JPS59219873A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58094697A priority Critical patent/JPS59219873A/en
Publication of JPS59219873A publication Critical patent/JPS59219873A/en
Publication of JPH0430155B2 publication Critical patent/JPH0430155B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/38Construction or manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hybrid Cells (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は亜鉛−ハロゲン電池の改良に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to improvements in zinc-halogen batteries.

[従来の技術及び課題] 亜鉛−塩素電池の単セルを直列に積層してバイ
ポーラ電極電池を構成する場合、第1図に示す如
くこのバイポーラ電極部4の構造は、亜鉛極板1
と塩素極板2とを集電体3を介して電気的に接続
したものであり、単セルを2セル直列にした場合
を示している。電解液は、供給口5よりバイポー
ラ電極部4に入り、塩素極板2を通過して極間6
に流れ、電解液排出口7より電池上部に導かれ
る。なお、8はガス抜孔、9aは負極端子板、9
bは正極端子板10は電解液である。
[Prior Art and Problems] When a bipolar electrode battery is constructed by stacking single cells of a zinc-chlorine battery in series, the structure of the bipolar electrode section 4 is as shown in FIG.
and a chlorine electrode plate 2 are electrically connected via a current collector 3, and shows a case in which two single cells are connected in series. The electrolyte enters the bipolar electrode section 4 through the supply port 5, passes through the chlorine electrode plate 2, and enters the electrode gap 6.
and is led to the upper part of the battery through the electrolyte discharge port 7. In addition, 8 is a gas vent hole, 9a is a negative terminal plate, 9
In b, the positive terminal plate 10 is an electrolytic solution.

しかして、バイポーラ電極部における上記亜鉛
極板、塩素極板及び集電体を枠体11にて固定し
ているものである。一般的に亜鉛−ハロゲン電池
において前述の如く電池の充放電中に電解液をバ
イポーラ電極部に供給し、塩素極中を通過させて
さらに電解液を電極部の系外に排出させることに
より電池の運転を行う。又電極反応中に発生した
ガスを系外に排出する必要がある。そこで、前記
枠体に電解液供給口、電解液排出口及びガス抜孔
を設けることにより電池の作製を極めて容易にす
ることができる。
Thus, the zinc electrode plate, chlorine electrode plate, and current collector in the bipolar electrode section are fixed by the frame 11. In general, in zinc-halogen batteries, as mentioned above, the electrolyte is supplied to the bipolar electrode during charging and discharging of the battery, passed through the chlorine electrode, and then discharged outside the electrode system. Drive. Furthermore, it is necessary to exhaust gas generated during the electrode reaction to the outside of the system. Therefore, by providing an electrolyte supply port, an electrolyte discharge port, and a gas vent hole in the frame, the battery can be manufactured extremely easily.

また、枠体11は絶縁体にて構成され、且つ耐
塩素水性並びに耐塩化亜鉛水溶液性を有すると共
に優れた強度を有することが必要である。一般に
はボリ塩化ビニル等の樹脂が使用され、この樹脂
は射出成型を行うことができるため、枠体を射出
成型法によつて安価に製造しようとしているもの
である。しかしながら、射出成型法によつて第2
図及び第3図に示す枠体を成型する場合には、前
記電解液供給口5、電解液供給通路14等の中空
部を設けることは極めて困難であつた。なお、1
2はパツキング用溝、13は電解液送入口であ
る。
Further, the frame 11 is made of an insulator, and needs to have chlorine water resistance and zinc chloride aqueous solution resistance, as well as excellent strength. Generally, a resin such as polyvinyl chloride is used, and since this resin can be injection molded, the frame can be manufactured at low cost by injection molding. However, by injection molding, the second
When molding the frame shown in FIG. 3 and FIG. 3, it was extremely difficult to provide hollow parts such as the electrolyte supply port 5 and the electrolyte supply passage 14. In addition, 1
2 is a packing groove, and 13 is an electrolyte inlet.

従つて従来は、第4図に示す如く枠体11を枠
本体15と分割枠体16とに分割し、側面の外周
に沿つてパツキング用溝12を設け、且つ上端部
には電解液排出口7及びガス抜孔8を、下端部に
は電解液供給口5及び電解液供給通路14を設け
た枠本体15と、側面の外周に沿つてパツキング
用溝12を設けた分割枠体16とを接着部分17
にて接着しているものである。しかしながら、こ
の構造による場合には、この電池は塩化亜鉛の水
溶液に塩素が溶存するという腐食性の高い雰囲気
にて運転するため上記の接合部分17における接
着剤が侵され、この部分から電池枠体の外部に液
が漏洩するおそれがある。従つて、漏液量が大き
いと電解液の供給量が不足し、たとえ漏れ量が少
なくても液絡を生じ、電池のエネルギー効率が低
下する。
Therefore, conventionally, the frame 11 is divided into a frame main body 15 and a divided frame 16 as shown in FIG. 7 and gas vent hole 8, and a frame body 15 having an electrolyte supply port 5 and an electrolyte supply passage 14 at its lower end, and a split frame body 16 having a packing groove 12 along the outer periphery of the side surface. Part 17
It is attached by. However, in the case of this structure, since the battery is operated in a highly corrosive atmosphere where chlorine is dissolved in an aqueous solution of zinc chloride, the adhesive at the joint part 17 is corroded, and the battery frame is removed from this part. There is a risk of liquid leaking outside. Therefore, if the amount of leakage is large, the amount of electrolyte supplied will be insufficient, and even if the amount of leakage is small, a liquid junction will occur and the energy efficiency of the battery will decrease.

なお、上記の如く枠体を2分割した場合には枠
本体15に電解液供給通路14、電解液排出口7
及びガス抜孔8等を設けることができるものの、
分割することなく枠体を構成する場合には電解液
供給通路14の如く内部において拡開するような
孔部を一体成型することはできない。
In addition, when the frame body is divided into two as described above, the frame body 15 has an electrolyte supply passage 14 and an electrolyte discharge port 7.
Although gas vent holes 8 etc. can be provided,
When constructing the frame without dividing it, it is not possible to integrally mold a hole that expands inside, such as the electrolyte supply passage 14.

本発明は、かかる欠点を解決するためになされ
たもので、射出成型法により作製し得るように枠
体を2分割にすると共に、液洩れを防止している
ためエネルギー効率が高く且つ優れた信頼性を有
する亜鉛−ハロゲン電池を提供しようとするもの
である。
The present invention was made to solve these drawbacks, and the frame is divided into two parts so that it can be manufactured by injection molding, and it also prevents liquid leakage, resulting in high energy efficiency and excellent reliability. The purpose of the present invention is to provide a zinc-halogen battery having the following properties.

[課題を解決するための手段] 本発明は、亜鉛極板とハロゲン極板と枠体とを
具備する複数の単電池が負極端子板と正極端子板
との間に配置され、 亜鉛極板は、枠体と負極端子板又は隣接する単
電池の枠体との間に挟持され、かつ負極端子板側
で負極端子板と又は集電体を介して隣接する単電
池のハロゲン極板と接続されており、 ハロゲン極板は、枠体内の中心部付近に固定さ
れ、かつ正極端子板側で正極端子板と又は集電体
を介して隣接する単電池の亜鉛極板と接続されて
いる亜鉛−ハロゲン電池において、 枠体は、枠本体と挿入枠体とから形成され、 枠本体は、両側面にその周縁に沿うパツキング
用溝が形成され、 枠本体は、上端部にガス抜部が形成されている
と共に下端部に電解液供給部が形成され、 挿入枠体は、上端部にガス抜部が形成されてい
ると共に下端部に電解液供給部が形成され、 挿入枠体は、枠本体内に正極端子板側から挿入
されて嵌合され、 枠本体及び挿入枠体のガス抜部は、合致され、 枠本体及び挿入枠体の電解液供給部は、合致さ
れ、 ハロゲン極板は、枠本体内の中心部付近に固定
され、 亜鉛極板は、枠本体の両側にそれぞれ配置さ
れ、 集電体は、挿入枠体内に配置され、 パツキング材は、枠本体両側面のパツキング用
溝にそれぞれ装填されて枠本体と亜鉛極板との間
を気密にしている構造を有することを特徴とする
亜鉛−ハロゲン電池である。
[Means for Solving the Problems] In the present invention, a plurality of unit cells each including a zinc electrode plate, a halogen electrode plate, and a frame are arranged between a negative electrode terminal plate and a positive electrode terminal plate, and the zinc electrode plate , sandwiched between the frame and the negative terminal plate or the frame of the adjacent cell, and connected on the negative terminal plate side to the negative terminal plate or to the halogen electrode plate of the adjacent cell via the current collector. The halogen electrode plate is fixed near the center inside the frame, and the zinc electrode plate is connected to the positive terminal plate on the positive terminal plate side or to the zinc electrode plate of the adjacent cell via the current collector. In a halogen battery, the frame body is formed of a frame body and an insertion frame body, the frame body has packing grooves formed along its periphery on both sides, and a gas vent part is formed at the upper end of the frame body. The insertion frame has a gas venting part formed at the upper end and an electrolyte supply part formed at the lower end, and the insertion frame has an electrolyte supply part formed in the lower end. The halogen electrode plate is inserted into the frame from the positive terminal plate side and fitted, the gas vent parts of the frame body and the insertion frame are matched, the electrolyte supply parts of the frame body and the insertion frame are matched, and the halogen electrode plate is fitted to the frame. It is fixed near the center of the main body, the zinc electrode plates are placed on both sides of the frame body, the current collector is placed inside the insertion frame, and the packing material is placed in the packing grooves on both sides of the frame body. This is a zinc-halogen battery characterized by having a structure in which the space between the frame body and the zinc electrode plate is airtight when loaded.

[作用] 本発明によれば、前記枠本体内に前記挿入枠体
が嵌合され、かつ前記枠本体と前記挿入枠体との
ガス抜部及び電解液供給部がそれぞれ合致された
構造の枠体としたことによつて、射出成型法によ
り枠体、つまり前記枠本体と前記挿入枠体とを容
易に作製することができる。また、前記枠本体と
前記枠本体との気密性が不十分であつても、前記
枠本体両側面の前記パツキング用溝には前記枠本
体の両側面と前記各亜鉛極板との間を気密にする
ための前記パツキング材が装填されているため、
電解液の外部への漏れ出しを防止できる。このた
め、エネルギー効率が高く、かつ優れた信頼性を
有する亜鉛−ハロゲン電池を得ることができる。
[Function] According to the present invention, the frame has a structure in which the insertion frame is fitted into the frame main body, and the gas venting part and the electrolyte supply part of the frame main body and the insertion frame are matched, respectively. By making it into a body, the frame body, that is, the frame body and the insertion frame body can be easily manufactured by injection molding. Further, even if the airtightness between the frame main body and the frame main body is insufficient, the packing grooves on both side surfaces of the frame main body can provide an airtight seal between both sides of the frame main body and each of the zinc electrode plates. Because the packing material is loaded to make
It is possible to prevent leakage of electrolyte to the outside. Therefore, a zinc-halogen battery with high energy efficiency and excellent reliability can be obtained.

[実施例] 本発明の実施例を第5図及び第6図により説明
する。即ち、両側面の外周に沿つてパツキング用
溝12を設けた枠本体15内に挿入枠体18を、
それらのガス抜部8a,8b及び電解液供給部1
4a,14bがそれぞれ合致するように嵌合する
ことにより、第7図に示すように前記ガス抜部8
a,8bによりガス抜孔8が形成され、前記電解
液供給部14a,14bにより電解液供給口5及
び電解液供給通路14が形成された本発明枠体を
うるものである。この枠体に第7図及び第8図に
示す如くハロゲン極板2を中心部付近に固定し、
このハロゲン極板2と亜鉛極板1とを集電体3を
介して電気的に接続したバイポーラ電極部4を組
込むと共に、前記枠本体15両側面の前記パツキ
ング用溝12に前記枠本体15両側面と前記各亜
鉛極板1との間を気密にするための前記パツキン
グ材20を装填して電池を構成する。
[Example] An example of the present invention will be described with reference to FIGS. 5 and 6. That is, the insertion frame 18 is inserted into the frame body 15, which has packing grooves 12 along the outer periphery of both sides.
Those gas vent parts 8a, 8b and electrolyte supply part 1
By fitting 4a and 14b so that they match, the gas vent part 8 is opened as shown in FIG.
A and 8b form a gas vent hole 8, and the electrolyte supply portions 14a and 14b form an electrolyte supply port 5 and an electrolyte supply passage 14, according to the present invention. A halogen electrode plate 2 is fixed to this frame near the center as shown in FIGS. 7 and 8,
A bipolar electrode part 4 is installed in which the halogen electrode plate 2 and the zinc electrode plate 1 are electrically connected via a current collector 3, and the packing grooves 12 on both sides of the frame body 15 are inserted into the packing grooves 12 on both sides of the frame body 15. The packing material 20 for making airtight between the surface and each of the zinc electrode plates 1 is loaded to form a battery.

上述した電池によれば、電解液は電解液供給口
5だけでなく電解液供給通路14から挿入枠体1
8の電解液供給口5と反対側、即ち亜鉛極板1側
にも僅かに流れるが、パツキング用溝12の内側
に挿入枠体18が位置しているため枠体の外部に
液漏れすることは全くない。従つて、液漏れによ
つて生ずる液絡のおそれもない。また、枠本体1
5と挿入枠体18とは完全に密着していなくても
よく、特に接着する必要はない。
According to the battery described above, the electrolyte is supplied not only from the electrolyte supply port 5 but also from the electrolyte supply passage 14 to the insertion frame 1.
Although a small amount of electrolyte flows on the side opposite to the electrolyte supply port 5 of 8, that is, on the side of the zinc electrode plate 1, the liquid does not leak to the outside of the frame because the insertion frame 18 is located inside the packing groove 12. Not at all. Therefore, there is no risk of liquid junction occurring due to liquid leakage. In addition, frame body 1
5 and the insertion frame 18 do not need to be in complete contact with each other, and there is no particular need for adhesion.

なお、第8図において19a,19bは押え板
であり、押え板19aは白金メツキチタン材等に
て形成することにより押え板と負極端子板とを兼
ねることができ、押え板19bは同材等にて形成
することにより押え板と正極端子板とを兼ねるこ
とができる。この場合ボルト21がチタン等の金
属であると両極が短絡してしまうので絶縁体、例
えば塩化ビニル等を用いることが必要である。
In addition, in FIG. 8, 19a and 19b are holding plates, and the holding plate 19a can serve as a holding plate and a negative electrode terminal plate by being made of platinum-plated titanium material, etc., and the holding plate 19b is made of the same material. By forming the plate, it can serve as both a presser plate and a positive terminal plate. In this case, if the bolt 21 is made of a metal such as titanium, the two poles will be short-circuited, so it is necessary to use an insulator such as vinyl chloride.

[発明の効果] 以上詳述した如く、本発明に係わる枠体にて固
定したバイポーラ電極部よりなる亜鉛−ハロゲン
電池は、液漏れを生ずることがないからエネルギ
ー効率が高く且つ優れた信頼性を有する。また、
枠体は射出成型法にて作製しうるから安価にして
生産性が向上する等顕著な効果を有する。
[Effects of the Invention] As detailed above, the zinc-halogen battery consisting of a bipolar electrode portion fixed in a frame according to the present invention has high energy efficiency and excellent reliability because it does not cause liquid leakage. have Also,
Since the frame can be manufactured by injection molding, it has remarkable effects such as being inexpensive and improving productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は亜鉛−ハロゲン電池の概略説明図であ
り、第1図Aは側断面図、第1図Bは第1図Aの
−′線による断面図、第2図乃至第4図は従
来の亜鉛−ハロゲン電池における枠体を示すもの
であり、第2図は断面図、第3図は斜視図、第4
図は2分割枠体の断面図、第5図及び第6図は本
発明亜鉛−ハロゲン電池の枠体を示すものであ
り、第5図は2分割枠体の断面図、第6図は枠本
体への挿入枠体の挿入状態説明図、第7図及び第
8図はバイポーラ電極部を枠体に組込んだ本発明
亜鉛−ハロゲン電池を示すものであり、第7図は
断面図、第8図は組込状態説明図である。 1……亜鉛極板、2……ハロゲン極板(塩素極
板)、3……集電体、4……バイポーラ電極部、
5……電解液供給口、6……極間、7……電解液
排出口、8a,8b……ガス抜部、8……ガス抜
孔、9a……負極端子板、9b……正極端子板、
10……電解液、11……枠体、12……パツキ
ング用溝、13……電解液送入口、14a,14
b……電解液供給部、14……電解液供給通路、
15……枠本体、16……分割枠体、17……接
合部分、18……挿入枠体、19a……負極端子
板(押え板)、19b……正極端子板(押え板)、
20……パツキング材。
Fig. 1 is a schematic explanatory diagram of a zinc-halogen battery, Fig. 1A is a side sectional view, Fig. 1B is a sectional view taken along the line -' of Fig. 1A, and Figs. 2 to 4 are conventional Fig. 2 is a sectional view, Fig. 3 is a perspective view, and Fig. 4 is a frame body in a zinc-halogen battery.
The figure is a sectional view of a two-part frame, FIGS. 5 and 6 show the frame of the zinc-halogen battery of the present invention, FIG. 5 is a sectional view of a two-part frame, and FIG. 6 is a frame. FIGS. 7 and 8 are explanatory diagrams of the inserted state of the insertion frame into the main body, and show the zinc-halogen battery of the present invention in which a bipolar electrode part is assembled in the frame, and FIG. 7 is a cross-sectional view, and FIG. FIG. 8 is an explanatory diagram of the installed state. 1... Zinc electrode plate, 2... Halogen electrode plate (chlorine electrode plate), 3... Current collector, 4... Bipolar electrode part,
5... Electrolyte supply port, 6... Between electrodes, 7... Electrolyte discharge port, 8a, 8b... Gas vent, 8... Gas vent hole, 9a... Negative electrode terminal plate, 9b... Positive electrode terminal plate ,
10... Electrolyte, 11... Frame, 12... Packing groove, 13... Electrolyte inlet, 14a, 14
b... Electrolyte supply section, 14... Electrolyte supply passage,
15... Frame body, 16... Divided frame body, 17... Joint portion, 18... Insertion frame body, 19a... Negative electrode terminal plate (holding plate), 19b... Positive electrode terminal plate (holding plate),
20... Packing material.

Claims (1)

【特許請求の範囲】 1 亜鉛極板1とハロゲン極板2と枠体11とを
具備する複数の単電池が負極端子板19aと正極
端子板19bとの間に配置され、 亜鉛極板1は、枠体11と負極端子板19a又
は隣接する単電池の枠体との間に挟持され、かつ
負極端子板19a側で負極端子板19aと又は集
電体を介して隣接する単電池のハロゲン極板2と
接続されており、 ハロゲン極板2は、枠体11内の中心部付近に
固定され、かつ正極端子板19b側で正極端子板
19bと又は集電体3を介して隣接する単電池の
亜鉛極板1と接続されている亜鉛−ハロゲン電池
において、 枠体11は、枠本体15と挿入枠体18とから
形成され、 枠本体15は、両側面にその周縁に沿うパツキ
ング用溝12が形成され、 枠本体15は、上端部にガス抜部8aが形成さ
れていると共に下端部に電解液供給部14aが形
成され、 挿入枠体18は、上端部にガス抜部8bが形成
されていると共に下端部に電解液供給部14bが
形成され、 挿入枠体18は、枠本体15内に正極端子板1
9b側から挿入されて嵌合され、 ガス抜部8a,8bは、合致され、 電解液供給部14a,14bは、合致され、 ハロゲン極板2は、枠本体15内の中心部付近
に固定され、 亜鉛極板1は、枠本体15の両側にそれぞれ配
置され、 集電体3は、挿入枠体18内に配置され、 パツキング材20は、枠本体15両側面のパツ
キング用溝12にそれぞれ装填されて枠本体15
と亜鉛極板1との間を気密にしている構造を有す
ることを特徴とする亜鉛−ハロゲン電池。
[Claims] 1. A plurality of unit cells each including a zinc electrode plate 1, a halogen electrode plate 2, and a frame body 11 are arranged between a negative electrode terminal plate 19a and a positive electrode terminal plate 19b, and the zinc electrode plate 1 comprises: , sandwiched between the frame 11 and the negative terminal plate 19a or the frame of an adjacent cell, and on the negative terminal plate 19a side, the halogen electrode of the cell adjacent to the negative terminal plate 19a or via the current collector. The halogen electrode plate 2 is fixed near the center inside the frame 11, and connected to the positive terminal plate 19b on the positive terminal plate 19b side or adjacent unit cells via the current collector 3. In the zinc-halogen battery connected to the zinc electrode plate 1, the frame body 11 is formed from a frame body 15 and an insertion frame body 18, and the frame body 15 has packing grooves 12 along its periphery on both sides. The frame body 15 has a gas vent part 8a formed at its upper end, and an electrolyte supply part 14a at its lower end, and the insertion frame 18 has a gas vent part 8b formed at its upper end. The insertion frame 18 has a positive electrode terminal plate 1 in the frame body 15.
The halogen electrode plate 2 is inserted and fitted from the 9b side, the gas vent parts 8a and 8b are matched, the electrolyte supply parts 14a and 14b are matched, and the halogen electrode plate 2 is fixed near the center inside the frame body 15. , the zinc electrode plates 1 are placed on both sides of the frame body 15, the current collectors 3 are placed in the insertion frame 18, and the packing materials 20 are loaded into the packing grooves 12 on both sides of the frame body 15, respectively. Frame body 15
A zinc-halogen battery characterized by having a structure in which the space between the electrode plate 1 and the zinc electrode plate 1 is airtight.
JP58094697A 1983-05-28 1983-05-28 Zinc-halogen battery Granted JPS59219873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58094697A JPS59219873A (en) 1983-05-28 1983-05-28 Zinc-halogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58094697A JPS59219873A (en) 1983-05-28 1983-05-28 Zinc-halogen battery

Publications (2)

Publication Number Publication Date
JPS59219873A JPS59219873A (en) 1984-12-11
JPH0430155B2 true JPH0430155B2 (en) 1992-05-20

Family

ID=14117370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58094697A Granted JPS59219873A (en) 1983-05-28 1983-05-28 Zinc-halogen battery

Country Status (1)

Country Link
JP (1) JPS59219873A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020091013A1 (en) * 2018-10-31 2020-05-07 京セラ株式会社 Secondary battery

Also Published As

Publication number Publication date
JPS59219873A (en) 1984-12-11

Similar Documents

Publication Publication Date Title
US5308718A (en) End block constructions for batteries
JP3660437B2 (en) Fuel cell and fuel cell separator
JPH087913A (en) Full vanadium redox cell
JPH06349518A (en) Assembly method of bipolar lead storage battery and obtained bipolar battery
CN201084772Y (en) A battery-bank connection and a battery pack including this connection
SU1486068A3 (en) Comb-like bipolar cell of storage battery with circulating electrolyte and electrode assembly therefor
CN113161597A (en) Combined battery pack and assembling method thereof
KR20140095283A (en) Inner plate for flow battery and flow battery having the same
JP2748379B2 (en) Electrolyte circulation type laminated secondary battery
US3576732A (en) Cast electrical batteries and process for their production
JPH0430155B2 (en)
CN215184083U (en) Single-pole plate sealing structure of flow battery
CN209200075U (en) A kind of parallel-connection type hydraulic galvanic battery electrode frame
CN209447939U (en) A kind of tandem electrode of liquid flow cell frame and its battery stack
JPH0626145B2 (en) Galvanic batteries
JPS61253773A (en) Bipolar storage battery
US20230327147A1 (en) Cell frame structure and redox flow battery using same
JPH01296569A (en) Fuel battery separator
US3681145A (en) Fuel cell battery for reacting a reactant,such as hydrazine especially,dissolved in electrolyte
JPS62216146A (en) Enclosed storage battery
KR101056623B1 (en) Membrane electrochemical generator
JPH0334843Y2 (en)
JP2522029B2 (en) Method for manufacturing end plate electrode in liquid circulation type laminated battery
JPS58197669A (en) Electrode for layer-built cell
JP2505007Y2 (en) Electrolyte circulation type laminated battery