JPH04301435A - Method for molding fiber-reinforced synthetic resin composite - Google Patents

Method for molding fiber-reinforced synthetic resin composite

Info

Publication number
JPH04301435A
JPH04301435A JP3066983A JP6698391A JPH04301435A JP H04301435 A JPH04301435 A JP H04301435A JP 3066983 A JP3066983 A JP 3066983A JP 6698391 A JP6698391 A JP 6698391A JP H04301435 A JPH04301435 A JP H04301435A
Authority
JP
Japan
Prior art keywords
core material
molding
thermosetting resin
fiber
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3066983A
Other languages
Japanese (ja)
Inventor
Hajime Naito
内 藤  一
Morio Hattori
服 部 守 雄
Akihiro Ueda
上 田 明 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP3066983A priority Critical patent/JPH04301435A/en
Publication of JPH04301435A publication Critical patent/JPH04301435A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To prevent quality from deterioration and production speed from lowering by coating the surface of a core material with a low temp.-curable thermosetting resin, curing the coated surface by heating through a release film, feeding a reinforcing fiber impregnated with a relatively high temp. curable thermosetting resin around it and performing pultrusion. CONSTITUTION:A core material 1 is continuously transferred in the molding direction and the surface is coated with a low temp.-curable unsatd. polyester resin soln. 3 and 3'. Then, release films 5 and 5' are guided on the coated surface at an approximately same speed and they are adhered on the coated surface by utilizing tackiness of the coated surface to cover it. Successively, the unsatd. polyester resin soln. 3 and 3' are heated and cured through the release films 5 and 5' by irradiating it with far infrared rays from a far infrared rays heating apparatus 6 and 6'. A composite body with a bi-layered structure wherein the core material layer 13 and the thermosetting resin layer 14 formed aroung its outer peripheral face are strongly integrated, is formed thereby.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、芯材層とこれを被包す
る繊維強化合成樹脂層とからなる繊維強化合成樹脂複合
体の成形方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for molding a fiber-reinforced synthetic resin composite comprising a core layer and a fiber-reinforced synthetic resin layer surrounding the core layer.

【0002】0002

【従来の技術】従来、繊維強化合成樹脂成形体の成形方
法としては、種々の方法が知られているが、その内引抜
成形方法は連続成形が可能であり、種々の断面形状を呈
する長尺体を能率よく生産することが出来るので注目さ
れている。
[Prior Art] Conventionally, various methods have been known for forming fiber-reinforced synthetic resin moldings, among which pultrusion molding allows continuous molding and is capable of producing long lengths with various cross-sectional shapes. It is attracting attention because it can efficiently produce the body.

【0003】特に、引抜成形方法により成形体を成形し
た場合、引き抜き方向と、これに対して直角方向との強
度差が大きく、成形体の用途が制限されるので、芯材層
とその外層に繊維強化合成樹脂層を形成してなる複合体
とし、このときの芯材に等方体を用いてこの欠点を解消
するようにした成形方法が汎用されており、この方法に
よれば、強度の方向性が改善されるのみならず、芯材と
外層用の樹脂や繊維の材料の種類、各層の厚さ、等を種
々組み合わせることにより、上記断面形状を任意に設定
できる引抜成形方法の特徴と相まって、強度、重量、そ
の他の諸物性の好みのものを得ることが可能となり、用
途に応じた合理的な諸特性を具備したものが容易に得ら
れるという点で優れた技術である。
In particular, when a molded body is formed by a pultrusion method, there is a large difference in strength between the drawing direction and the direction perpendicular to this, which limits the applications of the molded body. A commonly used molding method eliminates this drawback by forming a composite material with a fiber-reinforced synthetic resin layer and using an isotropic core material. The pultrusion method not only improves directionality, but also allows the above-mentioned cross-sectional shape to be set arbitrarily by combining various types of resin and fiber materials for the core material and outer layer, thickness of each layer, etc. In combination, it is possible to obtain desired strength, weight, and other physical properties, and it is an excellent technology in that it is easy to obtain products with reasonable properties depending on the intended use.

【0004】ところが、金型内の成形通路において成形
材料を硬化させる為の熱量は、専ら金型からの伝熱に頼
っていた。従って、加熱硬化区間での成形材料の温度分
布についてみると、金型に接する部分が最も高く、以下
内部(厚み方向)にいくに従って次第に低くなり、芯材
に接する部分が最も低くなるという高低差のある温度分
布になるのである。
However, the amount of heat required to harden the molding material in the molding passage within the mold relies solely on heat transfer from the mold. Therefore, when looking at the temperature distribution of the molding material in the heat-curing section, the temperature difference is that the temperature is highest in the part in contact with the mold, gradually decreases as it goes inside (in the thickness direction), and is lowest in the part in contact with the core material. This results in a certain temperature distribution.

【0005】従って、樹脂の硬化現象は、金型に接する
部分から進行し、芯材と接する部分の硬化がもっとも遅
れることになり、この外層部における樹脂の硬化速度の
不均一の為、芯材と繊維強化合成樹脂層との界面に、硬
化収縮による樹脂の含浸不良が起こり、その結果、ボイ
ド、巣等が発生して芯材層と繊維強化合成樹脂層との密
着性が劣り、強度低下を来すと言う問題が発生し、又、
芯材と接する部分の硬化を充分にする為に成形速度を出
来るだけ低速に維持しようとすると、繊維強化合成樹脂
層の厚みが厚くなればなる程成形速度が低下し、期待す
る生産速度が得られないという問題もあった。
[0005] Therefore, the curing phenomenon of the resin progresses from the part in contact with the mold, and the curing of the part in contact with the core material is delayed the most.Due to the non-uniformity of the curing speed of the resin in this outer layer part, the hardening of the resin progresses from the part in contact with the mold. Poor resin impregnation occurs due to curing shrinkage at the interface between the core layer and the fiber-reinforced synthetic resin layer, resulting in voids, nests, etc., resulting in poor adhesion between the core material layer and the fiber-reinforced synthetic resin layer, resulting in a decrease in strength. A problem arises that causes
If you try to keep the molding speed as low as possible to ensure sufficient curing of the part that contacts the core material, the thicker the fiber-reinforced synthetic resin layer becomes, the slower the molding speed becomes, making it difficult to achieve the desired production speed. There was also the problem of not being able to

【0006】そこで、この問題を解決する為に、従来種
々研究がされているが、その一つとして特開昭63−3
5332号公報には、金属材料を芯材とし、その外周囲
に繊維強化合成樹脂層を形成した構造の複合体の引抜成
形方法について記載されている。この方法によれば、成
形方向に二個の金型を配置し、熱硬化性樹脂を含浸した
強化繊維と共に送りこまれた金属材料からなる芯材が、
先に通過する金型内で高周波により誘導加熱せしめられ
、次いで後で通過する金型によって、該金型からの伝熱
により強化繊維が加熱硬化せしめられるので、熱硬化性
樹脂を含浸した強化繊維が、金属製芯材と接する面と金
型の内壁面に接する面との温度差は、殆ど無い状態にす
ることができ、従って、この外層部である熱硬化性樹脂
の硬化速度の均一化が得られ、不均一に原因する品質の
劣化や生産速度の低下を防止できると言う点で注目され
る技術である。
[0006] In order to solve this problem, various studies have been carried out in the past, one of which is the Japanese Patent Application Laid-open No. 63-3.
Publication No. 5332 describes a method for pultrusion molding of a composite body having a structure in which a metal material is used as a core material and a fiber-reinforced synthetic resin layer is formed around the core material. According to this method, two molds are arranged in the molding direction, and a core material made of a metal material is fed together with reinforcing fibers impregnated with a thermosetting resin.
The reinforcing fibers are heated by induction heating using high frequency waves in the mold that they pass through first, and then the reinforcing fibers are heated and hardened by the heat transfer from the mold that they pass through later, so the reinforcing fibers impregnated with thermosetting resin However, the temperature difference between the surface in contact with the metal core material and the surface in contact with the inner wall surface of the mold can be made to be almost nonexistent, thus making it possible to equalize the curing speed of the thermosetting resin that is the outer layer. This technology is attracting attention because it can prevent quality deterioration and production speed reduction caused by non-uniformity.

【0007】[0007]

【本発明が解決しようとする課題】ところが、上記従来
技術は電磁誘導を利用した加熱方法である為、芯材が金
属に限られるという制約があり、金属以外のものでは採
用出来ないと言う問題があった。
[Problem to be solved by the present invention] However, since the above-mentioned conventional technology uses electromagnetic induction as a heating method, there is a restriction that the core material is limited to metal, and it cannot be used for materials other than metal. was there.

【0008】本発明はこのような従来技術の欠点を解消
し、金属は無論のこと金属以外のものでも、予め芯材を
加熱することが可能であり、強化繊維の芯材と接する部
分の硬化の遅れを防ぎ、もって芯材と繊維強化合成樹脂
層との密着性がよく、且つ生産性を犠牲にすることのな
い成形方法を提供することを目的としてなさたものであ
る。
[0008] The present invention solves the drawbacks of the prior art, and makes it possible to heat the core material of not only metal but also other materials in advance, thereby curing the portion of the reinforcing fiber that comes into contact with the core material. The purpose of this invention is to provide a molding method that prevents the delay in production, thereby providing good adhesion between the core material and the fiber-reinforced synthetic resin layer, and without sacrificing productivity.

【0009】[0009]

【課題を解決する為の手段】本発明は、芯材を一方向に
移送しつつ、その表面に比較的低温で硬化する熱硬化性
樹脂を塗布し、その塗布面を離型用フイルムを介して加
熱し硬化させた後、その外周囲に比較的高温で硬化する
熱硬化性樹脂を含浸した強化繊維を供給して引抜成形す
ることにより繊維強化合成樹脂層を形成することを特徴
とする繊維強化合成樹脂複合体の成形方法をその要旨と
するものである。
[Means for Solving the Problems] The present invention applies a thermosetting resin that hardens at a relatively low temperature to the surface of the core material while transferring it in one direction, and then coats the coated surface with a release film. After heating and curing the fiber, a reinforcing fiber impregnated with a thermosetting resin that hardens at a relatively high temperature is supplied around the outer periphery and pultrusion molding is performed to form a fiber-reinforced synthetic resin layer. The gist of this paper is a method for molding reinforced synthetic resin composites.

【0010】本発明の芯材を形成する素材としては、金
属、木材、セラミック、各種合成樹脂、各種繊維強化合
成樹脂、これら合成樹脂の発泡体等その材質は特に限定
されず、又その形状についても、中空品であっても中実
品であってもよい。
Materials forming the core material of the present invention include metal, wood, ceramic, various synthetic resins, various fiber-reinforced synthetic resins, foams of these synthetic resins, etc. The material is not particularly limited, and the shape thereof is not particularly limited. It may also be a hollow product or a solid product.

【0011】本発明の繊維強化合成樹脂層に用いる強化
繊維としては、ガラス繊維、炭素繊維、有機繊維等のロ
ービングやチョップドストランドマット、クロスマット
、ラミマットなどが挙げられ、これらのロービングやマ
ットを、それぞれ単独で或いは両方を重ねて用いること
が出来る。
Examples of reinforcing fibers used in the fiber-reinforced synthetic resin layer of the present invention include rovings, chopped strand mats, cross mats, laminated mats, etc. made of glass fibers, carbon fibers, and organic fibers. Each can be used alone or both can be used in combination.

【0012】本発明の繊維強化合成樹脂層に用いる比較
的高温で硬化する樹脂の種類としては、例えば、ジクミ
ルパーオキサイド、t−ブチルパーオキシベンゾエイト
、ジ−t−ブチルパーオキサイド等(一般に高温開始剤
と称される)が添加された不飽和ポリエステル樹脂やエ
ポキシ樹脂等の熱硬化性樹脂が挙げられる。
Examples of the resin that hardens at a relatively high temperature for use in the fiber-reinforced synthetic resin layer of the present invention include dicumyl peroxide, t-butyl peroxybenzoate, di-t-butyl peroxide, etc. Examples include thermosetting resins such as unsaturated polyester resins and epoxy resins to which a high temperature initiator (referred to as a high temperature initiator) is added.

【0013】本発明に於いて用いるところの、芯材の表
面に塗布する比較的低温で硬化する熱硬化性樹脂として
は、例えばジ−ベンゾイルパーオキサイド、ラウロイル
パーオキサイド、t−ブチルパーオキシ2エチルヘキサ
ノエイト、t−ブチルパーオキシネオデカノエイト等の
過酸化物(一般に中温開始剤と称される)が添加された
不飽和ポリエステル樹脂が挙げられ、これらの樹脂液の
粘度を500〜2000cpsに調整して用いる。
[0013] As the thermosetting resin which is applied to the surface of the core material and cures at a relatively low temperature, for example, di-benzoyl peroxide, lauroyl peroxide, t-butylperoxy 2-ethyl, etc. are used in the present invention. Examples include unsaturated polyester resins to which peroxides (generally referred to as intermediate temperature initiators) such as hexanoate and t-butylperoxyneodecanoate are added, and the viscosity of these resin liquids is increased to 500 to 2000 cps. Adjust and use.

【0014】本発明に於いて、上記比較的低温で硬化す
る熱硬化性樹脂を芯材に塗布する方法としては、芯材の
形状に左右されるが、芯材を樹脂液槽の中に通す方法、
芯材を移送しつつある段階で、この芯材に装入されたピ
ンチローラーの表面に樹脂液を垂らし、芯材に転移する
方法、或いはこれらの方法の併用等が挙げられる。そし
て、芯材の表面に出来るだけ均一な厚みで塗布する為、
塗布直後に芯材の表面形状に対応した形状のピンチロー
ラーに通して塗布面を押圧し、塗布された樹脂を圧延す
るのが好ましい。そして、芯材の表面に塗布された樹脂
は、粘稠であるが、硬化前の段階であるからこの儘では
流下する恐れがあり、これを防ぐ為に離型用フイルムを
当てがうのである。
In the present invention, the method for applying the thermosetting resin that hardens at a relatively low temperature to the core material depends on the shape of the core material, but the method is to pass the core material into a resin liquid bath. Method,
Examples include a method in which resin liquid is dripped onto the surface of a pinch roller inserted into the core material while the core material is being transferred and transferred to the core material, or a combination of these methods is used. Then, in order to coat the surface of the core material with as uniform a thickness as possible,
Immediately after coating, it is preferable to press the coated surface through a pinch roller having a shape corresponding to the surface shape of the core material to roll the coated resin. The resin applied to the surface of the core material is viscous, but since it has not yet hardened, there is a risk of it flowing down, and to prevent this, a release film is applied. .

【0015】本発明に於いて使用するところの、上記離
型用フイルムとしては、ポリテトラフルオロエチレンの
ような耐熱性と離型性を具備した合成樹脂フイルムが好
ましい。そしてかかるフイルムは繰り返し使用が可能な
ように、使用後は回収する方法や芯材の表面を繰り返し
併走できるようエンドレスベルトの形に装備する方法等
を採用するのが好ましい。
The release film used in the present invention is preferably a synthetic resin film having heat resistance and release properties, such as polytetrafluoroethylene. In order to be able to use the film repeatedly, it is preferable to collect it after use, or to equip it in the form of an endless belt so that it can run repeatedly on the surface of the core material.

【0016】本発明に於いて、比較的低温で硬化する熱
硬化性樹脂の塗布面を離型用フイルムを介して加熱する
際の加熱方法としては、加熱炉の中を通過させる方法、
芯材の周囲に赤外線ランプ或いは遠赤外線ランプを配置
して輻射加熱する方法等が挙げられる。
In the present invention, heating methods for heating the coated surface of the thermosetting resin that hardens at a relatively low temperature via a release film include passing it through a heating furnace;
Examples include a method of radiant heating by arranging infrared lamps or far-infrared lamps around the core material.

【0017】本発明に於いて、強化繊維に熱硬化性樹脂
を含浸させるには、成形金型に送り込む前工程で樹脂液
槽を通過させて含浸させる方法、成形金型の成形通路内
に開口した樹脂液挿入口より樹脂液を送り込んで含浸さ
せる方法等その他公知の方法が採用され得る。
In the present invention, in order to impregnate the reinforcing fibers with the thermosetting resin, there is a method in which the reinforcing fibers are impregnated by passing through a resin liquid tank in the process before being fed into the molding mold, and an opening in the molding passage of the molding mold is used. Other known methods, such as a method of impregnating the resin liquid by sending the resin liquid through the resin liquid insertion port, may be employed.

【0018】本発明に於いて採用される成形金型は、従
来引抜成形方法において使用されている金型が採用でき
、熱源も電熱やオイル等の熱媒体の他、赤外線や高周波
を利用した加熱方法等が挙げられ、これらの熱源により
通常100〜200℃に温度調節して使用する。
[0018] The molding die used in the present invention can be the mold used in conventional pultrusion molding methods, and the heat source can be heating using infrared rays or high frequency in addition to heat media such as electric heat or oil. The temperature is usually adjusted to 100 to 200° C. using these heat sources.

【0019】本発明に於いては、その他は従来知られて
いる引抜成形方法がその儘採用可能であり、成形金型内
で加熱硬化させた後、複合体として引き出しカッターで
切断して定尺とすればよい。成形速度は通常0.1〜2
m/分とするのが好ましい。
In the present invention, any other conventionally known pultrusion molding method can be used as is, and after heating and hardening in a molding die, the composite is cut with a draw cutter to a fixed length. And it is sufficient. Molding speed is usually 0.1-2
Preferably, the speed is m/min.

【0020】[0020]

【作用】本発明は、芯材を一方向に移送しつつ、その表
面に比較的低温で硬化する熱硬化性樹脂を塗布し、その
塗布面を離型用フイルムを介して加熱し硬化させた後、
その外周囲に比較的高温で硬化する熱硬化性樹脂を含浸
した強化繊維を供給して引抜成形するようにしたので、
芯材は比較的低温で硬化する熱硬化性樹脂の、硬化時に
おける反応熱で昇温されており、その外周囲に導かれた
樹脂を含浸した強化繊維は、この芯材と共に成形金型内
の成形通路に導入され、その金型のみならず芯材によっ
ても加熱されて硬化するので、成形材料が加熱硬化区間
で受ける厚み方向の温度分布において、成形金型の壁面
から受ける温度と、芯材と接する部分から受ける温度と
の温度差が少なくなる。
[Operation] In the present invention, a thermosetting resin that hardens at a relatively low temperature is applied to the surface of the core material while being transferred in one direction, and the coated surface is heated and hardened through a release film. rear,
By supplying reinforcing fibers impregnated with a thermosetting resin that hardens at a relatively high temperature to the outer periphery, pultrusion molding is performed.
The temperature of the core material is raised by the heat of reaction during curing of a thermosetting resin that hardens at a relatively low temperature, and the reinforcing fibers impregnated with resin guided around the core material are placed inside the molding mold together with this core material. The molding material is introduced into the molding passageway and is heated and hardened not only by the mold but also by the core material. Therefore, in the temperature distribution in the thickness direction that the molding material receives in the heat-hardening section, the temperature received from the wall surface of the molding mold and the core material are different. The temperature difference between the temperature received from the part in contact with the material is reduced.

【0021】[0021]

【実施例】以下本発明の一実施例を図面に基づいて詳細
に説明する。図1は、本発明繊維強化合成樹脂複合体の
成形方法を実施する場合の成形工程の一例を示す概略説
明図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic explanatory diagram showing an example of the molding process when carrying out the method for molding a fiber-reinforced synthetic resin composite of the present invention.

【0022】図1に於いて、1はウレタン樹脂発泡体か
らなるパイプ状の芯材であり、矢印方向に連続的に移送
されている。2及び2’は比較的低温で硬化する不飽和
ポリエステル樹脂液3及び3’がそれぞれ注入された上
部液槽と下部液槽である。4、4’は一対の塗布ローラ
ーであって、回転する胴周面は、共に芯材1の横断面形
状に対応した半円形を呈し、芯材1の円周方向の、それ
ぞれほぼ半周分を上下から押圧しながら芯材1とは別の
駆動力により駆動するようになっている。そして、塗布
ローラー4の表面には、上部液槽2から不飽和ポリエス
テル樹脂液3を流延し、塗布ローラー4からこれを芯材
1の上半分に転移するようにして塗布可能になされ、又
、塗布ローラー4’は、下部液槽2’に浸漬され、ロー
ラー表面に不飽和ポリエステル樹脂液3’を呼び出し、
これを芯材1の下半分に転移するようにして塗布可能に
なされている。5、5’は、芯材1の表面に上記不飽和
ポリエステル樹脂液を塗布した後、その塗布面に被着さ
せる為の離型用フイルムであって、別途設置したリール
から巻き出される。そして被着に当たっては、図示しな
い整形板によって塗布面に沿うように上下から円周方向
に曲げて被包できるようになっている。6、6’は遠赤
外線装置、7は成形金型、8、8’・・は図示しないボ
ビンから巻き出されたガラスロービングとコンティニア
スマット等からなる強化繊維であって、この実施例では
最外層にのみコンティニアスマットを配するようになっ
ている。そしてこれらの強化繊維は整列装置(ガイド板
)9、9’・・によりその配列を整えながら、液状の比
較的高温で硬化する不飽和ポリエステル樹脂液を注入し
た樹脂液槽10、10’を通過し、成形金型7の手前で
芯材1の外周囲に導かれる。11は引取装置、12は矢
印方向に上下するカッターである。
In FIG. 1, reference numeral 1 denotes a pipe-shaped core material made of urethane resin foam, which is continuously transported in the direction of the arrow. Reference numerals 2 and 2' designate an upper liquid tank and a lower liquid tank into which unsaturated polyester resin liquids 3 and 3', which harden at relatively low temperatures, are injected, respectively. Reference numerals 4 and 4' denote a pair of applicator rollers, whose rotating body circumferential surfaces both have a semicircular shape corresponding to the cross-sectional shape of the core material 1, and each covers approximately half the circumference of the core material 1 in the circumferential direction. It is driven by a driving force different from that of the core material 1 while being pressed from above and below. The surface of the coating roller 4 is made to be able to be coated by casting the unsaturated polyester resin liquid 3 from the upper liquid tank 2 and transferring it from the coating roller 4 to the upper half of the core material 1. , the coating roller 4' is immersed in the lower liquid tank 2', and the unsaturated polyester resin liquid 3' is drawn onto the roller surface,
This can be applied by transferring it to the lower half of the core material 1. Reference numerals 5 and 5' denote release films to be applied to the surface of the core material 1 after the unsaturated polyester resin liquid is applied thereto, and are unwound from a separately installed reel. When applying the coating, it is possible to wrap the coating by bending it in the circumferential direction from above and below along the application surface using a shaping plate (not shown). 6, 6' are far-infrared devices, 7 is a molding die, 8, 8'... are reinforcing fibers made of glass roving, continuous mat, etc. unwound from a bobbin (not shown), and in this example, the outermost layer Continuous mats are now placed only in those areas. These reinforcing fibers are aligned by alignment devices (guide plates) 9, 9', and pass through resin liquid tanks 10, 10' filled with liquid unsaturated polyester resin liquid that hardens at relatively high temperatures. Then, it is guided to the outer periphery of the core material 1 before the molding die 7. 11 is a take-up device, and 12 is a cutter that moves up and down in the direction of the arrow.

【0023】このような装置により、先ず芯材1を連続
的に成形方向に移送しつつ、その表面に比較的低温で硬
化する不飽和ポリエステル樹脂液3、3’を塗布する。 次にその塗布面に離型用フイルム5、5’をほぼ同速で
導き且つその塗布面の粘着性を利用して塗布面に被着し
、これを覆う。引き続き、遠赤外線加熱装置6、6’よ
り遠赤外線を照射して上記離型用フイルム5、5’を介
して不飽和ポリエステル樹脂液3、3’加熱硬化させる
。かくして、芯材1はそのときの反応熱により加熱され
た状態になる。そして、離型用フイルム5、5’は塗布
面から剥離して再び回収しながら、芯材1はそのまま成
形方向に移送する。そして、芯材の周面に、比較的高温
で硬化する不飽和ポリエステル樹脂液槽10、10’に
より樹脂を含浸したガラスロービングやコンティニアス
マット8、8’・・の多数本が整列装置(ガイド板)9
、9’・・によりその配列を整えられて導かれ、成形金
型7に送られる。ここでは、強化繊維等の成形材料はそ
の成形通路の壁面からの伝熱によって加熱されると共に
、既に加熱され昇温されている芯材1からの伝熱によっ
ても加熱され、樹脂が硬化せしめられる。かくして、加
熱硬化せしめられた成形材料は、引取装置11により引
き取られ、カッター12により定尺に切断される。得ら
れたものは、芯材層13とその外周囲に形成された熱硬
化性樹脂層14とが強固に一体となされた二層構造の複
合体を形成している。
Using such an apparatus, first, while the core material 1 is continuously transferred in the molding direction, the unsaturated polyester resin liquid 3, 3', which hardens at a relatively low temperature, is applied to the surface of the core material 1. Next, release films 5, 5' are introduced onto the coated surface at approximately the same speed, and are adhered to the coated surface using the adhesive properties of the coated surface to cover it. Subsequently, far infrared rays are irradiated from the far infrared heating devices 6 and 6' to heat and harden the unsaturated polyester resin liquids 3 and 3' through the release films 5 and 5'. Thus, the core material 1 is heated by the heat of reaction at that time. Then, the release films 5, 5' are peeled off from the coated surface and recovered again, while the core material 1 is transported as it is in the molding direction. Then, on the circumferential surface of the core material, an alignment device (guide plate )9
, 9', etc., the array is arranged and guided, and sent to the molding die 7. Here, the molding material such as reinforcing fibers is heated by heat transfer from the wall surface of the molding channel, and is also heated by heat transfer from the core material 1, which has already been heated and raised in temperature, and the resin is hardened. . The molding material heated and hardened in this manner is taken off by a take-off device 11 and cut into regular lengths by a cutter 12. The obtained product forms a two-layer composite in which the core material layer 13 and the thermosetting resin layer 14 formed around the outer periphery of the core material layer 13 are firmly integrated.

【0024】実験例 図1に示した成形装置を用い、以下に示す構成に基づい
て複合体の成形を行った。又この実験例を、従来方法、
即ち比較的低温で硬化する不飽和ポリエステル樹脂を塗
布しなかった場合と比較した。 1)成形材料 ■.芯材=30倍発泡のポリウレタン製のパイプ状体で
、一本が30mm(内径)×2mm(厚み)×2m(長
さ)の寸法のもの ■.比較的低温で硬化する不飽和ポリエステル樹脂=硬
化剤としてビス(t−ブチルシクロヘキシル)パーオキ
シジカーボネートが添加された三井東圧社製エスター2
35 ■.強化繊維=4500番のガラスロービング(旭ファ
イバー社製)及び450番のコンティニアスマット(旭
ファイバー社製) ■.比較的高温で硬化する不飽和ポリエステル樹脂=硬
化剤としてメチルエチルケトンパーオキサイドが添加さ
れた日本ユピカ社製ユピカ3512 ■.離型フイルム=厚み0.2mmのテフロンフイルム
2)成形装置 図1に示す装置 しかして、先ず、芯材1の表面に比較的低温で硬化する
不飽和ポリエステル樹脂液を塗布し、10Kwの遠赤外
線装置により1分間加熱した。樹脂液は硬化反応し、そ
のときの反応熱によりその表面温度は120℃であり、
後述する成形金型への挿入迄、この温度はほぼ持続した
。次いで、このようにして予め加熱された芯材1の周囲
に100本のガラスロービングを導きつつ、更に最外層
にコンティニアスマットを配するようにしてこれらから
なる強化繊維を、芯材1と共に150℃に設定した成形
金型7に送り込み加熱硬化させた。採取した試験片での
芯材層13と繊維強化合成樹脂層14との界面の密着強
度は0.75Kg/mm2であった。
Experimental Example Using the molding apparatus shown in FIG. 1, a composite was molded based on the configuration shown below. In addition, this experimental example was performed using the conventional method,
That is, a comparison was made with a case in which an unsaturated polyester resin that hardens at a relatively low temperature was not applied. 1) Molding material ■. Core material: A pipe-shaped body made of 30 times foamed polyurethane, each measuring 30 mm (inner diameter) x 2 mm (thickness) x 2 m (length) ■. Unsaturated polyester resin that hardens at a relatively low temperature = Ester 2 manufactured by Mitsui Toatsu Co., Ltd. with bis(t-butylcyclohexyl) peroxydicarbonate added as a hardening agent
35 ■. Reinforcement fibers = No. 4500 glass roving (manufactured by Asahi Fiber Co., Ltd.) and No. 450 continuous mat (manufactured by Asahi Fiber Co., Ltd.) ■. Unsaturated polyester resin that hardens at a relatively high temperature = U-Pica 3512 manufactured by Nippon U-Pica, to which methyl ethyl ketone peroxide is added as a curing agent ■. Release film = Teflon film with a thickness of 0.2 mm 2) Molding device The device shown in Fig. 1 First, an unsaturated polyester resin liquid that hardens at a relatively low temperature is applied to the surface of the core material 1, and a far infrared ray of 10 Kw is applied. The device was heated for 1 minute. The resin liquid undergoes a curing reaction, and the surface temperature is 120°C due to the reaction heat at that time.
This temperature was maintained almost until the material was inserted into a mold, which will be described later. Next, while guiding 100 glass rovings around the core material 1 that has been preheated in this way, a continuous mat is further arranged as the outermost layer, and the reinforcing fibers made of these are heated together with the core material 1 at 150°C. The mixture was fed into a molding die 7 set at 1 and heated to harden. The adhesion strength of the interface between the core material layer 13 and the fiber-reinforced synthetic resin layer 14 in the sampled test piece was 0.75 Kg/mm2.

【0025】比較例 生産方式として、芯材1の表面に比較的低温で硬化する
不飽和ポリエステル樹脂液を塗布しなかったこと以外は
、実験例1と同様にして同様の成形速度で成形し、得ら
れた試験片について界面の密着強度を測定したところ、
0.2Kg/mm2であった。尚、密着強度はASTM
C273−61に準拠して測定した。
As a comparative production method, molding was performed in the same manner as in Experimental Example 1 at the same molding speed, except that the unsaturated polyester resin liquid that hardens at a relatively low temperature was not applied to the surface of the core material 1. When the adhesion strength of the interface was measured for the obtained test piece, it was found that
It was 0.2Kg/mm2. In addition, the adhesion strength is ASTM
Measured in accordance with C273-61.

【0026】[0026]

【発明の効果】本発明成形方法は、芯材を一方向に移送
しつつ、その表面に比較的低温で硬化する熱硬化性樹脂
を塗布し、その塗布面を離型用フイルムを介して加熱し
硬化させた後、その外周囲に比較的高温で硬化する熱硬
化性樹脂を含浸した強化繊維を供給して引抜成形するよ
うにしたので、芯材は比較的低温で硬化する熱硬化性樹
脂の、硬化時における反応熱で昇温されており、その外
周囲に導かれた樹脂を含浸した強化繊維は、この芯材と
共に成形金型内の成形通路に導入され、その金型のみな
らず芯材によっても加熱されて硬化するので、成形材料
が加熱硬化区間で受ける厚み方向の温度分布において、
成形金型の壁面から受ける温度と、芯材と接する部分か
ら受ける温度との温度差が少なくなる。
Effects of the Invention: The molding method of the present invention applies a thermosetting resin that hardens at a relatively low temperature to the surface of the core material while transferring it in one direction, and then heats the coated surface via a release film. After curing, reinforcing fibers impregnated with a thermosetting resin that hardens at a relatively high temperature are supplied to the outer periphery and pultrusion molding is performed.The core material is a thermosetting resin that hardens at a relatively low temperature. The reinforcing fibers impregnated with resin are heated by the reaction heat during curing, and the reinforcing fibers impregnated with resin are led to the outer periphery and are introduced into the molding channel in the molding mold together with this core material, and are not only in the mold but also in the molding mold. Since the core material is also heated and hardened, the temperature distribution in the thickness direction that the molding material receives in the heat-hardening section,
The temperature difference between the temperature received from the wall surface of the mold and the temperature received from the portion in contact with the core material is reduced.

【0027】従って、樹脂の硬化現象はこれに対応して
金型に接する部分のみならず、芯材と接する部分からも
進行し、硬化時間がそれだけ早くなると共に、強化樹脂
の厚み方向各深度における硬化速度が均一化され、芯材
と繊維強化合成樹脂層との界面に、硬化収縮による樹脂
の含浸不良が起こらず、品質に優れたものが速やかに、
安定して得られる。
Therefore, the curing phenomenon of the resin progresses not only from the part in contact with the mold but also from the part in contact with the core material, and the curing time becomes faster and the hardening phenomenon at each depth in the thickness direction of the reinforced resin progresses. The curing speed is uniform, and there is no resin impregnation failure due to curing shrinkage at the interface between the core material and the fiber-reinforced synthetic resin layer, and high quality products can be quickly produced.
Obtained stably.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】は、本発明の繊維強化合成樹脂複合体の成形方
法を実施する場合の成形工程の一例を示す概略説明図で
ある。
FIG. 1 is a schematic explanatory diagram showing an example of a molding process when carrying out the method for molding a fiber-reinforced synthetic resin composite of the present invention.

【符号の説明】[Explanation of symbols]

1    芯材 2    上部液槽 2’  下部液槽 3、3’  比較的低温で硬化する熱硬化性樹脂液4、
4’  塗布ローラー 5、5’  離型用フイルム 6、6’  加熱装置 7    成形金型 8、8’  強化繊維 10、10’比較的高温で硬化する熱硬化性樹脂液を注
入した樹脂液槽 11    引取装置 12    カッター 13    芯材層 14    繊維強化合成樹脂層
1 Core material 2 Upper liquid tank 2' Lower liquid tank 3, 3' Thermosetting resin liquid 4 that hardens at a relatively low temperature,
4' Application rollers 5, 5' Release films 6, 6' Heating device 7 Molding molds 8, 8' Reinforcing fibers 10, 10' Resin liquid tank 11 injected with thermosetting resin liquid that hardens at relatively high temperatures Taking-off device 12 Cutter 13 Core material layer 14 Fiber-reinforced synthetic resin layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  芯材を一方向に移送しつつ、その表面
に比較的低温で硬化する熱硬化性樹脂を塗布し、その塗
布面を離型用フイルムを介して加熱し硬化させた後、そ
の外周囲に比較的高温で硬化する熱硬化性樹脂を含浸し
た強化繊維を供給して引抜成形することにより繊維強化
合成樹脂層を形成することを特徴とする繊維強化合成樹
脂複合体の成形方法。
Claim 1: While transferring the core material in one direction, a thermosetting resin that hardens at a relatively low temperature is applied to the surface of the core material, and the coated surface is heated and hardened through a release film, and then, A method for forming a fiber-reinforced synthetic resin composite, characterized in that a fiber-reinforced synthetic resin layer is formed by supplying reinforcing fibers impregnated with a thermosetting resin that hardens at a relatively high temperature to the outer periphery and pultrusion molding the reinforcing fibers. .
JP3066983A 1991-03-29 1991-03-29 Method for molding fiber-reinforced synthetic resin composite Pending JPH04301435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3066983A JPH04301435A (en) 1991-03-29 1991-03-29 Method for molding fiber-reinforced synthetic resin composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3066983A JPH04301435A (en) 1991-03-29 1991-03-29 Method for molding fiber-reinforced synthetic resin composite

Publications (1)

Publication Number Publication Date
JPH04301435A true JPH04301435A (en) 1992-10-26

Family

ID=13331765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3066983A Pending JPH04301435A (en) 1991-03-29 1991-03-29 Method for molding fiber-reinforced synthetic resin composite

Country Status (1)

Country Link
JP (1) JPH04301435A (en)

Similar Documents

Publication Publication Date Title
EP0290849B1 (en) Pultrusion with cure by ultraviolet radiation
US4168194A (en) Method for production of fiber reinforced resin structures
US3915783A (en) Making a thermosetting resin impregnating laminate
EP1029658A1 (en) Fiber-reinforced composite hollow structure, method for production thereof, and appartus therefor
CA2972135C (en) Process and device for the production of a fibre-composite material
JPS6367465B2 (en)
JPH0622885B2 (en) Manufacturing method of fiber-reinforced resin filament
JPS60154029A (en) Method and apparatus for rectifying continuously extruded bar-like molding
WO2018012270A1 (en) Method and device for producing pultruded article
JPH04301435A (en) Method for molding fiber-reinforced synthetic resin composite
JPH04290730A (en) Molding method for fiber reinforced synthetic resin composite
JP2019072963A (en) Manufacturing apparatus and manufacturing method of unidirectional prepreg tape
JPS6055296B2 (en) Manufacturing method of fiber reinforced resin structure
JPH10264348A (en) Decoration forming sheet, its manufacture, and manufacture of fiber-reinforced thermoplastic resin foam using the sheet
JP2003245985A (en) Method for continuously manufacturing molded product
JPH09174547A (en) Composite sheet of carbon fiber reinforced thermoplastic resin, manufacture thereof, and manufacture of molded piece using the sheet
JPH07266439A (en) Method and device for manufacturing pultruded article having surface layer
JPH04286629A (en) Molding method for fiber reinforced synthetic resin composite body
JPH05286046A (en) Plutrusion product having smooth surface layer and production thereof
JPH07100844A (en) Highly decorative molding and its manufacture
JPS5948120A (en) Continuous draw forming of heat resisting fiber reinforced plastic pipe
JPH1044254A (en) Molding with multi-layer structure and its preparation
JPH10166467A (en) Continuous forming method of light-weight multilayer resin product and continuous forming device
JPS61213136A (en) Continuous pultrusion method of frp pipe
JP3269928B2 (en) Continuous production method of fiber-reinforced foamed resin molded article