JPH04290730A - Molding method for fiber reinforced synthetic resin composite - Google Patents

Molding method for fiber reinforced synthetic resin composite

Info

Publication number
JPH04290730A
JPH04290730A JP3054563A JP5456391A JPH04290730A JP H04290730 A JPH04290730 A JP H04290730A JP 3054563 A JP3054563 A JP 3054563A JP 5456391 A JP5456391 A JP 5456391A JP H04290730 A JPH04290730 A JP H04290730A
Authority
JP
Japan
Prior art keywords
core material
molding
reinforced synthetic
hardens
synthetic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3054563A
Other languages
Japanese (ja)
Inventor
Yoshiine Takeda
美稲 竹田
Norihito Morishima
森島 憲仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP3054563A priority Critical patent/JPH04290730A/en
Publication of JPH04290730A publication Critical patent/JPH04290730A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To enhance the adhesion of a core material with a fiber reinforced synthetic resin layer by a method wherein a thermosetting resin cured at relatively low temp. is supplied to the surface of the core material while the core- material is transferred in one direction and a reinforcing fiber impregnated with a thermosetting resin cured at relatively high temp. is supplied to the outer periphery thereof to perform pultrusion. CONSTITUTION:At first, a core material 1 is continuously transferred in a molding direction to be guided into a liquid tank 2 and the surface of the core material 1 is coated with an unsaturated polyester resin solution 3 cured at a relatively low temp. Glass rovings 5, 5 are delivered to be guided into a liquid tank 7 to be impregnated with an unsaturated polyester resin solution 6 cured at a relatively high temp. and guided to the outer periphery surface of the core material 1 by an arranging apparatus 8 and continuous mats 9, 9 are delivered to be superposed on the glass rovings 5, 5 while arranged in the same way by the arranging apparatus 8.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、芯材層とこれを被包す
る繊維強化合成樹脂層とからなる繊維強化合成樹脂複合
体の成形方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for molding a fiber-reinforced synthetic resin composite comprising a core layer and a fiber-reinforced synthetic resin layer surrounding the core layer.

【0002】0002

【従来の技術】従来、引抜成形方法により成形体を成形
した場合、引き抜き方向と、これに対して直角方向との
強度差が大きく、成形体の用途が制限されるので、芯材
層と、その外層に形成された繊維強化合成樹脂層とから
なる複合体とし、このときの芯材に等方体を用いて、こ
の欠点を解消するようにした成形方法が知られている。 この方法によれば、強度の方向性が改善されるのみなら
ず、芯材、外層用樹脂、外層用繊維等の種類、各層の厚
さ等を種々組み合わせることにより、断面形状が任意に
設定できるという引抜成形方法の特徴と相まって、強度
、重量、その他の諸物性の好みのものを得ることが可能
となり、用途に応じた諸特性を具備したものが、容易に
得られるという点で優れた技術である。
[Prior Art] Conventionally, when a molded body is formed by a pultrusion method, there is a large difference in strength between the direction of pultrusion and the direction perpendicular to this, which limits the applications of the molded body. A molding method is known in which this drawback is solved by forming a composite body consisting of a fiber-reinforced synthetic resin layer formed as an outer layer, and using an isotropic body as the core material. According to this method, not only the directionality of strength is improved, but also the cross-sectional shape can be set arbitrarily by combining various types of core material, outer layer resin, outer layer fiber, etc., and the thickness of each layer. Coupled with the characteristics of the pultrusion method, it is possible to obtain desired strength, weight, and other physical properties, making it an excellent technology in that it is easy to obtain products with various properties depending on the application. It is.

【0003】ところが、金型内の成形通路における強化
繊維を硬化させる為の熱量は、専ら金型からの伝熱に依
存していた。従って、金型の中の加熱硬化区間での成形
材料の温度分布についてみると、金型に接する部分が最
も高く、以下内部(厚み方向)にいくに従って次第に低
くなり、芯材に接する部分が最も低くなるという高低差
のある温度分布になるのである。
However, the amount of heat required to harden the reinforcing fibers in the molding passage within the mold depends solely on heat transfer from the mold. Therefore, when looking at the temperature distribution of the molding material in the heat-curing section of the mold, the temperature is highest in the part in contact with the mold, gradually decreases as it goes inside (in the thickness direction), and the highest in the part in contact with the core material. This results in a temperature distribution with different heights.

【0004】従って、強化繊維中の樹脂の硬化現象は、
金型に接する部分から進行し、芯材と接する部分の硬化
が最も遅れることになり、この外層部分における樹脂の
硬化速度の不均一の為、芯材と繊維強化合成樹脂層との
界面に、硬化収縮による樹脂の含浸不良が起こり、その
結果、ボイド、巣等が発生して芯材層と繊維強化合成樹
脂層との密着性が劣り、強度低下を来すと言う問題が発
生し、又、芯材と接する部分の硬化を充分にする為に、
成形速度を出来るだけ低速に維持しようとすると、繊維
強化合成樹脂層の厚みが厚くなればなる程成形速度が低
下し、期待する生産速度が得られないという問題もあっ
た。
[0004] Therefore, the curing phenomenon of resin in reinforcing fibers is as follows:
Curing progresses from the part in contact with the mold, and the part in contact with the core material is the slowest to cure. Due to the uneven curing speed of the resin in this outer layer part, the hardening occurs at the interface between the core material and the fiber-reinforced synthetic resin layer. Poor resin impregnation occurs due to curing shrinkage, resulting in the formation of voids, cavities, etc., resulting in poor adhesion between the core material layer and the fiber-reinforced synthetic resin layer, resulting in a decrease in strength. , In order to sufficiently harden the part in contact with the core material,
When trying to maintain the molding speed as low as possible, the thicker the fiber-reinforced synthetic resin layer becomes, the lower the molding speed becomes, resulting in the problem that the expected production speed cannot be obtained.

【0005】そこで、この問題を解決する為に、従来種
々研究がされているが、その一つとして特開昭63−3
5332号公報には、金属材料を芯材とし、その外周囲
に繊維強化合成樹脂層を形成した構造の複合体の引抜成
形方法について記載されている。この方法によれば、成
形方向に二個の金型を配置し、熱硬化性樹脂を含浸した
強化繊維と共に送りこまれた金属材料からなる芯材が、
先に通過する金型内で高周波により誘導加熱せしめられ
、次いで後で通過する金型によって、該金型からの伝熱
により強化繊維が加熱硬化せしめられるので、熱硬化性
樹脂を含浸した強化繊維が、金属製芯材と接する面と金
型の内壁面に接する面との温度差は、殆ど無い状態にす
ることができ、従って、熱硬化性樹脂の硬化速度の均一
化が得られ、不均一に原因する品質の劣化や生産速度の
低下を防止できると言う点で注目される技術である。
[0005] In order to solve this problem, various studies have been carried out in the past, one of which is the Japanese Patent Application Laid-open No. 63-3.
Publication No. 5332 describes a method for pultrusion molding of a composite body having a structure in which a metal material is used as a core material and a fiber-reinforced synthetic resin layer is formed around the core material. According to this method, two molds are arranged in the molding direction, and a core material made of a metal material is fed together with reinforcing fibers impregnated with a thermosetting resin.
The reinforcing fibers are heated by induction heating using high frequency waves in the mold that they pass through first, and then the reinforcing fibers are heated and hardened by the heat transfer from the mold that they pass through later, so the reinforcing fibers impregnated with thermosetting resin However, the temperature difference between the surface in contact with the metal core material and the surface in contact with the inner wall surface of the mold can be made to be almost non-existent, so that the curing speed of the thermosetting resin can be made uniform and there are no defects. This technology is attracting attention because it can prevent uniformly caused quality deterioration and production speed reduction.

【0006】[0006]

【本発明が解決しようとする課題】ところが、上記従来
技術は電磁誘導を利用した加熱方法である為、芯材が金
属に限られるという制約があり、金属以外のものでは採
用出来ないと言う問題があった。
[Problem to be solved by the present invention] However, since the above-mentioned conventional technology uses electromagnetic induction as a heating method, there is a restriction that the core material is limited to metal, and it cannot be used for materials other than metal. was there.

【0007】本発明はこのような従来技術の欠点を解消
し、金属は無論のこと金属以外のものでも、予め芯材を
加熱することが可能であり、強化繊維の芯材と接する部
分の硬化の遅れを防ぎ、もって、芯材と繊維強化合成樹
脂層との密着性がよく、且つ生産性を犠牲にすることも
ない成形方法を提供することを目的としてなさたもので
ある。
[0007] The present invention solves the drawbacks of the prior art, and makes it possible to heat the core material of not only metal but also other materials in advance, thereby curing the portion of the reinforcing fiber in contact with the core material. The purpose of this invention is to provide a molding method that prevents the delay in production, thereby providing good adhesion between the core material and the fiber-reinforced synthetic resin layer, and without sacrificing productivity.

【0008】[0008]

【課題を解決する為の手段】本発明は、芯材を一方向に
移送しつつ、その表面に比較的低温で硬化する熱硬化性
樹脂を供給し、その外周囲に、比較的高温で硬化する熱
硬化性樹脂を含浸した強化繊維を供給して引抜成形する
ことにより繊維強化合成樹脂層を形成することを特徴と
する繊維強化合成樹脂複合体の成形方法をその要旨とす
るものである。
[Means for Solving the Problems] The present invention supplies a thermosetting resin that hardens at a relatively low temperature to the surface of the core material while transporting the core material in one direction, and supplies the thermosetting resin that hardens at a relatively low temperature to the outer periphery of the core material. The gist of this invention is a method for forming a fiber-reinforced synthetic resin composite, characterized in that a fiber-reinforced synthetic resin layer is formed by supplying reinforcing fibers impregnated with a thermosetting resin and pultrusion molding the reinforcing fibers.

【0009】本発明に於いて用いるところの、芯材の表
面に供給する比較的低温で硬化する熱硬化性樹脂として
は、例えば、ジ−ベンゾイルパーオキサイド、ラウロイ
ルパーオキサイド、t−ブチルパーオキシ2エチルヘキ
サノエイト、t−ブチルパーオキシネオデカノエイト等
の過酸化物(一般に中温開始剤と称される)が添加され
た不飽和ポリエステル樹脂が挙げられ、これらの樹脂液
の粘度を500〜2000cpsに調整して用いる。
[0009] Examples of the thermosetting resin that is supplied to the surface of the core material and cures at a relatively low temperature used in the present invention include di-benzoyl peroxide, lauroyl peroxide, and t-butyl peroxide. Examples include unsaturated polyester resins to which peroxides (generally referred to as medium-temperature initiators) such as ethylhexanoate and t-butylperoxyneodecanoate are added, and the viscosity of these resin liquids is increased from 500 to 500. It is used after adjusting to 2000 cps.

【0010】本発明に於いて、上記比較的低温で硬化す
る熱硬化性樹脂を芯材に供給、塗布する方法としては、
芯材の形状に左右されるが、芯材を樹脂液槽の中に通す
方法、芯材をピンチローラーで移送しつつある段階で、
このピンチローラーの表面に樹脂液を垂らし芯材に転移
する方法、或いはこれらの方法の併用等が挙げられる。 そして、芯材の表面に塗布された樹脂は、硬化前の段階
であるからこの儘では流下する恐れがあるので、その粘
度を上記のように調整するのである。
In the present invention, the method for supplying and applying the thermosetting resin that hardens at a relatively low temperature to the core material is as follows:
Although it depends on the shape of the core material, the method of passing the core material into the resin liquid tank and the stage where the core material is being transferred with a pinch roller,
Examples include a method of dripping a resin liquid onto the surface of the pinch roller and transferring it to the core material, or a combination of these methods. Since the resin applied to the surface of the core material is at a stage before curing, there is a risk that it will flow down at this stage, so its viscosity is adjusted as described above.

【0011】本発明の芯材を形成する素材としては、金
属、木材、セラミック、各種合成樹脂、各種繊維強化合
成樹脂、これら合成樹脂の発泡体等その材質は特に限定
されず、又その形状についても、中空品であっても中実
品であってもよい。
The materials forming the core material of the present invention include metal, wood, ceramics, various synthetic resins, various fiber-reinforced synthetic resins, foams of these synthetic resins, etc., and the shape thereof is not particularly limited. It may also be a hollow product or a solid product.

【0012】本発明の繊維強化合成樹脂層に用いる強化
繊維としては、ガラス繊維、炭素繊維、有機繊維等のロ
ービング、チョップドストランドマット、クロスマット
、ラミマットなどが挙げられ、これらのロービングやマ
ットを、それぞれ単独で或いは両方を重ねて用いること
が出来る。
Examples of reinforcing fibers used in the fiber-reinforced synthetic resin layer of the present invention include rovings, chopped strand mats, cross mats, laminated mats, etc. made of glass fibers, carbon fibers, and organic fibers. Each can be used alone or both can be used in combination.

【0013】本発明の繊維強化合成樹脂層に用いる比較
的高温で硬化する樹脂の種類としては、例えば、ジクミ
ルパーオキサイド、t−ブチルパーオキシベンゾエイト
、ジ−t−ブチルパーオキサイド等(一般に高温開始剤
と称される)が添加された不飽和ポリエステル樹脂やエ
ポキシ樹脂等の熱硬化性樹脂が挙げられる。
Examples of the types of resins that harden at relatively high temperatures used in the fiber-reinforced synthetic resin layer of the present invention include dicumyl peroxide, t-butyl peroxybenzoate, di-t-butyl peroxide, etc. Examples include thermosetting resins such as unsaturated polyester resins and epoxy resins to which a high temperature initiator (referred to as a high temperature initiator) is added.

【0014】本発明に於いて、強化繊維に熱硬化性樹脂
を含浸させるには、成形金型に送り込む前工程で樹脂液
槽を通過させて含浸させる方法、成形金型の成形通路内
に開口した樹脂液挿入口より樹脂液を送り込んで含浸さ
せる方法等その他公知の方法が採用され得る。
In the present invention, in order to impregnate the reinforcing fibers with the thermosetting resin, there is a method in which the reinforcing fibers are impregnated by passing through a resin liquid tank in the process before being fed into the molding mold, and an opening in the molding passage of the molding mold is used. Other known methods, such as a method of impregnating the resin liquid by sending the resin liquid through the resin liquid insertion port, may be employed.

【0015】本発明に於いて採用される成形金型は、従
来引抜成形方法において使用されている金型が採用でき
、熱源も電熱やオイル等の熱媒体の他、赤外線や高周波
を利用した加熱方法等が挙げられ、これらの熱源により
通常100〜200℃に温度調節して使用する。
[0015] The molding die used in the present invention can be the mold used in conventional pultrusion molding methods, and the heat source can be heating using infrared rays or high frequency in addition to heat media such as electric heat or oil. The temperature is usually adjusted to 100 to 200° C. using these heat sources.

【0016】本発明に於いては、その他は従来知られて
いる引抜成形方法がその儘採用可能であり、成形金型内
で加熱硬化させた後、複合体として引き出しカッターで
切断して定尺とすればよい。成形速度は通常0.1〜2
m/分とするのが好ましい。
In the present invention, other conventionally known pultrusion molding methods can be used as is, and after heating and hardening in a molding die, the composite is cut with a draw cutter to a fixed length. And it is sufficient. Molding speed is usually 0.1-2
Preferably, the speed is m/min.

【0017】[0017]

【作用】本発明は、芯材を一方向に移送しつつ、その表
面に比較的低温で硬化する熱硬化性樹脂を供給し、その
外周囲に、比較的高温で硬化する熱硬化性樹脂を含浸し
た強化繊維を供給して引抜成形するようにしたので、成
形金型の中では、強化繊維に含まれている比較的高温で
硬化する熱硬化性樹脂が硬化するのみならず、芯材の表
面に塗布されている比較的低温で硬化する熱硬化性樹脂
も硬化反応を起こし、その硬化の反応熱により芯材は昇
温される。従って、比較的高温で硬化する熱硬化性樹脂
を含浸した強化繊維は、その金型のみならず芯材によっ
ても加熱されるので、成形材料が加熱硬化区間で受ける
厚み方向の温度分布のばらつきが少なくなり、特に成形
金型の壁面から受ける温度と、芯材と接する部分から受
ける温度との温度差が少なくなる。
[Operation] The present invention supplies a thermosetting resin that hardens at a relatively low temperature to the surface of the core material while transporting it in one direction, and supplies a thermosetting resin that hardens at a relatively high temperature to the outer periphery of the core material. Since the impregnated reinforcing fibers are supplied and pultruded, the thermosetting resin contained in the reinforcing fibers, which hardens at a relatively high temperature, is not only cured in the mold, but also the core material is hardened. The thermosetting resin that is applied to the surface and cures at a relatively low temperature also undergoes a curing reaction, and the heat of the curing reaction raises the temperature of the core material. Therefore, reinforcing fibers impregnated with a thermosetting resin that hardens at relatively high temperatures are heated not only by the mold but also by the core material, which reduces the variation in temperature distribution in the thickness direction that the molding material receives in the heat-hardening section. In particular, the temperature difference between the temperature received from the wall surface of the mold and the temperature received from the portion in contact with the core material is reduced.

【0018】[0018]

【実施例】以下本発明の一実施例を図面に基づいて詳細
に説明する。図1は、本発明繊維強化合成樹脂複合体の
成形方法を実施する場合の成形工程の一例を示す概略説
明図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic explanatory diagram showing an example of the molding process when carrying out the method for molding a fiber-reinforced synthetic resin composite of the present invention.

【0019】図1に於いて、1はウレタン樹脂発泡体か
らなるパイプ状の芯材であり、矢印方向に連続的に移送
されている。2は比較的低温で硬化する不飽和ポリエス
テル樹脂液3が注入された液槽である。4、4は液槽の
前後に設けた芯材1が出入する通孔に取りつけられたパ
ッキングであって、シールとしての機能と、前方のパッ
キング4は塗布された余分の樹脂液を絞り落とす機能を
も果たす。5、5・・はボビンから巻き出されたガラス
ロービングであって、比較的高温で硬化する不飽和ポリ
エステル樹脂液6が注入された液槽7の中に浸漬される
。8は整列装置(ガイド板)であって、芯材1、ガラス
ロービング5、後述するコンティニアスマット9等を所
定の進行方向に整えるものである。コンティニアスマッ
ト9、9は、ボビンから巻き出され、同じく整形装置8
を通過しつつ、芯材1の外周囲に、ガラスロービング5
を介して周方向にそれぞれ半円周分づつ被包するように
整えられる。この実施例では最外層にのみコンティニア
スマット9、9を配するようにした。10は成形金型で
あって、図示しない成形通路が設けられている。尚、1
1は引取装置、12は矢印方向に上下するカッターであ
る。
In FIG. 1, reference numeral 1 denotes a pipe-shaped core material made of urethane resin foam, which is continuously transported in the direction of the arrow. 2 is a liquid tank into which an unsaturated polyester resin liquid 3 that hardens at a relatively low temperature is poured. Packings 4 and 4 are attached to the through holes provided at the front and rear of the liquid tank through which the core material 1 enters and exits, and have the function of a seal, and the front packing 4 has the function of squeezing out excess resin liquid applied. It also fulfills the following. 5, 5... are glass rovings unwound from a bobbin, and are immersed in a liquid tank 7 into which an unsaturated polyester resin liquid 6 that hardens at a relatively high temperature is injected. Reference numeral 8 denotes an alignment device (guide plate) that aligns the core material 1, the glass roving 5, a continuous mat 9 described later, etc. in a predetermined direction of movement. The continuous mats 9, 9 are unwound from the bobbin and are also shaped by the shaping device 8.
A glass roving 5 is placed around the outer circumference of the core material 1 while passing through the core material 1.
They are arranged in such a way that they each cover half a circumference in the circumferential direction. In this embodiment, the continuous mats 9, 9 are arranged only on the outermost layer. A molding die 10 is provided with a molding passage (not shown). Furthermore, 1
1 is a take-up device, and 12 is a cutter that moves up and down in the direction of the arrow.

【0020】このような装置により、先ず芯材1を連続
的に成形方向に移送しつつ、液槽2の中に導き、比較的
低温で硬化する不飽和ポリエステル樹脂液3を芯材1の
表面に塗布する。又、ガラスロービング5、5を繰り出
しつつ、液槽7の中に導き、比較的高温で硬化する不飽
和ポリエステル樹脂液6を含浸して、整列装置8により
芯材1の外周面に導くと共に、コンティニアスマット9
、9を繰り出して、同じく整列装置8によりガラスロー
ビング5、5の上に重ねる。かくして成形金型10に送
り込むと、ここでは、ガラスロービング5やコンティニ
アスマット9等の強化繊維は、その成形通路の壁面から
の伝熱によって加熱されると共に、一方では芯材1の表
面に塗布されている比較的低温で硬化する不飽和ポリエ
ステル樹脂層も加熱され硬化するので、その反応熱によ
り昇温した芯材1からの伝熱によっても加熱され硬化さ
れる。かくして加熱硬化された成形材料は、引取装置1
1により引き取られ、カッター12により定尺に切断さ
れる。得られたものは、芯材層13と、その外周囲に形
成された比較的低温で硬化する不飽和ポリエステル樹脂
の熱硬化樹脂層14と、繊維強化合成樹脂層15とが強
固に一体となされた三層構造の複合体を形成している。
With such a device, first, the core material 1 is continuously transferred in the molding direction and introduced into the liquid tank 2, and the unsaturated polyester resin liquid 3, which hardens at a relatively low temperature, is applied to the surface of the core material 1. Apply to. Further, while letting out the glass rovings 5, 5, they are guided into a liquid tank 7, impregnated with an unsaturated polyester resin liquid 6 that hardens at a relatively high temperature, and guided to the outer peripheral surface of the core material 1 by an alignment device 8, Continuous mat 9
, 9 are let out and stacked on the glass rovings 5, 5 by the same aligning device 8. When fed into the molding die 10 in this manner, the reinforcing fibers such as the glass roving 5 and the continuous mat 9 are heated by heat transfer from the walls of the molding channel, and are also coated on the surface of the core material 1. Since the unsaturated polyester resin layer, which is cured at a relatively low temperature, is also heated and cured, it is also heated and cured by heat transfer from the core material 1 whose temperature is raised by the reaction heat. The molding material heated and hardened in this way is transferred to the take-off device 1.
1 and cut into regular lengths by a cutter 12. The obtained material has a core material layer 13, a thermosetting resin layer 14 made of an unsaturated polyester resin that hardens at a relatively low temperature formed around the core material layer 13, and a fiber-reinforced synthetic resin layer 15 that are firmly integrated. It forms a three-layered composite.

【0021】実験例 以下に示す構成に基づいて複合体の成形を行った。又こ
の実験例を、従来方法、即ち比較的低温で硬化する不飽
和ポリエステル樹脂を塗布しなかった場合と比較した。 1)成形材料 ■.芯材=30倍発泡のポリウレタン製丸棒で、一本が
30mm(内径)×2mm(厚み)×2m(長さ)の寸
法のもの ■.比較的低温で硬化する不飽和ポリエステル樹脂=硬
化剤としてジベンゾイルパーオキサイドが添加された日
本ユピカ社製、3512 ■.強化繊維=4500番のガラスロービング(旭ファ
イバー社製)及び450番のコンティニアスマット(旭
ファイバー社製) ■.比較的高温で硬化する不飽和ポリエステル樹脂=硬
化剤としてt−ブチルパーオキシベンゾエイトが添加さ
れた日本ユピカ社製、312 2)成形装置 図1に示す装置 しかして、先ず、芯材1を液層2の中に通して、その表
面に比較的低温で硬化する不飽和ポリエステル樹脂液3
を塗布し、次いで、芯材1の周囲に、比較的高温で硬化
する樹脂液を含浸したガラスロービング5を導きつつ、
更に最外層にコンティニアスマット9、9を配するよう
にして、これらからなる強化繊維を、芯材1と共に15
0℃に設定した成形金型10に送り込み加熱硬化させた
。このときの成形速度は0.7m/分であり、採取した
試験片での熱硬化樹脂層14と、繊維強化合成樹脂層1
5との界面の密着強度は0.75Kg/mm2であった
Experimental Example A composite was molded based on the configuration shown below. This experimental example was also compared with a conventional method, ie, a case where an unsaturated polyester resin that cures at a relatively low temperature was not applied. 1) Molding material ■. Core material = 30 times foamed polyurethane round rod, each measuring 30 mm (inner diameter) x 2 mm (thickness) x 2 m (length)■. Unsaturated polyester resin that hardens at relatively low temperatures = 3512 manufactured by Nippon U-Pica, with dibenzoyl peroxide added as a hardening agent. ■. Reinforcement fibers = No. 4500 glass roving (manufactured by Asahi Fiber Co., Ltd.) and No. 450 continuous mat (manufactured by Asahi Fiber Co., Ltd.) ■. Unsaturated polyester resin that hardens at a relatively high temperature = 312 manufactured by Nippon U-Pica with t-butyl peroxybenzoate added as a hardening agent 2) Molding device The device shown in Figure 1 First, the core material 1 is melted into a liquid. Unsaturated polyester resin liquid 3 passed through layer 2 and cured at a relatively low temperature on its surface.
Next, while guiding the glass roving 5 impregnated with a resin liquid that hardens at a relatively high temperature around the core material 1,
Furthermore, continuous mats 9, 9 are arranged in the outermost layer, and the reinforcing fibers made of these are combined with the core material 1 to 15
It was fed into a molding die 10 set at 0° C. and cured by heating. The molding speed at this time was 0.7 m/min, and the thermosetting resin layer 14 and the fiber-reinforced synthetic resin layer 1 were
The adhesion strength at the interface with No. 5 was 0.75 Kg/mm2.

【0022】比較例 生産方式として、芯材1の表面に比較的低温で硬化する
不飽和ポリエステル樹脂液3を塗布しなかったこと以外
は、実験例1と同様にして同様の成形速度で成形し、得
られた試験片について界面の密着強度を測定したところ
、0.2Kg/mm2であった。尚、密着強度はAST
MC273−61に準拠して測定した。
As a comparative production method, molding was performed in the same manner as in Experimental Example 1 at the same molding speed, except that the unsaturated polyester resin liquid 3, which hardens at a relatively low temperature, was not applied to the surface of the core material 1. When the adhesion strength of the interface of the obtained test piece was measured, it was 0.2 Kg/mm2. In addition, the adhesion strength is AST
Measured according to MC273-61.

【0023】[0023]

【発明の効果】本発明成形方法は、芯材を一方向に移送
しつつ、その表面に比較的低温で硬化する熱硬化性樹脂
を供給し、その外周囲に、比較的高温で硬化する熱硬化
性樹脂を含浸した強化繊維を供給して引抜成形するよう
にしたので、成形金型の中では、強化繊維に含まれてい
る比較的高温で硬化する熱硬化性樹脂が硬化するのみな
らず、芯材の表面に供給された比較的低温で硬化する熱
硬化性樹脂も硬化反応を起こし、その硬化の反応熱によ
り芯材は昇温される。従って、比較的高温で硬化する熱
硬化性樹脂を含浸した強化繊維は、その金型のみならず
芯材によっても加熱されるので、成形材料が加熱硬化区
間で受ける厚み方向の温度分布のばらつきが少なくなり
、特に成形金型の壁面から受ける温度と、芯材と接する
部分から受ける温度との温度差が少なくなる。従って、
樹脂の硬化現象は、これに対応して金型に接する部分の
みならず、芯材と接する部分からも進行し、硬化時間が
それだけ早くなると共に、繊維強化合成樹脂層の、厚み
方向各深度における硬化速度が均一化され、芯材層と繊
維強化合成樹脂層との界面に、硬化収縮による樹脂の含
浸不良が起こらず、品質に優れたものが速やかに、安定
して得られる。
Effects of the Invention The molding method of the present invention supplies a thermosetting resin that hardens at a relatively low temperature to the surface of the core material while transporting it in one direction, and supplies a thermosetting resin that hardens at a relatively high temperature to the outer periphery of the core material. Since reinforcing fibers impregnated with hardening resin are supplied and pultruded, in the molding mold, the thermosetting resin contained in the reinforcing fibers, which hardens at relatively high temperatures, not only hardens. The thermosetting resin, which is supplied to the surface of the core material and cures at a relatively low temperature, also undergoes a curing reaction, and the temperature of the core material is raised by the reaction heat of the curing. Therefore, reinforcing fibers impregnated with a thermosetting resin that hardens at relatively high temperatures are heated not only by the mold but also by the core material, which reduces the variation in temperature distribution in the thickness direction that the molding material receives in the heat-hardening section. In particular, the temperature difference between the temperature received from the wall surface of the mold and the temperature received from the portion in contact with the core material is reduced. Therefore,
Correspondingly, the curing phenomenon of the resin progresses not only from the part in contact with the mold but also from the part in contact with the core material, and the curing time becomes faster, and the resin hardens at each depth in the thickness direction of the fiber-reinforced synthetic resin layer. The curing speed is made uniform, and resin impregnation failure due to curing shrinkage does not occur at the interface between the core material layer and the fiber-reinforced synthetic resin layer, and a product of excellent quality can be obtained quickly and stably.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】は、本発明の繊維強化合成樹脂複合体の成形方
法を実施する場合の成形工程の一例を示す概略説明図で
ある。
FIG. 1 is a schematic explanatory diagram showing an example of a molding process when carrying out the method for molding a fiber-reinforced synthetic resin composite of the present invention.

【符号の説明】[Explanation of symbols]

1    芯材 2    比較的低温で硬化する熱硬化性樹脂液を注入
した樹脂液槽 3    比較的低温で硬化する熱硬化性樹脂液4  
  パッキング 5    ガラスロービング 6    比較的高温で硬化する熱硬化性樹脂液7  
  比較的高温で硬化する熱硬化性樹脂液を注入した樹
脂液層 9    コンティニアスマット 10    成形金型 11    引取装置 12    カッター 13    芯材層 14    比較的低温で硬化する不飽和ポリエステル
樹脂の熱硬化樹脂層 15    繊維強化合成樹脂層
1 Core material 2 Resin liquid tank 3 filled with thermosetting resin liquid that hardens at relatively low temperatures Thermosetting resin liquid 4 that hardens at relatively low temperatures
Packing 5 Glass roving 6 Thermosetting resin liquid that hardens at relatively high temperatures 7
Resin liquid layer 9 injected with thermosetting resin liquid that hardens at a relatively high temperature Continuous mat 10 Molding mold 11 Taking-off device 12 Cutter 13 Core material layer 14 Thermosetting resin layer 15 of unsaturated polyester resin that hardens at a relatively low temperature Fiber reinforced synthetic resin layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  芯材を一方向に移送しつつ、その表面
に比較的低温で硬化する熱硬化性樹脂を供給し、その外
周囲に、比較的高温で硬化する熱硬化性樹脂を含浸した
強化繊維を供給して引抜成形することにより繊維強化合
成樹脂層を形成することを特徴とする繊維強化合成樹脂
複合体の成形方法。
[Claim 1] While transporting the core material in one direction, a thermosetting resin that hardens at a relatively low temperature is supplied to the surface of the core material, and the outer periphery thereof is impregnated with a thermosetting resin that hardens at a relatively high temperature. A method for forming a fiber-reinforced synthetic resin composite, comprising forming a fiber-reinforced synthetic resin layer by supplying reinforcing fibers and pultrusion molding.
JP3054563A 1991-03-19 1991-03-19 Molding method for fiber reinforced synthetic resin composite Pending JPH04290730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3054563A JPH04290730A (en) 1991-03-19 1991-03-19 Molding method for fiber reinforced synthetic resin composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3054563A JPH04290730A (en) 1991-03-19 1991-03-19 Molding method for fiber reinforced synthetic resin composite

Publications (1)

Publication Number Publication Date
JPH04290730A true JPH04290730A (en) 1992-10-15

Family

ID=12974157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3054563A Pending JPH04290730A (en) 1991-03-19 1991-03-19 Molding method for fiber reinforced synthetic resin composite

Country Status (1)

Country Link
JP (1) JPH04290730A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167229A (en) * 2011-02-16 2012-09-06 Mitsubishi Rayon Co Ltd Method for producing prepreg

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167229A (en) * 2011-02-16 2012-09-06 Mitsubishi Rayon Co Ltd Method for producing prepreg

Similar Documents

Publication Publication Date Title
US5073413A (en) Method and apparatus for wetting fiber reinforcements with matrix materials in the pultrusion process using continuous in-line degassing
US3915783A (en) Making a thermosetting resin impregnating laminate
US20190232579A1 (en) Composite Fibers and Method of Producing Fibers
US20070013096A1 (en) Multistage method and apparatus for continuously forming a composite article
CA2972135C (en) Process and device for the production of a fibre-composite material
US4028477A (en) Method of producing an article of thermosetting resin
KR101776383B1 (en) Manufacturing apparatus for composite reinforcement structure and manufacturing method for the same
JPH04290730A (en) Molding method for fiber reinforced synthetic resin composite
JPH11216736A (en) Method and apparatus for manufacturing fiber reinforced foamed resin molding
JPH04301435A (en) Method for molding fiber-reinforced synthetic resin composite
JP7119539B2 (en) Manufacturing method of carbon fiber reinforced resin molding
JPH04286629A (en) Molding method for fiber reinforced synthetic resin composite body
JPH10166467A (en) Continuous forming method of light-weight multilayer resin product and continuous forming device
JPH06285885A (en) Extraction molding method of composite body
KR102492082B1 (en) Resin impregnated mold for pultrusion molding of composite material and pultrusion molding method of composite meterial using the same
JP3269928B2 (en) Continuous production method of fiber-reinforced foamed resin molded article
JPS605454B2 (en) Composite manufacturing method
JPH05200884A (en) Fiber reinforced synthetic resin body and its manufacture
JP3003699B1 (en) Method and apparatus for producing sheet-like reinforcing material
JPS6359861B2 (en)
JPH07266439A (en) Method and device for manufacturing pultruded article having surface layer
JP2566864B2 (en) Continuous molding method for long fiber-reinforced phenolic resin
KR101626664B1 (en) Method of molding fiber-reinforced plastic product
JPH04369529A (en) Manufacture of long frp molded product
JPH05154926A (en) Continuous forming method of fiber reinforced phenolic resin formed body