JPS6359861B2 - - Google Patents

Info

Publication number
JPS6359861B2
JPS6359861B2 JP55157007A JP15700780A JPS6359861B2 JP S6359861 B2 JPS6359861 B2 JP S6359861B2 JP 55157007 A JP55157007 A JP 55157007A JP 15700780 A JP15700780 A JP 15700780A JP S6359861 B2 JPS6359861 B2 JP S6359861B2
Authority
JP
Japan
Prior art keywords
resin
core material
fiber
fiber reinforcing
sealed chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55157007A
Other languages
Japanese (ja)
Other versions
JPS5782016A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP55157007A priority Critical patent/JPS5782016A/en
Publication of JPS5782016A publication Critical patent/JPS5782016A/en
Publication of JPS6359861B2 publication Critical patent/JPS6359861B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)

Description

【発明の詳細な説明】 本発明は熱可塑性樹脂の押出成形品を中芯材と
して、その表面に特殊な含浸装置を用いて熱硬化
性合成樹脂を繊維補強剤に含浸させた繊維強化プ
ラスチツクス(以下FRPと略記する)層を設け
た複合構造体の連続製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a fiber-reinforced plastic in which a thermoplastic resin extrusion molded product is used as a core material, and a thermosetting synthetic resin is impregnated with a fiber reinforcing agent on the surface using a special impregnation device. (hereinafter abbreviated as FRP) relates to a continuous manufacturing method of a composite structure provided with layers.

従来、一般的に引抜き及びフイラメントワイン
デイングによるFRP成形においては予め合成樹
脂に含浸させた樹脂処理ロービング乃至テープ状
の繊維補強材をダイス又はマンドレルに供給して
FRP成形品を製造している。この場合、繊維補
強材の樹脂処理は合成樹脂を貯えた槽の液中へ繊
維補強材を通過させることにより含浸させて樹脂
処理する方法が採用されている。そのため繊維補
強材に樹脂を含浸させるときに残された泡乃至含
浸した繊維補強材を積層するときに生成する泡が
そのまま残留する傾向にあり、製品の品質低下の
起因になつている場合が多く、又樹脂処理した繊
維補強材のハンドリング性が非常に悪いため、作
業性を低下させている。
Conventionally, in FRP molding by pultrusion and filament winding, resin-treated roving or tape-shaped fiber reinforcement material impregnated with synthetic resin in advance is fed to a die or mandrel.
Manufactures FRP molded products. In this case, the resin treatment of the fiber reinforcing material is carried out by passing the fiber reinforcing material into a liquid in a tank storing a synthetic resin to impregnate it with the resin. Therefore, the bubbles left when impregnating the fiber reinforcement with resin or the bubbles generated when the impregnated fiber reinforcement is laminated tend to remain as they are, which often causes a decline in product quality. Furthermore, the handling of the resin-treated fiber reinforcement material is very poor, resulting in reduced workability.

そこで、本発明者らはこの種の欠点を除去すべ
く研究した結果、そのため従来の含浸槽の概念と
異なり、全く新しい含浸装置、即ち、熱硬化性樹
脂を定量圧注入すると同時に該樹脂を熱可塑性樹
脂中芯材表面に均一に付着させ、その後又は付着
と同時にその樹脂層に繊維補強材であるロービン
グないしはテープを供給して芯材表面で樹脂含浸
することにより繊維補強材の樹脂含浸性を良好に
することが出来る上に、更に従来、含浸樹脂処理
した繊維補強材を積層する時に発生する様な泡の
生成を除去することが出来、繊維補強材を未含浸
のままで該中芯材表面に導くことによる繊維補強
材のハンドリング性の向上を計ることが出来る装
置を見い出し、本発明に達したものである。
Therefore, as a result of research to eliminate this type of drawback, the present inventors have developed a completely new impregnation device, which differs from the concept of the conventional impregnation tank, that is, a thermosetting resin is injected under constant pressure, and at the same time the resin is heated. The resin impregnating property of the fiber reinforcement is improved by uniformly adhering the plastic resin to the surface of the core material, and then or simultaneously supplying roving or tape, which is a fiber reinforcement, to the resin layer to impregnate the core material surface with the resin. In addition, it is possible to eliminate the generation of bubbles that conventionally occur when laminating fiber reinforcing materials treated with impregnated resin, and it is possible to remove the bubbles that occur when laminating fiber reinforcing materials treated with impregnated resin. The present invention was achieved by discovering a device that can improve the handling of fiber reinforcing materials by guiding them to the surface.

即ち、本発明は熱可塑性樹脂押出成型品を中芯
材にして、その表面に繊維強化プラスチツクス層
を被覆した複合構造材を連続的に製造するに当
り、繊維強化プラスチツクス層被覆用密閉室を設
け、その密閉室内に該熱可塑性中芯材を引込む工
程、該密閉室前部に設けたガイド板により成形品
形状に沿つてプリフオームされた樹脂未含浸の繊
維補強材を引込む工程、熱硬化性樹脂組成物を定
量加圧注入し、該組成物を繊維補強材に含浸する
前に中芯材に被覆する工程、該密閉室内で繊維補
強材に該樹脂を含浸させた上、該密閉室に直結し
たプリフオーミングダイスで形付けを行なう工程
および熱硬化性樹脂を硬化せしめる工程からなる
ことを特徴とする複合構造材の連続的製造方法を
提供する。
That is, the present invention provides a sealed chamber for coating the fiber-reinforced plastic layer in the continuous production of a composite structural material in which a thermoplastic resin extrusion molded product is used as a core material and a fiber-reinforced plastic layer is coated on the surface thereof. A process of drawing the thermoplastic core material into the sealed chamber, a process of drawing the preformed non-resin-impregnated fiber reinforcing material along the shape of the molded product using a guide plate provided at the front of the sealed chamber, and thermosetting. A step of injecting a fixed amount of a resin composition under pressure and coating the core material with the composition before impregnating the fiber reinforcing material, and impregnating the fiber reinforcing material with the resin in the sealed chamber, and then Provided is a method for continuously manufacturing a composite structural material, characterized by comprising a step of shaping with a preforming die directly connected to a preforming die, and a step of curing a thermosetting resin.

次いで、本発明の複合構造材の連続製造方法の
一例を図面に基いて説明する。
Next, an example of the method for continuously manufacturing a composite structural material of the present invention will be explained based on the drawings.

即ち、第1図に示すように連続的に押出成形さ
れた熱可塑性樹脂成形品の中芯材1、集束板2を
経た繊維補強材3及び硬化剤配合済みの熱硬化性
樹脂組成物を夫々別個に密閉した含浸装置4に導
き、中芯材の表面に熱硬化性樹脂層を設け、その
樹脂層でもつて繊維補強材3を含浸させ、中芯材
1の表面にFRP層9を設け、次いでFRP層9が
被覆された中心材1を硬化炉10(例えば高圧水
銀灯、遠赤外炉等)に通じて熱硬化性樹脂を硬化
せしめることにより複合構造材11を連続的に製
造する。この際、樹脂槽5、触媒槽6、添加剤槽
7より一定割合(例えば熱硬化性樹脂100重量部
に対して触媒0.7〜1.5重量部、添加剤1.0〜4.0重
量部)、一定圧力(2〜5Kg/cm2)下でもつて撹
拌機8に圧送し、撹拌機8でもつて夫々の液を撹
拌混合の上、含浸装置4に定量(例えば0.1〜2.0
Kg/分)的に圧入(例えば2〜5Kg/cm2)そ、そ
れと同時に中芯材1を含浸装置4に導き、中芯材
1の表面に圧入樹脂を均一に付着させる。
That is, as shown in FIG. 1, a core material 1 of a continuously extruded thermoplastic resin molded product, a fiber reinforcing material 3 passed through a bundle plate 2, and a thermosetting resin composition containing a curing agent are respectively used. A thermosetting resin layer is provided on the surface of the core material, the fiber reinforcing material 3 is impregnated with the resin layer, and an FRP layer 9 is provided on the surface of the core material 1. Next, the core material 1 coated with the FRP layer 9 is passed through a curing furnace 10 (for example, a high-pressure mercury lamp, a far-infrared furnace, etc.) to harden the thermosetting resin, thereby continuously manufacturing the composite structural material 11. At this time, a certain proportion (for example, 0.7 to 1.5 parts by weight of catalyst and 1.0 to 4.0 parts by weight of additives per 100 parts by weight of thermosetting resin) from the resin tank 5, catalyst tank 6, and additive tank 7, and a constant pressure (2 ~5Kg/cm 2 ), the liquids are fed under pressure to the stirrer 8, and the stirrer 8 stirs and mixes each liquid.
At the same time, the core material 1 is introduced into the impregnation device 4 to uniformly adhere the press-fit resin to the surface of the core material 1.

尚、第2図に示すように含浸装置4に入つた中
芯材1は先ず、樹脂注入部14から注入された熱
硬化性樹脂組成物17が被覆され、次いで補強材
積層部15に於いて含浸槽ガイド板12を通過し
て熱硬化性樹脂を含浸した繊維補強材3が被覆さ
れ、その後フオーミングダイス16を通過せしめ
られて被覆された繊維補強材3中の樹脂含量が調
節される。その際、熱硬化性樹脂の漏れを防ぐた
めにパツキン13が含浸装置4の含浸槽ガイド板
12と樹脂注入部14との間に設置される。押出
し機より連続的に押出し成形される熱可塑性樹脂
成形品はポリ塩化ビニル、ポリカーボネート、ポ
リエチレン、ポリプロピレン等の熱可塑性樹脂を
原料とするが、上層との接着性を考慮してポリ塩
化ビニル、ポリカーボネートが好ましく用いられ
る。この成形品は押出し機により通常、棒状、円
筒状、角筒状、楕円筒等に成形され、特に直径
600mm以下の円筒状のものが一般的である。勿論
かかる形状および径のものに限定されない。
As shown in FIG. 2, the core material 1 entering the impregnating device 4 is first coated with the thermosetting resin composition 17 injected from the resin injection section 14, and then coated in the reinforcing material lamination section 15. The fiber reinforcing material 3 impregnated with thermosetting resin is coated by passing through the impregnating tank guide plate 12, and then passed through the forming die 16 to adjust the resin content in the coated fiber reinforcing material 3. At this time, a packing 13 is installed between the impregnating tank guide plate 12 of the impregnating device 4 and the resin injection part 14 in order to prevent leakage of the thermosetting resin. Thermoplastic resin molded products that are continuously extruded from an extruder are made from thermoplastic resins such as polyvinyl chloride, polycarbonate, polyethylene, and polypropylene. is preferably used. This molded product is usually formed into a rod shape, a cylinder shape, a rectangular tube shape, an elliptical tube shape, etc. using an extruder, and especially the diameter
Cylindrical shapes with a diameter of 600 mm or less are common. Of course, it is not limited to this shape and diameter.

本発明で用いられる熱硬化性樹脂組成物の主成
分である樹脂としては通常、液状のものであり、
例えば不飽和ポリエステル、ビニルエステル、エ
ポキシ、フエノール樹脂等が挙げられるが、特に
不飽和ポリエステル樹脂が好ましい。
The resin that is the main component of the thermosetting resin composition used in the present invention is usually liquid,
Examples include unsaturated polyester, vinyl ester, epoxy, phenolic resin, etc., and unsaturated polyester resin is particularly preferred.

又、本発明で用いられる繊維補強材はガラス繊
維、炭素繊維、合成繊維、金属繊維等が挙げられ
るが、特にガラス繊維が好ましい。かかる補強繊
維は使用に際してはフイラメント状の長繊維を多
数集束して得られたものが通常用いられる。
Further, the fiber reinforcing material used in the present invention includes glass fibers, carbon fibers, synthetic fibers, metal fibers, etc., and glass fibers are particularly preferred. Such reinforcing fibers are usually obtained by bundling a large number of filament-like long fibers.

本発明の製造方法における特徴は図示するよう
に密閉された特殊な含浸装置と合成樹脂の定量定
圧注入装置とを組合わせて実施することにある。
即ち、一定配合された熱硬化性樹脂組成物を撹拌
機を介して含浸装置内に圧入し、中芯材表面に樹
脂を均一に付着させ、それと同時に繊維補強材を
中芯材表面に供給し、付着樹脂層でもつて繊維補
強材を含浸させることにより従来の成形方法にお
ける成形品の品質及び作業性を著しく改善させた
ことにある。
A feature of the manufacturing method of the present invention is that it is carried out by combining a special sealed impregnation device and a fixed-quantity constant-pressure injection device for synthetic resin, as shown in the figure.
That is, a thermosetting resin composition with a certain blend is press-fitted into an impregnating device via a stirrer to uniformly adhere the resin to the surface of the core material, and at the same time, a fiber reinforcing material is supplied to the surface of the core material. By impregnating the adhesive resin layer with a fiber reinforcing material, the quality and workability of molded products in conventional molding methods were significantly improved.

尚、本発明では得られた複合構造材の表面に更
に熱可塑性樹脂を被覆せしめても良く、かかる工
程を組み込んだ複合構造材の連続製造法をも実施
することができる。かかる熱可塑性樹脂としては
ポリエチレン、ポリ塩化ビニル、熱可塑性ポリウ
レタン、アクリル樹脂等が挙げられ、特に耐摩耗
性が良好であることからポリエチレン、ポリ塩化
ビニル、熱可塑性ポリウレタンが好ましい。
Incidentally, in the present invention, the surface of the obtained composite structural material may be further coated with a thermoplastic resin, and a continuous manufacturing method of the composite structural material incorporating such a step can also be implemented. Such thermoplastic resins include polyethylene, polyvinyl chloride, thermoplastic polyurethane, acrylic resin, etc., and polyethylene, polyvinyl chloride, and thermoplastic polyurethane are particularly preferred because they have good abrasion resistance.

以下、本発明を実施例により説明する。尚、例
中の部および%は重量基準による。
The present invention will be explained below using examples. Note that parts and percentages in the examples are based on weight.

実施例 70mm押出成形機でもつて外径40mmの硬質塩化ビ
ニールパイプを4m/分の速さで連続的に押し出
し成形し、冷却硬化させ、成形された中芯材をゴ
ム製シールパツキンを貫通して連続的に含浸装置
に導き、先づ樹脂注入部のノズルより連続的に圧
入されてくる熱硬化性樹脂組成物を該中芯材表面
に均一に付着させた。この場合、該樹脂組成物が
中芯材の表面に均一に付着しやすい様に上記のノ
ズルを有する樹脂注入部を先細りの形状(先端角
度120゜)とした。又、圧入する熱硬化性樹脂組成
物としては熱硬化性樹脂である不飽和ポリエステ
ル樹脂(ポリライトFG−283、大日本インキ化学
工業(株)製)100部に対して促進剤としての6%ナ
フテン酸コバルト溶液0.15部を配合した樹脂槽、
硬化触媒としてメチルエチルケトンパーオキサイ
ドの55%溶液を入れた触媒槽及び光重合助剤とし
てベンゾインエチルエーテルを入れた添加剤槽よ
り樹脂組成物成分100部に対して添加剤1.0、触媒
1.0部の比率で連続的に撹拌機に送られ、そこで
混合されたものである。該組成物は3Kg/cm2の圧
力でもつて成形速度4m/分に対して600g/分
の量を樹脂注入部のノズルより圧入された。
Example A hard vinyl chloride pipe with an outer diameter of 40 mm was continuously extruded at a speed of 4 m/min using a 70 mm extrusion molding machine, cooled and hardened, and the molded core material was passed through a rubber seal packing. The thermosetting resin composition was continuously introduced into an impregnating device, and first, the thermosetting resin composition that was continuously press-injected from the nozzle of the resin injection part was uniformly adhered to the surface of the core material. In this case, the resin injection part having the above-mentioned nozzle was formed into a tapered shape (tip angle of 120°) so that the resin composition could easily adhere uniformly to the surface of the core material. The thermosetting resin composition to be press-fitted is 100 parts of an unsaturated polyester resin (Polylite FG-283, manufactured by Dainippon Ink & Chemicals Co., Ltd.), which is a thermosetting resin, and 6% naphthene as an accelerator. A resin tank containing 0.15 parts of acid cobalt solution,
From a catalyst tank containing a 55% solution of methyl ethyl ketone peroxide as a curing catalyst and an additive tank containing benzoin ethyl ether as a photopolymerization aid, additive 1.0 and catalyst were added to 100 parts of resin composition components.
A ratio of 1.0 part was continuously sent to a stirrer where it was mixed. The composition was injected through the nozzle of the resin injection part in an amount of 600 g/min at a molding speed of 4 m/min at a pressure of 3 kg/cm 2 .

他方、補強材であるガラスロービング(2.3
g/m)150本を集束板、含浸槽ガイド板にて均
一間隔にそろえて含浸装置に導き、内径48mm、長
さ250mmのシリンダー状の補強材積層部にて中芯
材の表面に付着させた熱硬化性樹脂でもつてガラ
スロービングを含浸、積層し、更に内径45mmのナ
イロン製フオーミングダイスでもつて最終的に
FRP層の外寸法を仕上げ、その後硬化炉の中を
通過させることにより、樹脂を硬化させ、複合パ
イプを得た。尚、硬化炉として高圧水銀灯、出力
4Kwのランプを16本用いた。かかる硬化炉で紫
外線を照射するとにより成形速度4m/分で連続
的に複合管を得た。
On the other hand, glass roving (2.3
g/m) were guided to the impregnation device by aligning them at uniform intervals using a focusing plate and an impregnation tank guide plate, and attached them to the surface of the core material using a cylindrical reinforcing material lamination section with an inner diameter of 48 mm and a length of 250 mm. The glass rovings are impregnated and laminated with a thermosetting resin, and then a nylon forming die with an inner diameter of 45 mm is used to finally form the glass rovings.
After finishing the outer dimensions of the FRP layer, the resin was cured by passing through a curing furnace to obtain a composite pipe. In addition, a high-pressure mercury lamp is used as a curing furnace, and the output
Sixteen 4Kw lamps were used. By irradiating with ultraviolet rays in such a curing furnace, a composite tube was continuously obtained at a molding speed of 4 m/min.

更に、最外層として40mm押出成形機を用いて、
熱可塑性樹脂としてポリエチレンを厚さ0.5mmで
被覆し、熱可塑性樹脂/FRP/熱可塑性樹脂よ
りなる複合管をも得た。
Furthermore, using a 40mm extrusion molding machine as the outermost layer,
A composite tube consisting of thermoplastic resin/FRP/thermoplastic resin was also obtained by coating polyethylene as a thermoplastic resin with a thickness of 0.5 mm.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の連続製造法を示すフローチヤ
ート図である。又、第2図は第1図に於ける含浸
装置の詳細図である。 1……中芯材、2……集束板、3……繊維補強
材、4……含浸装置、5……樹脂槽、6……触媒
槽、7……添加剤槽、6……撹拌機、9……
FRP層、10……硬化炉、11……複合構造材、
12……含浸槽ガイド板、13……パツキン、1
4……樹脂注入部、15……補強材積層部、16
……フオーミングダイス、17……熱硬化性樹脂
組成物。
FIG. 1 is a flowchart showing the continuous manufacturing method of the present invention. Moreover, FIG. 2 is a detailed view of the impregnating apparatus in FIG. 1. 1... core material, 2... bundle plate, 3... fiber reinforcing material, 4... impregnation device, 5... resin tank, 6... catalyst tank, 7... additive tank, 6... stirrer , 9...
FRP layer, 10... hardening furnace, 11... composite structural material,
12... Impregnation tank guide plate, 13... Packing, 1
4...Resin injection part, 15...Reinforcing material lamination part, 16
... Forming die, 17 ... Thermosetting resin composition.

Claims (1)

【特許請求の範囲】[Claims] 1 熱可塑性樹脂押出成形品を中芯材にして、そ
の表面に繊維強化プラスチツクス層を被覆した複
合構造材を連続的に製造するに当たり、繊維強化
プラスチツクス層被覆用密閉室を設け、その密閉
室内に該熱可塑性中芯材を引込む工程、該密閉室
前部に設けたガイド板により成形品形状に沿つて
プリフオームされた樹脂未含浸の繊維補強材を引
込む工程、熱硬化性樹脂組成物を定量加圧注入
し、該組成物を繊維補強材に含浸する前に中芯材
に被覆する工程、該密閉室内で繊維補強材に該樹
脂を含浸させた上、密閉室に直結したプリフオー
ミングダイスで形付けを行なう工程および熱硬化
性樹脂を硬化せしめる工程からなることを特徴す
る複合構造材の連続製造方法。
1. When continuously manufacturing a composite structural material in which a thermoplastic resin extrusion molded product is used as a core material and the surface thereof is coated with a fiber-reinforced plastic layer, a sealed chamber for coating the fiber-reinforced plastic layer is provided, and the sealed chamber is sealed. A step of drawing the thermoplastic core material into the chamber, a step of drawing the preformed non-resin-impregnated fiber reinforcing material along the shape of the molded product using a guide plate provided at the front part of the sealed chamber, and a step of drawing the thermosetting resin composition into the chamber. A step of injecting the composition under pressure and coating the core material before impregnating the fiber reinforcing material with the composition, and impregnating the fiber reinforcing material with the resin in the sealed chamber, and then preforming directly connected to the sealed chamber. A continuous manufacturing method for a composite structural material, characterized by comprising a step of shaping with a die and a step of curing a thermosetting resin.
JP55157007A 1980-11-10 1980-11-10 Method for continuously manufactruing compound structural material Granted JPS5782016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55157007A JPS5782016A (en) 1980-11-10 1980-11-10 Method for continuously manufactruing compound structural material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55157007A JPS5782016A (en) 1980-11-10 1980-11-10 Method for continuously manufactruing compound structural material

Publications (2)

Publication Number Publication Date
JPS5782016A JPS5782016A (en) 1982-05-22
JPS6359861B2 true JPS6359861B2 (en) 1988-11-21

Family

ID=15640134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55157007A Granted JPS5782016A (en) 1980-11-10 1980-11-10 Method for continuously manufactruing compound structural material

Country Status (1)

Country Link
JP (1) JPS5782016A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58198065A (en) * 1982-05-14 1983-11-17 Sanyo Electric Co Ltd Developing device of electrophotographic copying machine
BR8702536A (en) * 1986-11-26 1987-09-22 Ind Tech Res Inst PROCESS AND DEVICE FOR MAKING ARTICLES REINFORCED BY FIBERS AND MATRIX USED IN THAT DEVICE
JPH0550516A (en) * 1991-08-23 1993-03-02 Sekisui Jushi Co Ltd Resin impregnating method in pultrusion
EP3015256A1 (en) * 2014-10-27 2016-05-04 Evonik Röhm GmbH Establishing multiple different fibre composite components for mass production in a continuous process

Also Published As

Publication number Publication date
JPS5782016A (en) 1982-05-22

Similar Documents

Publication Publication Date Title
US4515737A (en) Process for producing composite plastic pipe
US5114633A (en) Method for the resin-impregnation of fibers
EP0269197B1 (en) Method and means for making pultruded fibre reinforced articles
FI83490C (en) FOERFARANDE OCH ANORDNING FOER FRAMSTAELLNING AV ETT FIBERSTAERKT MATERIAL.
JPH07216104A (en) Preparation of long filament-reinforced resin structure
RU2012144654A (en) FIBER-REINFORCED MOLDING COMPOSITION, DEVICE AND METHOD FOR ITS PRODUCTION, DEVICE AND METHOD FOR PRODUCING LAMINATED MATERIALS AND OTHER FINISHED PRODUCTS FROM THE SPECIFIED FRAMEWORK
US5112206A (en) Apparatus for the resin-impregnation of fibers
JPH05156507A (en) Resin impregnation of fiber
JPS6359861B2 (en)
JPS649938B2 (en)
FI83492C (en) Method and apparatus for making a fiber-reinforced material
KR102492082B1 (en) Resin impregnated mold for pultrusion molding of composite material and pultrusion molding method of composite meterial using the same
CN110271208A (en) A kind of thermoplasticity 3D braiding continuous fiber enhancing drawing and extruding section bar forming method and equipment
JPS61213136A (en) Continuous pultrusion method of frp pipe
JPS56166030A (en) Continuous forming method for composite pipe
JPH0421447B2 (en)
JPH07266439A (en) Method and device for manufacturing pultruded article having surface layer
JPH1044254A (en) Molding with multi-layer structure and its preparation
JPS61195827A (en) Molding method of fiber reinforced plastic spring
JPH06335974A (en) Production of hollow pultrusion object
JPS5948120A (en) Continuous draw forming of heat resisting fiber reinforced plastic pipe
JPS5845024A (en) Manufacture of fiber reinforced plastic article
JPS6356857B2 (en)
JPS5833425A (en) Contenuous forming method
JPH07108621A (en) Molded form with smooth surface and manufacture thereof