JPS61213136A - Continuous pultrusion method of frp pipe - Google Patents

Continuous pultrusion method of frp pipe

Info

Publication number
JPS61213136A
JPS61213136A JP60055472A JP5547285A JPS61213136A JP S61213136 A JPS61213136 A JP S61213136A JP 60055472 A JP60055472 A JP 60055472A JP 5547285 A JP5547285 A JP 5547285A JP S61213136 A JPS61213136 A JP S61213136A
Authority
JP
Japan
Prior art keywords
pipe
frp
layer
curing
curing furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60055472A
Other languages
Japanese (ja)
Inventor
Teruo Hirano
平野 輝雄
Keigo Egashira
江頭 敬吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU SEKISUI KOGYO KK
Original Assignee
KYUSHU SEKISUI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU SEKISUI KOGYO KK filed Critical KYUSHU SEKISUI KOGYO KK
Priority to JP60055472A priority Critical patent/JPS61213136A/en
Publication of JPS61213136A publication Critical patent/JPS61213136A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D23/00Producing tubular articles
    • B29D23/001Pipes; Pipe joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/06PVC, i.e. polyvinylchloride

Abstract

PURPOSE:To improve dimensional accuracy, by a method wherein an external shape of an FRP layer is fixed by passing through a shaping die fitted to an impregnation tank and a shaping ring device in front of a ultraviolet-curing furnace and curing of only a surface layer is performed in the inside of the ultraviolet-curing furnace. CONSTITUTION:A vinyl chloride pipe is extruded through an extruding machine 1, which is made to cure into a circular form by passing under water in the inside of a cooling tank 2 while sizing is being performed and pulled out through a pulling machine 3. Glass roving provided on rests 4, 4 is made to fit to the external circumference of a vinyl chloride pipe P1 in a manner of running along the pipe and made to impregnate in an impregnation tank 5. As the glass roving 37 is wound over the external circumference of a pipe P2 which have shifted to a winder 7 and pressed by rubber sheets 41, 41, also the glass roving 37 is impregnated with unsaturated polyester resin. An external shape is fixed by passing a reinforcement pipe P3 through a shaping ring device 49 and a surface layer is made to cure by passing the pipe P3 through ultraviolet curing furnaces 8a, 8b, 8c. The inside of the same is made to cure by a far infrared furnace 9, water-cooled in a cooling tank 11 after the inside of a mold 10 of the extruding machine has been coated with polyethylene, and made to cure by a curing furnace 15 after the same has been pulled out by a pulling machine 12.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、FRP管の製造分野に利用され種々のFRP
管を効率よ〈生産するFRP管の連続引抜成形方法に関
する。
Detailed Description of the Invention (Industrial Application Field) The present invention is used in the field of manufacturing FRP pipes, and is used to manufacture various FRP pipes.
This article relates to a continuous pultrusion method for FRP pipes that efficiently produces pipes.

(従来の技術) 従来のFRP管の連続引抜成形方法としては、特開昭5
6−166030号公報記載のように。
(Prior art) As a conventional continuous pultrusion method for FRP pipes,
As described in Publication No. 6-166030.

芯材上に未硬化の熱硬化性樹脂を塗布し、これを紫外線
硬化炉を通して所要の外形に賦形させると共に表層部を
変形しない程度に硬化させ1次に遠赤外線硬化炉に導い
て、内部を硬化させるようにして一般の熱可塑性樹脂管
とほぼ同じ速さで生産する技術的手段が開示されている
An uncured thermosetting resin is applied onto the core material, passed through an ultraviolet curing oven, shaped into the desired external shape, and cured to the extent that the surface layer does not deform. Technological means are disclosed for curing and producing thermoplastic tubes at approximately the same speed as conventional thermoplastic tubes.

(発明が解決しようとする問題点) しかしながら、この従来のFRP管の連続引抜成形方法
にあっては、下記のような問題があった。
(Problems to be Solved by the Invention) However, this conventional continuous pultrusion method for FRP pipes has the following problems.

紫外線硬化炉内に長い透明なダイス(管)を貫通させ、
この透明ダイスを通すことにより外形を整え、同時に紫
外線にて熱硬化性樹脂層の表層部を硬化させつつ連続的
にこの作用を行いながらFRP管の外形を整えることに
特徴を有するものであるが1本願の発明者等が、かかる
紫外線硬化炉を製作し、実際にFRP管を連続成形する
試みを実施した結果、透明ダイス内に未硬化の熱硬化性
樹脂が付着し、これが自然に硬化して引抜成形しようと
しても大きな抵抗となり、短時間の内にFRP管の引抜
ができないまでに摩擦抵抗が増大し、実用化には全く適
さないことが明らかになった。
A long transparent die (tube) is passed through the ultraviolet curing furnace,
The feature is that the outer shape of the FRP pipe is adjusted by passing it through this transparent die, and at the same time, the surface layer of the thermosetting resin layer is cured with ultraviolet rays, and this action is continuously performed to adjust the outer shape of the FRP pipe. 1. As a result of the inventors of the present application manufacturing such an ultraviolet curing furnace and actually attempting to continuously mold FRP pipes, uncured thermosetting resin adhered to the inside of the transparent die, and this hardened naturally. Even when attempting to pultrude the FRP pipe, a large resistance was encountered, and the frictional resistance increased to the point that the FRP pipe could not be pulled out within a short period of time, making it completely unsuitable for practical use.

つまり、透明ダイスを利用して、外形を賦形するととも
に、熱硬化性樹脂層の表層部を硬化させるという2つの
作用を紫外線硬化炉内で行うことは、不可能であること
が判明した。
In other words, it has been found that it is impossible to perform the two functions of shaping the outer shape and curing the surface layer of the thermosetting resin layer using a transparent die in an ultraviolet curing oven.

(問題点を解決するための手段) 本発明は、かかる従来の問題点を解決するためになされ
たもので、その目的とするところは、FRP管の外形寸
法を精度よく、しかも連続して成形できるような連続引
抜成形方法を提供することにあり、この目的達成のため
の技術的手段として、本発明では、押出成形により芯材
を連続的に成形する内芯層成形工程と、含浸槽内にて熱
硬化性樹脂組成物を含浸させたガラスロービングを上記
芯材の外周に軸方向に沿って囲繞させ、次いでこの上か
らガラス繊維を斜め方向に捲回し紫外線硬化炉及び遠赤
外線硬化炉を通して表面及び内面より硬化処理を施して
なるFRP層成形成形工程同FRP層の表面に熱可塑性
樹脂を押出被覆し冷却引取りを行う被覆層成形工程との
連続する一連の工程からなるFRP管の連続引抜成形方
法に於て、上記FRP層成形成形工程浸槽に装着した賦
形ダイス及び紫外線硬化炉の前に設置した賦形リング装
置を通してFRP層の外形を整え、紫外線硬化炉内に於
てはFRP層の表面層の硬化だけを行う構成を採用した
(Means for Solving the Problems) The present invention has been made to solve the problems of the prior art, and its purpose is to accurately and continuously mold the external dimensions of FRP pipes. The purpose of the present invention is to provide a continuous pultrusion method that allows continuous pultrusion, and as a technical means to achieve this purpose, the present invention includes an inner core layer forming process in which the core material is continuously formed by extrusion, and A glass roving impregnated with a thermosetting resin composition is surrounded along the axial direction around the outer periphery of the core material, and then glass fiber is wound obliquely on top of this and passed through an ultraviolet curing furnace and a far infrared curing furnace. A continuous FRP pipe consisting of a series of continuous processes including a coating layer forming process in which a thermoplastic resin is extruded and coated on the surface of the FRP layer and cooled and taken off. In the pultrusion molding method, the outer shape of the FRP layer is adjusted through a shaping die installed in the immersion tank and a shaping ring device installed in front of the ultraviolet curing furnace, and in the ultraviolet curing furnace. A configuration was adopted in which only the surface layer of the FRP layer was hardened.

(作用) したがって、本発明では、紫外線硬化炉でFRP層の表
面層だけを硬化させるようにし、含浸槽に装着したダイ
スでもって、ガラスロービング及び熱硬化性樹脂を芯材
の外周部に均一に密着させながら、外形を整え、引きつ
づき紫外線硬化炉の直前に設けた弾性素材で成形した賦
形リング装置で、FRP層の外側から無理に絞り力を付
与し、FRP層中の空気を抜くとともに、外形を精度よ
く整えるようにしているので、紫外線硬化炉内でのFR
Pの詰まりもなく、従来にない寸法精度の優れたFRP
管を線速度を高めながら連続的に生産することができる
(Function) Therefore, in the present invention, only the surface layer of the FRP layer is cured in an ultraviolet curing furnace, and the glass roving and thermosetting resin are uniformly applied to the outer periphery of the core material using a die attached to the impregnation tank. While adhering, the outer shape is adjusted, and then a shaping ring device made of an elastic material installed just before the ultraviolet curing oven applies squeezing force from the outside of the FRP layer to remove air from the FRP layer. , the outer shape is precisely arranged, so FR in the ultraviolet curing furnace
FRP with unprecedented dimensional accuracy without P clogging
Tubes can be produced continuously while increasing the linear speed.

(実施例) 以下に、本発明の連続引抜成形方法について、その実施
例を説明する。
(Example) Examples of the continuous pultrusion method of the present invention will be described below.

内芯層成形工程は、押出成形により熱可塑性樹脂管を連
続的に製造し、次いで、水冷により冷却し、間管を一定
速度で引き取る工程を言う。
The inner core layer forming process is a process in which a thermoplastic resin tube is continuously produced by extrusion molding, then cooled by water cooling, and the inner tube is taken off at a constant speed.

ここで、熱可塑性樹脂管は、ABS樹脂管、AS樹脂管
、塩化ビニル樹脂管等の耐熱性の高い押出成形管をいう
Here, the thermoplastic resin pipe refers to an extruded pipe with high heat resistance such as an ABS resin pipe, an AS resin pipe, and a vinyl chloride resin pipe.

次に、FRP層成形成形工程熱硬化性樹脂に触媒や硬化
剤を添加して自動的に混合して供給する樹脂自動供給装
置から熱硬化性樹脂組成物を含浸槽に供給し、この含浸
槽内を通して熱硬化性樹脂組成物を含浸させたガラスロ
ービングを前記内芯層の外周に軸方向に沿って囲繞し、
賦形ダイスを通して内芯層上にガラスロービングを密着
させ、次いでその上から斜めにガラスロービング若しく
はガラスヤーンを捲回し、次いで弾性のある賦形リング
装置を通して外形を整え1次いで紫外線による表面硬化
と遠赤外線による内部硬化を施こした工程をいうもので
ある。
Next, in the FRP layer forming process, the thermosetting resin composition is supplied to the impregnation tank from the resin automatic supply device that automatically mixes and supplies the thermosetting resin with a catalyst and a curing agent. a glass roving impregnated with a thermosetting resin composition through the inner core layer, surrounding the outer periphery of the inner core layer along the axial direction;
The glass roving is passed through a shaping die into close contact with the inner core layer, and then the glass roving or glass yarn is wound diagonally on top of the glass roving, and then the outer shape is adjusted through an elastic shaping ring device. This is a process in which internal curing is performed using infrared rays.

ここで、熱硬化性樹脂としては、不飽和ポリエステル樹
脂、不飽和モノカルボン酸ビニルエステル樹脂、不飽和
エポキシ樹脂のポリマーとスチレン等との液状物が通常
用いられる。
Here, as the thermosetting resin, a liquid material of a polymer of an unsaturated polyester resin, an unsaturated monocarboxylic acid vinyl ester resin, an unsaturated epoxy resin, and styrene or the like is usually used.

そして、本発明に用いる添加剤とは紫外線による表面硬
化のための光重合開始剤として、ベンゾイン系、アゾ系
、ジフェニルサルファイド系であり、スチレンモノマー
31ii%、トルエン14fi量%、フタル醸ジオクチ
ル29重量%、エーテル及びカルボキシル基を有するモ
ノ置換ベンゼン化合物26重量%の混合物が好適に使用
される。
The additives used in the present invention are benzoin-based, azo-based, and diphenyl sulfide-based photopolymerization initiators for surface curing with ultraviolet rays, and include styrene monomer 31ii%, toluene 14fi%, and phthalate dioctyl 29% by weight. %, a mixture of 26% by weight of monosubstituted benzene compounds having ether and carboxyl groups is preferably used.

又、重合促進剤及び硬化触媒としては、第三級アミン類
、ナフテン酸コバルト等の金属触媒等9重合触媒として
は、t−ブチルパーアセテート、t−ブチルパービバレ
ート、t−ブチルパーイソブチレート、メチルエチルパ
ーオキサイド、ベンゾイルパーオキサイド、t−ブチル
パーベンゾエート等が挙げられる。
Examples of polymerization accelerators and curing catalysts include tertiary amines and metal catalysts such as cobalt naphthenate.9 Examples of polymerization catalysts include t-butyl peracetate, t-butyl pervivalate, and t-butyl perisobutyl. ester, methyl ethyl peroxide, benzoyl peroxide, t-butyl perbenzoate and the like.

又、硬化の際の収縮を小さくするために低収縮剤として
飽和ポリエステル、ポリメタクリル酸メチル及び共重合
体、ポリ#酸ビニル及び共重合体等が挙げられる。
Further, in order to reduce shrinkage during curing, low-shrinkage agents include saturated polyester, polymethyl methacrylate and copolymers, polyvinyl methacrylate and copolymers, and the like.

次に、被覆層成形工程は、FRP層の表面にポリエチレ
ン樹脂やポリ塩化ビニル樹脂、AES樹脂等の耐候性の
優れた熱可塑性樹脂を押出被覆し、次いで水冷にて冷却
し、冷却した管を一定速度で引き取る工程をいうもので
ある。
Next, in the coating layer forming process, a thermoplastic resin with excellent weather resistance such as polyethylene resin, polyvinyl chloride resin, or AES resin is extruded and coated on the surface of the FRP layer, and then the cooled tube is cooled with water. This is a process in which the material is taken at a constant speed.

次に切断工程は、前述の連続的に製造した内芯層、FR
P層それに被覆層より成る複合管を一定の長さに自動切
断するものである。
Next, in the cutting process, the above-mentioned continuously manufactured inner core layer, FR
This method automatically cuts a composite pipe consisting of a P layer and a coating layer to a certain length.

次に、後硬化工程は、切断したFRP管を完全硬化に近
くまで硬化させ、諸物性を安定させるものであり、8〜
15mのトンネル型の後硬化炉であって、炉内温度を5
0〜65℃に保たせて、この炉内にFRP管をto−1
4時間位入れておく工程をいうものである。
Next, the post-curing process is to harden the cut FRP pipe to near complete hardening and stabilize various physical properties.
It is a 15m tunnel-type post-curing furnace, and the temperature inside the furnace is 5.
Keep the temperature between 0 and 65℃ and place the FRP pipe to-1 in this furnace.
This is a process of leaving it in for about 4 hours.

以上、本発明のFRP管の成形方法について説明したが
1本発明によればFRP管の外形を賦形ダイスと賦形リ
ング装置によって、精度よく整えることができ、しかも
連続成形することができる。
The method for molding an FRP pipe according to the present invention has been described above.According to the present invention, the outer shape of the FRP pipe can be precisely adjusted using a shaping die and a shaping ring device, and moreover, continuous molding can be performed.

又、完全硬化しているため、生産後すぐに商品として使
用できる特徴を有し、高温流体を通しても低収縮剤を混
入しているため収縮率も通常品の10分の1と小さく冷
・熱繰り返しによる積層面からの剥離もなく、130℃
近くまでの高温領域の輸送管として利用できるものであ
る。
In addition, because it is completely cured, it can be used as a product immediately after production, and because it contains a low-shrinkage agent even when passed through high-temperature fluid, the shrinkage rate is one-tenth that of regular products, so it can be used in cold and heat applications. No peeling from the laminated surface due to repeated use, 130℃
It can be used as a transport pipe for nearby high-temperature areas.

次に1本発明方法の具体的実施の一例を図面に基いて説
明すると、押出機lより外径41m5.肉厚1.5++
+mの塩化ビニル管を5 m /分の速度で押し出し冷
却槽z内の水中を通してサイジングを行なわせつつ円形
に硬化させ、引張41!3より引き出す。
Next, one example of a specific implementation of the method of the present invention will be explained based on the drawings. Wall thickness 1.5++
+m vinyl chloride pipe is extruded at a speed of 5 m/min, passed through water in a cooling tank z, hardened into a circular shape while sizing, and pulled out under tension 41!3.

続いて、ガラスロービング架台4.4に架設したガラス
ロービングをそれぞれ74木づつ塩化ビ二ル管P1の軸
方向に外周を囲繞させるように添装させ、このガラスロ
ービングを含浸装置5に含浸させる。
Subsequently, 74 glass rovings installed on the glass roving mounts 4.4 are attached so as to surround the outer periphery of the PVC pipe P1 in the axial direction, and the impregnating device 5 is impregnated with the glass rovings.

尚、この含浸装置5に臨設して、不飽和ポリエステル樹
脂と硬化促進剤、触媒等を自動計量して混合する自動供
給装置6を設置している。
Incidentally, an automatic supply device 6 for automatically measuring and mixing the unsaturated polyester resin, a curing accelerator, a catalyst, etc. is installed adjacent to the impregnation device 5.

上記含浸装置5の最前部には格子状架台16を立設し、
その後方に、第3図に示すように、中央部に塩化ビニル
管PLを通す貫通穴17と、この貫通穴17の外周に均
等間隔でもってガラスロービング18を集束させる小孔
19を多数環状に穿設した集束板20を立設し、この集
束板20の後方に含浸槽21を設置している。
A lattice-shaped pedestal 16 is erected at the forefront of the impregnation device 5,
Behind it, as shown in FIG. 3, there is a through hole 17 in the center through which the PVC pipe PL is passed, and a large number of small holes 19 that converge the glass rovings 18 at equal intervals around the outer periphery of the through hole 17. A perforated focusing plate 20 is set upright, and an impregnating tank 21 is installed behind this focusing plate 20.

含浸槽21は、第4図に示すように略筺状体に形成させ
た底部を設け、上面を開口し筺内にはガラスロービング
18に引張力を加える張圧板22を2ケ所に設け、その
後方に賦形ダイス23を装着している。
As shown in FIG. 4, the impregnation tank 21 has a bottom formed into a substantially housing-like body, has an open top surface, and has tension plates 22 installed at two locations inside the housing to apply a tensile force to the glass roving 18. A shaping die 23 is attached to one side.

賦形ダイス23は、第5図に示すように、長さ55s+
m、ダイス内径42鳳■φ、絞り角度5度のものを使用
し、ダイス人口23aより塩化ビニル管外周上に熱硬化
性樹脂を含浸したガラスロービングを囲繞した状態にて
挿入し、ダイス内部23bで樹脂層を絞りながら樹脂中
に含まれる空気を抜きとると共に余分な樹脂を絞り取り
ながら、はぼ真円状に樹脂及びガラスロービングを塩化
ビニル管上に圧着させて賦形するものである。
The shaping die 23 has a length of 55s+, as shown in FIG.
Using a die with an inner diameter of 42 mm and an aperture angle of 5 degrees, insert a glass roving impregnated with a thermosetting resin onto the outer periphery of the PVC pipe from the die center 23a, surrounding it, and insert the die inside 23b. While squeezing the resin layer to remove the air contained in the resin and squeezing out excess resin, the resin and glass roving are pressed onto the vinyl chloride pipe to form a nearly perfect circle.

次に、樹脂の自動供給装ai6は、第2図に示すように
上方にエアーシリンダー24を設け、このエアーシリン
ダー24のピストン杆25の先端より下方向にミキサー
26とノズル27とを連通状に垂下固定し、ミキサー2
6に熱硬化性樹脂(不飽和ポリエステル樹脂)を供給す
る管28と、光重合開始剤(ベンゾインエチルエーテル
1重量%)、重合促進剤(ナフテン酸コバルト0.1重
量%)、硬化触媒(メチルエチルケトンパーオキサイド
2.5重量%)等を供給する管29並びに溶剤を供給す
る管30とを独立に取り付けている。
Next, the automatic resin supply device ai6 is provided with an air cylinder 24 above as shown in FIG. Fix the hanging and mixer 2
A tube 28 for supplying thermosetting resin (unsaturated polyester resin) to 6, a photopolymerization initiator (benzoin ethyl ether 1% by weight), a polymerization accelerator (cobalt naphthenate 0.1% by weight), and a curing catalyst (methyl ethyl ketone) A pipe 29 for supplying peroxide (2.5% by weight) and the like and a pipe 30 for supplying a solvent are installed independently.

前記自動供給装置6は、含浸槽21の上部に装置したフ
ロート31によるレベル調整装a132と連動させるよ
うに構成しており、含浸槽21内の不飽和ポリエステル
樹脂組成物の量が少なくなるとフロー)31が降り、ス
イッチ33を押してエアーシリンダー24を作動させピ
ストン杆25を突き出しノズル27を含浸槽21内へ移
行する。そして、含浸槽21内にポリエステル樹脂が充
満するとフロート31が上方に上りスイッチ34を押し
てエアーシリンダー24のピストン杆25を引込め溶剤
を供給する管30よりア七トンを供給してミキサー26
及びノズル27内を洗浄する。
The automatic supply device 6 is configured to be interlocked with a level adjustment device a132 using a float 31 installed above the impregnation tank 21, and when the amount of the unsaturated polyester resin composition in the impregnation tank 21 decreases, the flow rate increases. 31 is lowered, the switch 33 is pressed to operate the air cylinder 24, the piston rod 25 is pushed out, and the nozzle 27 is moved into the impregnation tank 21. When the impregnating tank 21 is filled with polyester resin, the float 31 rises upwards and presses the switch 34 to retract the piston rod 25 of the air cylinder 24, supplying the solvent from the pipe 30 and supplying the mixer 26.
and cleaning the inside of the nozzle 27.

従って、含浸装置5でガラスロービング18に不飽和ポ
リエステル樹脂を含浸させ、賦形ダイス23で外形を整
えた後、ワイングー(捲回機)7へ移行させる。
Therefore, the glass roving 18 is impregnated with an unsaturated polyester resin by the impregnating device 5, and after its outer shape is adjusted by the shaping die 23, it is transferred to the wine goo (winding machine) 7.

ワイングー(捲回機)7は、含浸装置5の賦形ダイス2
3から出た強化塩化ビニルバイブP2を軸にして回転す
るように構成しており基端の支持板35より側方に突設
した支持杆36には、ガラスロービング37を捲き付け
たボビン38.38を回動できるように装着し、後方に
は、同強化塩化ビニルパイプP、を軸として回転するガ
ラス押え装g!139を装着している。
The wine goo (winding machine) 7 is the shaping die 2 of the impregnating device 5.
A bobbin 38.38, around which a glass roving 37 is wound, is attached to a support rod 36, which is configured to rotate around the reinforced vinyl chloride vibe P2 coming out of the PVC vibrator P2 from the base end, and protrudes laterally from the support plate 35 at the base end. 38 is attached so that it can rotate, and at the rear is a glass presser g that rotates around the same reinforced vinyl chloride pipe P! 139 is installed.

このガラス押え装置39は基端40より内側方向にゴム
板41.41を固着した押え板42.42を突設させて
おり、このゴム板41.41は強化塩化ビニルパイプP
、を軸にして1回動しガラスロービング37を上から軽
く押圧させて回動するものである。
This glass holding device 39 has a holding plate 42.42 to which a rubber plate 41.41 is fixed, protruding inward from the base end 40, and this rubber plate 41.41 is attached to a reinforced vinyl chloride pipe P.
, and the glass roving 37 is rotated by being lightly pressed from above.

従って、ワイングー(捲回機)7に移行してきた強化塩
化ビニルパイプP、の外周上には管軸に対して略60度
の角度でもって、ガラスロービング37が捲回され、ゴ
ム板41.41によって押圧されるため、ガラスロービ
ング37にも不飽和ポリエステル樹脂が含浸する。
Therefore, a glass roving 37 is wound around the outer periphery of the reinforced vinyl chloride pipe P, which has been transferred to the wine goo (winding machine) 7, at an angle of about 60 degrees with respect to the pipe axis, and a rubber plate 41, 41 Since the glass roving 37 is also impregnated with the unsaturated polyester resin.

そして、この強化パイプP、をその後、賦形リング装置
149に通し1強化パイプPJの外形を完全に整える。
Then, this reinforcing pipe P is passed through a shaping ring device 149 to completely shape the outer shape of the first reinforcing pipe PJ.

賦形リング装置49は、第6図に示したように、架台5
0上に略100mm間隔で支持板51.51を取り付け
、この支持板51に35sueの賦形孔52を穿開した
ゴム板53を取り付けている。この賦形リング装置49
に上記した強化パイプ烏を通すと、ゴム板53の賦形孔
52を強化パイプP□の外径より小さく形成しているた
め、ゴム板53の弾性力が作用して強化パイプP、上の
余分な樹脂を除去し、捲回したガラスロービング37の
凹凸を平滑にして強化パイプPJの外形を円形状に調整
する。
As shown in FIG. 6, the shaping ring device 49 is
Support plates 51 and 51 are attached to the support plate 51 at intervals of about 100 mm, and a rubber plate 53 in which shaping holes 52 of 35 sue are bored is attached to the support plate 51. This shaping ring device 49
When the above-mentioned reinforced pipe is passed through, since the forming hole 52 of the rubber plate 53 is formed smaller than the outer diameter of the reinforced pipe P, the elastic force of the rubber plate 53 acts and the reinforced pipe P, Excess resin is removed, the unevenness of the wound glass roving 37 is smoothed, and the outer shape of the reinforced pipe PJ is adjusted to a circular shape.

次に前記、賦形リング装置49で円形状に調整した強化
パイプを紫外線硬化炉8a、8b、8cに通す。
Next, the reinforcing pipe adjusted into a circular shape by the shaping ring device 49 is passed through the ultraviolet curing furnaces 8a, 8b, and 8c.

この時、本実施例では、パイプを5m/分で移行し、2
90℃の紫外線硬化炉8aを通し5次いで310℃の紫
外線硬化炉8bに移行させ、次いで320℃の紫外線硬
化炉8cに移行し強化パイプP、に含浸された不飽和ポ
リエステル樹脂の表層を数秒以内で硬化させる。
At this time, in this example, the pipe is moved at a rate of 5 m/min, and the pipe is moved at a rate of 2 m/min.
The surface layer of the unsaturated polyester resin impregnated into the reinforcing pipe P is passed through an ultraviolet curing oven 8a at 90°C, then transferred to an ultraviolet curing oven 8b at 310°C, and then transferred to an ultraviolet curing oven 8c at 320°C, within a few seconds. harden with.

前記、紫外線硬化炉8aは、第7図aに示すように、4
個の高圧水銀灯43aを強化パイプPjの対角方向に4
本設置して紫外線にて不飽和ポリエステル樹脂の表層を
硬化させるようにしており、紫外線硬化炉8bは、第7
図すに示すように左右2か所に高圧水銀灯43bを2本
設置し、紫外線硬化炉8Cは、第7図Cに示すように上
下2か所に高圧水銀灯43cを2本設置している。
As shown in FIG. 7a, the ultraviolet curing furnace 8a has four
4 high-pressure mercury lamps 43a are placed diagonally across the reinforcing pipe Pj.
This is installed to cure the surface layer of the unsaturated polyester resin with ultraviolet rays, and the ultraviolet curing furnace 8b is the seventh one.
As shown in the figure, two high-pressure mercury lamps 43b are installed at two positions on the left and right, and the ultraviolet curing furnace 8C is equipped with two high-pressure mercury lamps 43c at two positions above and below, as shown in FIG. 7C.

次に1表層を硬化させた後、遠赤外線硬化炉9に移行し
、ここで、第8図に示すように遠赤外線ヒーター45.
45を強化パイプP1の軸方向に長く、しかも強化パイ
プP、の上下に取り付け、ポリエステル樹脂層の内部を
加熱し硬化させる。
Next, after curing one surface layer, the process moves to a far-infrared curing furnace 9, where, as shown in FIG. 8, a far-infrared heater 45.
45 are long in the axial direction of the reinforcing pipe P1 and are attached above and below the reinforcing pipe P, and the inside of the polyester resin layer is heated and hardened.

次に、遠赤外線硬化炉9を出た後、ポリエチレン樹脂を
押し出す押出機のクロスヘッド金型lO内にこの強化パ
イプPjを通し外周にポリエチレンを略0,75■■被
覆した後、冷却槽11に通して被覆層を水冷し、引張4
1112にて引き抜いた後、マーキング装置13でパイ
プの表面にメーカ名やロフトナンバー等を印刷し切断機
14にて、所要寸法に切断し1次に第9図に示す後硬化
炉15内に送入させた後55℃で10時間加熱させて不
飽和ポリエステル樹脂を完全に硬化させてFRP’lI
Pを完成する。
Next, after exiting the far-infrared curing furnace 9, this reinforcing pipe Pj is passed through the crosshead mold IO of an extruder for extruding polyethylene resin, and the outer periphery is coated with approximately 0.75 mm of polyethylene, and then the cooling tank 11 The coating layer was water-cooled by passing through the
After being pulled out at 1112, the marking device 13 prints the manufacturer's name, loft number, etc. on the surface of the pipe, and the cutting machine 14 cuts the pipe into required dimensions. After that, the unsaturated polyester resin was heated at 55°C for 10 hours to completely cure the unsaturated polyester resin.
Complete P.

こうして成形したFRP管Pは、第1θ図に示したよう
に、内芯層46を塩化ビニル樹脂、中間層47を軸方向
に添着したガラスロービング18と同方向に捲回したガ
ラスロービング37に不飽和ポリエステル樹脂を含浸硬
化させた強化プラスチック層、外層48を熱可塑性樹脂
でもって被覆した三層構造の複合管に構成される。
As shown in Fig. 1θ, the FRP pipe P thus formed is attached to a glass roving 37 wound in the same direction as the glass roving 18 with the inner core layer 46 attached to vinyl chloride resin and the intermediate layer 47 attached in the axial direction. It is constructed as a composite tube with a three-layer structure including a reinforced plastic layer impregnated with a saturated polyester resin and hardened, and an outer layer 48 coated with a thermoplastic resin.

尚、後硬化炉15は、ポリエチレン樹脂を被覆した長さ
略10mの強化パイプPを多数収納するトンネル型の炉
本体54の天井壁面の一端より空気流通路55を取り出
し、この空気流通路55上にブロアー56、熱交換器5
7それに加熱室58を設け、加熱室58からの空気流通
路55′の終端部55を炉本体54の他端天井壁より炉
内に貫通させ、この終端部55’に7−ド59を着脱可
能に取り付け、フード59の先端開口部60内に台車6
1上に積載した強化パイプPの管端部を差し込み、開口
部60を締め付けて密封し、55℃の温風Wをフード5
9を介して各パイプPの管路内に押し込み、加熱させな
がら効率よく硬化させるように形成している。
In the post-curing furnace 15, an air flow passage 55 is taken out from one end of the ceiling wall surface of a tunnel-shaped furnace body 54 that accommodates a large number of reinforced pipes P coated with polyethylene resin and having a length of approximately 10 m. blower 56, heat exchanger 5
7. A heating chamber 58 is provided therein, and a terminal end 55 of an air flow passage 55' from the heating chamber 58 is penetrated into the furnace from the ceiling wall at the other end of the furnace body 54, and a 7-door 59 is attached to and detached from the terminal end 55'. The trolley 6 can be mounted in the tip opening 60 of the hood 59.
Insert the pipe end of the reinforced pipe P loaded on the hood 5, tighten and seal the opening 60, and blow the 55°C warm air W into the hood 5.
9 into the conduit of each pipe P, and is formed so as to be efficiently cured while being heated.

以上説明したようにして形成されたFRP管Pの外径は
41.50±0,3以内に全て調整されており、通常の
塩化ビニル管の外径精度とほぼ同等に製造することがで
きた。又、後硬化炉を使用することによって、生産後す
ぐに商品として使用できるようになり品質も安定し、生
産性も通常の塩化ビニル管並みの線速度を達成すること
ができ、その上従来技術のように紫外線硬化炉内でのパ
イプP4の詰まりも無く、量産が可能となった。
The outer diameter of the FRP pipe P formed as explained above was all adjusted within 41.50 ± 0.3, and it was possible to manufacture it with almost the same outer diameter accuracy as that of a normal vinyl chloride pipe. . In addition, by using a post-curing furnace, products can be used immediately after production, the quality is stable, and productivity can be achieved at a linear speed comparable to that of ordinary PVC pipes. There is no clogging of pipe P4 in the ultraviolet curing furnace, and mass production is now possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法でFRP管を成形する装置の側面図
、第2図は本発明の自動供給装置の斜視図、第3図は本
発明の集束板の正面図、第4図は含浸槽の断面拡大図、
第5図は本発明の賦形ダイスの側面一部断面図、第6図
は賦形リング装置の断面図、第7図は紫外線硬化炉の断
面図、第8図は遠赤外線硬化炉の断面図、第9図は本発
明の後硬化炉の側面一部切欠図、第10図は本発明方法
によって成形したFRP管の斜視図である。 l:押出機 2:冷却槽 3:引張機 4ニガラスロ一ビング架台 5:含浸装置 6:自動供給装置 7:ワイングー 8a、8b、8c :紫外線硬化炉 9:遠赤外線硬化炉 10:クロスヘッド金型 15:後硬化炉 23:賦形ダイス 49:賦形リング装置
Fig. 1 is a side view of an apparatus for forming FRP pipes by the method of the present invention, Fig. 2 is a perspective view of an automatic feeding device of the present invention, Fig. 3 is a front view of a bundle plate of the present invention, and Fig. 4 is an impregnation Enlarged cross-sectional view of the tank,
FIG. 5 is a partial cross-sectional side view of the shaping die of the present invention, FIG. 6 is a cross-sectional view of the shaping ring device, FIG. 7 is a cross-sectional view of an ultraviolet curing furnace, and FIG. 8 is a cross-sectional view of a far-infrared curing furnace. 9 is a partially cutaway side view of the post-hardening furnace of the present invention, and FIG. 10 is a perspective view of an FRP pipe formed by the method of the present invention. l: Extruder 2: Cooling tank 3: Tensile machine 4 Nigara throbbing frame 5: Impregnation device 6: Automatic feeding device 7: Wine goo 8a, 8b, 8c: Ultraviolet curing furnace 9: Far infrared curing furnace 10: Crosshead mold 15: Post-hardening furnace 23: Shaping die 49: Shaping ring device

Claims (1)

【特許請求の範囲】[Claims] 1)押出成形により芯材を連続的に成形する内芯層成形
工程と、含浸槽内にて熱硬化性樹脂組成物を含浸させた
ガラスロービングを上記芯材の外周に軸方向に沿って囲
繞させ、次いでこの上からガラス繊維を斜め方向に捲回
し紫外線硬化炉及び遠赤外線硬化炉を通して表面及び内
面より硬化処理を施してなるFRP層成形工程と、同F
RP層の表面に熱可塑性樹脂を押出被覆し冷却引取りを
行う被覆層成形工程との連続する一連の工程からなるF
RP管の連続引抜成形方法に於て、上記FRP層成形工
程の含浸槽に装着した賦形ダイス及び紫外線硬化炉の前
に設置した賦形リング装置を通してFRP層の外形を整
え、紫外線硬化炉内に於てはFRP層の表面層の硬化だ
けを行うようにしたことを特徴とするFRP管の連続引
抜成形方法。
1) An inner core layer forming process in which the core material is continuously formed by extrusion molding, and a glass roving impregnated with a thermosetting resin composition is surrounded along the axial direction around the outer periphery of the core material in an impregnation tank. Then, the FRP layer forming process is performed by winding the glass fiber diagonally from above and hardening it from the surface and inside through an ultraviolet curing furnace and a far infrared curing furnace.
F consists of a continuous series of processes including a coating layer forming process in which the surface of the RP layer is extruded and coated with thermoplastic resin and then cooled and taken off.
In the continuous pultrusion method for RP pipes, the outer shape of the FRP layer is adjusted through a shaping die installed in the impregnation tank of the above FRP layer forming process and a shaping ring device installed in front of the ultraviolet curing furnace, and then A continuous pultrusion method for an FRP pipe, characterized in that only the surface layer of the FRP layer is hardened.
JP60055472A 1985-03-18 1985-03-18 Continuous pultrusion method of frp pipe Pending JPS61213136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60055472A JPS61213136A (en) 1985-03-18 1985-03-18 Continuous pultrusion method of frp pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60055472A JPS61213136A (en) 1985-03-18 1985-03-18 Continuous pultrusion method of frp pipe

Publications (1)

Publication Number Publication Date
JPS61213136A true JPS61213136A (en) 1986-09-22

Family

ID=12999545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60055472A Pending JPS61213136A (en) 1985-03-18 1985-03-18 Continuous pultrusion method of frp pipe

Country Status (1)

Country Link
JP (1) JPS61213136A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212461A (en) * 1993-01-12 1994-08-02 Kyushu Sekisui Kogyo Kk Resin pipe with copper wire and its molding method
KR100454553B1 (en) * 2001-07-10 2004-11-03 정인영 Tube processing apparatus of frp material
JP2009505866A (en) * 2005-08-24 2009-02-12 ウォルター ダブリュー. クセック Method for producing reinforced PVC plastisol resin and product prepared thereby
CN101913254A (en) * 2010-07-21 2010-12-15 高宝安 Vertical pultrusion process and device of multilayer fiber composite laminated section bar
JP2011115983A (en) * 2009-12-01 2011-06-16 Ube Nitto Kasei Co Ltd Filament winding method, method for manufacturing fiber-reinforced plastic long object, and filament winding device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57100030A (en) * 1980-12-13 1982-06-22 Kyushu Sekisui Kogyo Kk Manufacturing method and apparatus for fiber reinforced plastic pipe
JPS5948120A (en) * 1982-09-10 1984-03-19 Kyushu Sekisui Kogyo Kk Continuous draw forming of heat resisting fiber reinforced plastic pipe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57100030A (en) * 1980-12-13 1982-06-22 Kyushu Sekisui Kogyo Kk Manufacturing method and apparatus for fiber reinforced plastic pipe
JPS5948120A (en) * 1982-09-10 1984-03-19 Kyushu Sekisui Kogyo Kk Continuous draw forming of heat resisting fiber reinforced plastic pipe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212461A (en) * 1993-01-12 1994-08-02 Kyushu Sekisui Kogyo Kk Resin pipe with copper wire and its molding method
KR100454553B1 (en) * 2001-07-10 2004-11-03 정인영 Tube processing apparatus of frp material
JP2009505866A (en) * 2005-08-24 2009-02-12 ウォルター ダブリュー. クセック Method for producing reinforced PVC plastisol resin and product prepared thereby
JP2011115983A (en) * 2009-12-01 2011-06-16 Ube Nitto Kasei Co Ltd Filament winding method, method for manufacturing fiber-reinforced plastic long object, and filament winding device
CN101913254A (en) * 2010-07-21 2010-12-15 高宝安 Vertical pultrusion process and device of multilayer fiber composite laminated section bar

Similar Documents

Publication Publication Date Title
US2948649A (en) Method of manufacturing sections and rods of glass fibre-reinforced plastic
US3946097A (en) Process for forming continuous fiber reinforced material embedded in thermosetting resin
JPS63246229A (en) Method and device for manufacturing drawing molding fiber-reinforced product
JPS61213136A (en) Continuous pultrusion method of frp pipe
US3888712A (en) Method for producing fiberglass reinforced plastic composite pipes
US3957942A (en) Process of coating an elongated support
US4075300A (en) Method for producing cast-in-place pipe employing permanent pipe mold
JPS5948120A (en) Continuous draw forming of heat resisting fiber reinforced plastic pipe
JPH0217344B2 (en)
JPS62773B2 (en)
JPH0374905B2 (en)
JPH0326521A (en) Manufacture of fiber-reinforced composite molding
JPH0137259B2 (en)
CN110539507A (en) Rapid pultrusion process
JPS6359861B2 (en)
JP2000211037A (en) Energy ray irradiating-type continuous molding device and fiber reinforced plastic tubular molded body
JP3496206B2 (en) Manufacturing method of fiber-reinforced plastic molded product
JPH0246378B2 (en)
JPH0242437Y2 (en)
JPH0214891B2 (en)
JPS6217531B2 (en)
JPS635921A (en) Manufacture of uncured resin tube
JPS6021853B2 (en) Continuous molding method
JPS62231734A (en) Curable resin impregnated tube
JPS60120040A (en) Manufacture of synthetic resin hose