JPS605454B2 - Composite manufacturing method - Google Patents

Composite manufacturing method

Info

Publication number
JPS605454B2
JPS605454B2 JP50135450A JP13545075A JPS605454B2 JP S605454 B2 JPS605454 B2 JP S605454B2 JP 50135450 A JP50135450 A JP 50135450A JP 13545075 A JP13545075 A JP 13545075A JP S605454 B2 JPS605454 B2 JP S605454B2
Authority
JP
Japan
Prior art keywords
resin
core material
molding
outer layer
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50135450A
Other languages
Japanese (ja)
Other versions
JPS5259676A (en
Inventor
行正 桑島
弘 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOMATSU KASEI KK
Original Assignee
KOMATSU KASEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOMATSU KASEI KK filed Critical KOMATSU KASEI KK
Priority to JP50135450A priority Critical patent/JPS605454B2/en
Publication of JPS5259676A publication Critical patent/JPS5259676A/en
Publication of JPS605454B2 publication Critical patent/JPS605454B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は複合材の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing composite materials.

ガラス繊維強化プラスチックFRPからなる板状,棒状
等の複合材は強度剛性が高く、また電気絶縁性,耐蝕性
に優れるため各種用途に普及しつつある。
Composite materials such as plates and rods made of glass fiber reinforced plastic (FRP) have high strength and rigidity, as well as excellent electrical insulation and corrosion resistance, so they are becoming popular for various uses.

この複合材の製造方法としては、成形通路内予備加熱し
たガラス繊維を均一に且つ連続的に進行せしめると共に
該成形通路内に熱硬化性樹脂を充填して該樹脂を前記ガ
ラスに含浸させ、該成形通路の加熱硬化区間を進行する
間にこれらを一体硬化させることにより前記複合材を連
続的に製造する方法が知られている。
The method for manufacturing this composite material involves uniformly and continuously advancing preheated glass fibers in a molding channel, and filling the molding channel with a thermosetting resin to impregnate the glass with the resin. A method is known in which the composite material is continuously manufactured by integrally curing these materials while progressing through a heat-curing section of a forming path.

このような射出成形法を利用した方法は断面形状を任意
に設定しうろこと、成形精度が良いことなどの利点を有
するが、従来の方法は部材の外周から内部へ向けて樹脂
A及び補強繊維Bを全断面にわたって均一に充填する(
第1図参照)ため断面の大きいものは製造に遜せず、ま
た強度及び重量が依存する樹脂の選択にも制限を受けた
Methods using such injection molding methods have advantages such as scales that can set the cross-sectional shape arbitrarily and good molding accuracy, but conventional methods use resin A and reinforcing fibers from the outer periphery of the member to the inside. Fill B uniformly over the entire cross section (
(See FIG. 1) Therefore, it is difficult to manufacture products with large cross sections, and there are also restrictions on the selection of resin, which depends on strength and weight.

他方、巻き付けによる製造方法も知られているが、この
方法は成形精度に劣る欠点がある。本発明は射出形法の
利点を維持し、部材を内芯部と外層部とに区分すると共
に芯材の外周に繊維強化樹脂層を被覆形成して複合材を
製造するようにして強度,重量等に最適な芯材及び樹脂
の組合せを可能とし、複合の汎用性,経済性を著しく向
上するものであり、その構成は、成形通路に進行方向に
従って子熱区間と加熱硬化区間を設け該成形通路内に補
強繊維を連続的に進行せしめる一方前記予熱区間の通路
内に熱硬化性樹脂を充填し、これを前記加熱硬化区間を
進行する間に一体硬化させることにより繊維補強材を連
続的に製造する方法において、前記成形通路内に芯材を
連続的に進行せしめると共に該芯材と前記成形通路との
間隙に補強繊維を均一に且つ前記芯村と一体に進行せし
める一方前記予熱区間の間隙に熱硬化性樹脂を充填し、
これらが前記加熱硬化区間を進行する間に一体に加熱硬
化させ、前記芯材の外周に樹脂層を連続して被覆形成す
ることを特徴とする。
On the other hand, a manufacturing method by winding is also known, but this method has the disadvantage of poor molding accuracy. The present invention maintains the advantages of the injection molding method, divides the member into an inner core part and an outer layer part, and forms a fiber-reinforced resin layer around the outer periphery of the core material to produce a composite material, which improves strength and weight. It enables the optimum combination of core material and resin for molding, etc., and significantly improves the versatility and economic efficiency of composites.The structure is such that the molding path is provided with a child heating section and a heat curing section according to the direction of movement, and the molding While the reinforcing fibers are made to advance continuously in the passage, a thermosetting resin is filled in the passage in the preheating section, and this is integrally cured while it advances through the heat curing section, so that the fiber reinforcement material is continuously made. In the manufacturing method, the core material is continuously advanced into the molding passage, reinforcing fibers are uniformly advanced into the gap between the core material and the molding passage and integrally with the core village, and the reinforcing fibers are made to advance uniformly into the gap between the preheating section. filled with thermosetting resin,
The core material is characterized in that it is integrally heated and cured while it progresses through the heat-curing section, and a resin layer is continuously formed to cover the outer periphery of the core material.

本発明に係る複合材の製造方法を図面に示す一実施例に
基づき詳細に説明する。本実施例は丸棒材を製造するも
のである。先づ本発明を具体化する装置の構成を説明す
る。
A method for manufacturing a composite material according to the present invention will be explained in detail based on an embodiment shown in the drawings. In this example, a round bar material is manufactured. First, the configuration of an apparatus embodying the present invention will be explained.

円筒状の金型5が略水平に設置され該金型5の内側は成
形通路20となる。該成形通路20の前半は補強繊維を
予備加熱するために予熱たれ、後半は熱硬化性樹脂を硬
化形成するために該金型5に埋設されたヒータ7により
該樹脂の硬化温度より高く保持される。即ち、成形通路
20の前半が子熱区間30、後半が加熱硬化区間31と
なる。なお、前記金型5は外部の支持台(図示せず)に
より保持されている。上記成形通路201こ棒状の芯材
1が同軸に且つ連続的に供給される。
A cylindrical mold 5 is installed substantially horizontally, and the inside of the mold 5 forms a molding passage 20. The first half of the molding path 20 is preheated to preheat the reinforcing fibers, and the second half is maintained at a temperature higher than the curing temperature of the resin by a heater 7 embedded in the mold 5 to harden the thermosetting resin. Ru. That is, the first half of the molding passage 20 becomes the child heating section 30, and the second half becomes the heating hardening section 31. Note that the mold 5 is held by an external support (not shown). The rod-shaped core material 1 is fed coaxially and continuously to the molding path 201.

該芯材1はその外周面に転接する送りローラ2により常
に一定位置、即ち前記成形通路20と同軸に保持される
。また、該芯村1の形成と本発明の複合材の製造とを連
続して行なう場合には、該芯材1は例えば前工程におけ
る押出成形ライン(図示せず)などにより連続的に送給
される。該芯村1は前記成形通路20より略小径であり
〜従って該芯材1の外周面と前記金型5の内周面との間
に一定した幅の間隙が形成される。この間隙は外層10
を形成する外層用通路21となる。該外層用通路21の
幅が外層10の肉厚となり「前記芯材1の断面形状が内
芯の断面形状と同一となるので前記間隙の幅及び芯材1
の断面形状は適宜設定する。該外層用通路21には外層
用繊維として軸方向に沿ったガラス織総ロ−ビング3が
前記芯材1と一体に且つ連続的に導入される。
The core material 1 is always held at a fixed position, that is, coaxially with the forming path 20, by a feed roller 2 that rolls into contact with the outer peripheral surface of the core material 1. In addition, when the formation of the core village 1 and the production of the composite material of the present invention are performed continuously, the core material 1 is continuously fed by, for example, an extrusion molding line (not shown) in the previous step. be done. The core village 1 has a substantially smaller diameter than the molding passage 20, so that a gap of a constant width is formed between the outer peripheral surface of the core material 1 and the inner peripheral surface of the mold 5. This gap is the outer layer 10
This becomes the outer layer passage 21 that forms the outer layer. The width of the outer layer passage 21 is the thickness of the outer layer 10, and the cross-sectional shape of the core material 1 is the same as the cross-sectional shape of the inner core, so the width of the gap and the core material 1 are the same.
The cross-sectional shape of is set appropriately. A glass woven roving 3 along the axial direction is continuously introduced into the outer layer passage 21 as an outer layer fiber, integrally with the core material 1.

該ロービング3は絹状又は孔状のガイド4により所定の
位置、即ち前記外層用通路21内に均一に供給されるよ
うに配置される。該外層用繊維はこのような軸方向に沿
った繊維に限らず、例えばワインディング装置などによ
り前記芯材1に巻き付けた繊維を単独或いは鞠方向に沿
った繊維と一体にして外層用繊維を構成しても良い。ま
たロービングに限らずストランド、マット、クロス状の
繊維を単独、組合せて用いても良く、更にガラス繊維に
限らず他の無機質、有機質繊維、例えばカーボン繊維、
アスベスト繊維、ナイロン繊維等を組合せ或いは全体に
使用しても良い。なお、前記ガイド4は鉄、プラスチッ
ク、セラミックなどからなる。前記金型5は前記子熱区
間30の前記外層用通路21に外層となる熱硬化性樹脂
、即ち不飽和ポリェステル樹脂を射出する射出口22を
具え、該樹脂は該金型5の内部に設けられた供給路23
を経て樹脂送給装置8より高圧で送給される。
The roving 3 is arranged at a predetermined position by a silk-like or hole-like guide 4, that is, so as to be uniformly supplied into the outer layer passage 21. The fibers for the outer layer are not limited to fibers along the axial direction, for example, the fibers for the outer layer may be formed by wrapping the fibers around the core material 1 using a winding device or the like alone or together with the fibers along the mari direction. It's okay. In addition to roving, strand, mat, and cross-like fibers may be used alone or in combination, and not only glass fiber but also other inorganic or organic fibers such as carbon fiber,
Asbestos fibers, nylon fibers, etc. may be used in combination or as a whole. Note that the guide 4 is made of iron, plastic, ceramic, or the like. The mold 5 is provided with an injection port 22 for injecting a thermosetting resin, that is, an unsaturated polyester resin, which will become the outer layer into the outer layer passage 21 of the child heating section 30, and the resin is provided inside the mold 5. supply path 23
The resin is then fed at high pressure from the resin feeding device 8.

該射出口22は樹脂が外層用通路21内に均一に射出さ
れるよう該通路21の円周に沿って配置するのが望まし
い。更に、岳予熱区間30と前記加熱硬化区間31の境
目の位置に冷却装置6が設けられて複合材成形用金型4
0が形成される該冷却装置6は該加熱硬化区間31の高
熱が子熱区間30‘こ伝わって該子熱区間30、特に前
記射出口22の近傍で樹脂が硬化してしまうのを防止す
る。前記複合材成形用金形40の出口前方には引取装置
9が設けられており、該引取装置9は成形された複合材
の外周面に転接するローラを有し、前記加熱硬化区間3
1において樹脂層及び芯材1とが一体に加熱成形された
複合材を該複合材成形用金型40より連続的に引き抜く
と共にその引き抜きにより前記外層用繊維及び芯材を一
体に引張って前記成形通路20内へ導入する。成形通路
20内へ引き込まれた外層用繊維は子熱区間30の外層
用通路21を進行する間に予備加熱される。
The injection ports 22 are preferably arranged along the circumference of the outer layer passage 21 so that the resin is uniformly injected into the outer layer passage 21. Further, a cooling device 6 is provided at the boundary between the peak preheating section 30 and the heat curing section 31, and the mold 4 for molding the composite material is provided with a cooling device 6.
The cooling device 6 in which 0 is formed prevents the high heat of the heat curing section 31 from being transmitted to the child heat section 30' and hardening the resin in the child heat section 30, particularly in the vicinity of the injection port 22. . A take-off device 9 is provided in front of the outlet of the mold 40 for molding the composite material, and the take-off device 9 has a roller that rolls into contact with the outer peripheral surface of the molded composite material, and the take-off device 9 has a roller that rolls into contact with the outer peripheral surface of the molded composite material.
1, the composite material in which the resin layer and the core material 1 have been integrally heat-molded is continuously pulled out from the composite material molding die 40, and the outer layer fibers and the core material are pulled together by the drawing, and the molding is performed. Introduced into the passage 20. The outer layer fibers drawn into the forming passage 20 are preheated while traveling through the outer layer passage 21 of the child heating section 30.

この子熱加熱により前記繊維が保有する空気が膨張し該
繊維から離脱して通路入口より排出される。上記外層用
通路21内へ射出口22から不飽和ポリエステル樹脂が
射出,充填され、前記外層用繊維が該樹脂により含浸さ
れる。むろん予熱区間30の温度は熱硬化性樹脂の硬化
温度より低く保持されるが、該樹脂の含浸及び含有空気
の離脱を充分に行なう温度領域とする。予熱が充分に行
なわれる場合には樹脂の粘度が低くなるので射出する際
通路内の繊維の位置ずれを惹起することがなく、且つ繊
維への含浸が速やかに進行し、更に繊維の保有する空気
が排出され易くなり、また加熱硬化区間31の長さも短
かくすることができる。なお、樹脂を射出する圧力は該
樹脂が通路入口より外部へ噴出しない程度にする。外層
用通路21内へ充填された樹脂は未硬化のまま前記外層
用繊維と一体に外層10を形成し、成形通路20内を前
記芯村1と一体に進行して加熱硬化区間31へ進入する
。該加熱硬化区間31を進行する間に前記未硬化の外層
10が一体に硬化形成され、該加熱硬化区間31の出口
に滝達するまでに完全硬化に至って前記芯材1を内芯部
とする複合材が製造される。該複合材は取引装置9によ
り複合材成形用金型40から連続的に引き抜かれる。な
お、該複合材成形用金型40より引き抜かれた後でも完
全硬化に至っていない場合は遠赤外線を照射するなどの
方法により加熱して完全硬化に至らしめる。また、本実
施例においては外層10にFRP層を用いたが、これに
限定されるものではなく他の無機質,有機質繊維強化プ
ラスチック層を用いても良い。芯材1は本実施例で用い
た木材の他に、木質合成品,合成樹脂成形品、発泡性樹
脂成形品、レジンモルタル荘形品や鉄、銅、アルミニウ
ム等を用いても良い。更に該芯材1は送りローラ2及び
引取装置9により成形通路20の前後において支持され
るので必ずしも高強度を必要とせず、従って太粉をバィ
ンダで固化したもの等でも使用でき、また樹脂の射出及
び硬化が通路内で短時間のうちに行なわれるので耐熱性
のあまり良くない材質、或いは樹脂に対してあまり耐員
虫性の良くない材質のものでも芯村として使用できる。
また更に、該芯材1の表面は平滑でなくとも良く、従っ
て木材などは鏡引きのままの状態で構わず、また表面に
リプ状突起や縦縞模様などを付けることも可能である。
一方、横断面の大きいものを製造する場合などは第3図
bに示すように内芯部を幾個かに分割することもできる
。このように本発明においては芯材の選択範囲が極めて
広い。次に、本発明を金属材料の表面処理に応用するこ
ともできる。
Due to this thermal heating, the air held by the fibers expands, separates from the fibers, and is discharged from the passage entrance. Unsaturated polyester resin is injected and filled into the outer layer passage 21 from the injection port 22, and the outer layer fibers are impregnated with the resin. Of course, the temperature in the preheating section 30 is maintained lower than the curing temperature of the thermosetting resin, but it is in a temperature range that allows sufficient impregnation of the resin and removal of the air contained therein. If preheating is performed sufficiently, the viscosity of the resin will be low, so the fibers will not be misaligned in the passage during injection, and the impregnation of the fibers will proceed quickly, and the air held by the fibers will be reduced. can be easily discharged, and the length of the heat-curing section 31 can also be shortened. Note that the pressure for injecting the resin is set to such a level that the resin does not spray out from the passage entrance. The resin filled into the outer layer passage 21 forms the outer layer 10 integrally with the outer layer fibers while remaining uncured, and advances in the molding passage 20 integrally with the core village 1 to enter the heat-curing section 31. . While proceeding through the heat-curing section 31, the uncured outer layer 10 is integrally cured, and by the time it reaches the exit of the heat-curing section 31, it is completely cured to form a composite with the core material 1 as the inner core. material is manufactured. The composite material is continuously pulled out from the composite material molding die 40 by the dealing device 9. Note that if the composite material is not completely cured even after being pulled out from the mold 40, it is heated by irradiation with far infrared rays or the like to completely cure the composite material. Further, in this embodiment, an FRP layer is used for the outer layer 10, but the present invention is not limited to this, and other inorganic or organic fiber-reinforced plastic layers may be used. In addition to the wood used in this embodiment, the core material 1 may be made of a wood composite, a synthetic resin molded product, a foamed resin molded product, a resin mortar molded product, iron, copper, aluminum, or the like. Furthermore, since the core material 1 is supported before and after the molding path 20 by the feed rollers 2 and the take-up device 9, it does not necessarily require high strength, so it can be used even with thick powder solidified with a binder. Since curing takes place within the passage within a short time, even materials that are not very heat resistant or insect resistant to resin can be used as the core.
Furthermore, the surface of the core material 1 does not need to be smooth, so the wood or the like may be mirror-polished, and it is also possible to add lip-like protrusions or vertical stripes to the surface.
On the other hand, when manufacturing a product with a large cross section, the inner core can be divided into several parts as shown in FIG. 3b. As described above, in the present invention, the selection range of the core material is extremely wide. Next, the present invention can also be applied to surface treatment of metal materials.

即ち、芯村として鋼材或いは銅,アルミニウム材を用い
上述の複合材を製造する場合と同様に行なう。この場合
、金属材料の表面に繊維強化樹脂層が被覆されるので耐
蝕性,耐銭性,耐薬品性及び絶縁性等が付与され、また
機械的強度も向上する。本発明では硬化した樹脂が芯材
と一体に且つ連続的に成形通路より引き抜かれるので成
形通路内の樹脂及び芯村が一体に且つ連続的に進行し、
従って任意の長さの複合材を製造することができる。
That is, it is carried out in the same manner as in the case of manufacturing the above-mentioned composite material using steel, copper, or aluminum as the core material. In this case, since the surface of the metal material is coated with a fiber reinforced resin layer, corrosion resistance, coin resistance, chemical resistance, insulation properties, etc. are imparted, and mechanical strength is also improved. In the present invention, since the hardened resin is continuously pulled out from the molding passage together with the core material, the resin and the core material in the molding passage advance integrally and continuously.
Therefore, composite materials of arbitrary length can be manufactured.

更に、外層が金型の表面に接触した状態で加熱成形され
るので外周面が平滑な寸法精度の複合材を製造すること
ができる。また、部材を外層部と内芯部とに区画し芯材
の外周面に外層を被覆形成するようにしたので芯村及び
外層用樹脂を多岐にわたって選択でき、従って両部分に
強度,重量等の点から最適な芯村及び樹脂を選択して粗
合せることができる結果、強度,重量,耐熱性やその他
諸物性を著しく向上することができる。また断面形状を
任意に設定でき、更に内外層の肉厚を変更することによ
り用途に応じた合理的な諸性質を設計する余地の大きい
ものとなる。このような断面形状の数例を第3図に示し
た。ただし、f図についてのみ補強繊維が均一に配され
ている状態を示したか、世のa〜e及びgについても同
様である。
Furthermore, since the outer layer is heat-formed while in contact with the surface of the mold, a composite material with a smooth outer circumferential surface and dimensional accuracy can be manufactured. In addition, since the component is divided into an outer layer and an inner core, and the outer layer is coated on the outer peripheral surface of the core material, a wide variety of resins can be selected for the core and outer layer. As a result of being able to select and roughly match the most suitable core material and resin, strength, weight, heat resistance, and other physical properties can be significantly improved. In addition, the cross-sectional shape can be arbitrarily set, and by changing the thickness of the inner and outer layers, there is a great deal of room for designing rational properties depending on the application. Several examples of such cross-sectional shapes are shown in FIG. However, only figure f shows a state in which the reinforcing fibers are uniformly arranged, and the same is true for figures a to e and g.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の複合材の断面形状図、第2図は本発明に
係る複合材製造方法の一実施例の概略図、第3図a〜g
は複合材の断面形状図である。 図面中、1は芯材、1は送りローラ、3はガラス繊維ロ
ーピング、4はガイド、5は円筒状金型、6は冷却装置
、7はヒータ、8は樹脂送給装置、9は引取装置、10
は外層、20は成形通路、21は外層用通路、22は樹
脂出口、23は樹脂給路、30は子熱区間、31は加熱
硬化区間、Aは熱硬化性樹脂、Bは補強繊維である。第
「図第2図 第3図
Fig. 1 is a cross-sectional diagram of a conventional composite material, Fig. 2 is a schematic diagram of an embodiment of the method for manufacturing a composite material according to the present invention, and Fig. 3 a to g.
is a cross-sectional shape diagram of a composite material. In the drawing, 1 is a core material, 1 is a feed roller, 3 is a glass fiber roping, 4 is a guide, 5 is a cylindrical mold, 6 is a cooling device, 7 is a heater, 8 is a resin feeding device, 9 is a take-up device , 10
is an outer layer, 20 is a molding passage, 21 is an outer layer passage, 22 is a resin outlet, 23 is a resin supply passage, 30 is a child heating section, 31 is a heat curing section, A is a thermosetting resin, and B is a reinforcing fiber. . Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 成形通路に進行方向に従つて予熱区間と加熱硬化区
間を設け該成形通路内に補強繊維を連続的に進行せしめ
る一方前記予熱区間の通路内に熱硬化性樹脂を充填し、
これを前記加熱硬化区間を進行する間に一体硬化させる
ことにより繊維補強材を連続的に製造する方法において
、前記成形通路内に芯材を連続的に進行せしめると共に
該芯材と前記成形通路との間隙に補強繊維を均一に且つ
前記芯材と一体に進行せしめる一方前記予熱区間の間隙
に熱硬化性樹脂を充填し、これらが前記加熱硬化区間を
進行する間に一体に加熱硬化させ、前記芯材の外周に樹
脂層を連続して被覆形成することを特徴とする複合材の
製造方法。
1. A preheating section and a heat curing section are provided in the molding path according to the direction of movement, and reinforcing fibers are made to advance continuously in the molding path, while a thermosetting resin is filled in the path of the preheating section,
In a method for continuously manufacturing a fiber reinforcing material by integrally curing the fiber reinforcement material while progressing through the heating and curing section, the core material is continuously advanced into the forming path, and the core material and the forming path are bonded together. The reinforcing fibers are advanced uniformly into the gaps and integrally with the core material, while the gaps in the preheating section are filled with a thermosetting resin, and while the reinforcing fibers are advancing through the heat curing section, they are heated and cured integrally. A method for manufacturing a composite material, which comprises continuously forming a resin layer around the outer periphery of a core material.
JP50135450A 1975-11-11 1975-11-11 Composite manufacturing method Expired JPS605454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50135450A JPS605454B2 (en) 1975-11-11 1975-11-11 Composite manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50135450A JPS605454B2 (en) 1975-11-11 1975-11-11 Composite manufacturing method

Publications (2)

Publication Number Publication Date
JPS5259676A JPS5259676A (en) 1977-05-17
JPS605454B2 true JPS605454B2 (en) 1985-02-12

Family

ID=15151986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50135450A Expired JPS605454B2 (en) 1975-11-11 1975-11-11 Composite manufacturing method

Country Status (1)

Country Link
JP (1) JPS605454B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291654U (en) * 1988-12-29 1990-07-20

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100353B2 (en) * 1991-05-31 1995-11-01 株式会社有沢製作所 Method for manufacturing FRP antenna material
EP3015256A1 (en) * 2014-10-27 2016-05-04 Evonik Röhm GmbH Establishing multiple different fibre composite components for mass production in a continuous process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291654U (en) * 1988-12-29 1990-07-20

Also Published As

Publication number Publication date
JPS5259676A (en) 1977-05-17

Similar Documents

Publication Publication Date Title
US2785442A (en) Method of making a reinforced hollow cylindrical article
US5876553A (en) Apparatus for forming reinforcing structural rebar
US5174844A (en) Method and means for making pultruded fiber reinforced articles
TWI703030B (en) Process for the continuous production of fibre-reinforced profiles comprising a foam core
US5876641A (en) In-line process for injection of foam material into a composite profile
JPH0371258B2 (en)
KR101697273B1 (en) FRP Re-bar Manufacturing Device Using Peel Ply and Manufacturing Method
JPH05220745A (en) Method and device for producing composite material having fiber impregnated with resin and composite material thus produced
JPS605454B2 (en) Composite manufacturing method
JPS605453B2 (en) Composite manufacturing method
JP2675862B2 (en) Manufacturing method of fiber-reinforced resin filament with spiral recess
JPH05177721A (en) Preparation of molded fiber composite material
JPH02248559A (en) Concrete reinforcing member and manufacture thereof
JPH0489346A (en) Concrete reinforcing member and its production
JPS5812850B2 (en) Fukugou Kanno Seizouhouhou
CN106003760A (en) Composite hollow profile prepared through pultrusion-winding composite molding
JP2000210743A (en) High temperature wet type filament winding device
JPH0246378B2 (en)
JPH0741680B2 (en) FRP molding method
KR102622774B1 (en) Drawing die for glass fiber rebar and method for producing glass fiber rebar using the same
JPS5835129B2 (en) Seizouhouhou
JPS5948120A (en) Continuous draw forming of heat resisting fiber reinforced plastic pipe
KR101869514B1 (en) Die structure for manufacturing resin pellet
JPS6217531B2 (en)
US4598755A (en) Method of producing a wrapped continuous length structure