JPH04297815A - Acoustic conduit length meter - Google Patents

Acoustic conduit length meter

Info

Publication number
JPH04297815A
JPH04297815A JP3087921A JP8792191A JPH04297815A JP H04297815 A JPH04297815 A JP H04297815A JP 3087921 A JP3087921 A JP 3087921A JP 8792191 A JP8792191 A JP 8792191A JP H04297815 A JPH04297815 A JP H04297815A
Authority
JP
Japan
Prior art keywords
tubular member
sound
temperature
pipe
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3087921A
Other languages
Japanese (ja)
Other versions
JP3023199B2 (en
Inventor
Hiroshi Nakamura
浩 中村
Takanori Ito
伊藤 高則
Masaki Natori
名取 雅樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP3087921A priority Critical patent/JP3023199B2/en
Priority to US07/857,026 priority patent/US5195059A/en
Priority to CA002063918A priority patent/CA2063918C/en
Priority to DE69202091T priority patent/DE69202091T2/en
Priority to EP92302636A priority patent/EP0506406B1/en
Publication of JPH04297815A publication Critical patent/JPH04297815A/en
Application granted granted Critical
Publication of JP3023199B2 publication Critical patent/JP3023199B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To measure the length of conduit accurately regardless of the type or temperature of gas passing through the conduit. CONSTITUTION:A conduit length meter measures the length of a tubular member 28 by transmitting a pulse sound from a speaker 25 disposed at one end of the tubular member 28, receiving the pulse sound reflected on the other end thereof by means of a microphone 26 and then executing an operation based on the relationship between the propagation time and the sound speed. Sound speed data at a reference temperature are stored for various type of gases passing through the tubular member 28. On the other hand, temperature of gas in the tubular member 28 is detected and the sound speed at the temperature of measuring time is operated using sound speed data corresponding to the type of gas and then the length of the tubular member 28 is calculated based on thus operated sound speed and propagation time.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、音波を利用して管の長
さを測定する音響式管路長測定器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acoustic pipe length measuring device that uses sound waves to measure the length of pipes.

【0002】0002

【従来の技術】ガス管や信号ケ−ブル用の配管などは地
下に埋設された状態で長い期間にわたり使用されている
2. Description of the Related Art Gas pipes, signal cable piping, and the like are buried underground and used for long periods of time.

【0003】ガス管を例にとると、地中に埋設されるガ
ス管は支本管と、本支管から各家庭や各事業所へ分岐さ
れる供内管とから成り、供内管の一部にガスメ−タが接
続され、地上に露出して設けられている。
Taking gas pipes as an example, a gas pipe buried underground consists of a main branch pipe and a service pipe that branches from the main branch pipe to each home or business. A gas meter is connected to the section and is exposed above the ground.

【0004】図4は本支管と供内管とガスメ−タとの位
置関係を示した図である。
FIG. 4 is a diagram showing the positional relationship between the main branch pipe, the service pipe, and the gas meter.

【0005】ガス管が地下に埋設されている部分A(た
とえば道路下)では本支管1から供内管2aが分岐して
おり、供内管2aはエルボ3等により数箇所で屈曲して
いる。エルボは供内管どうしをある角度をなして結合す
るための継手管であり、曲率半径の小さい管である。ガ
ス管が地上に露出した部分Bにはガスメ−タ4が供内管
2b,2cに接続されており、たとえばガスメ−タ4は
図示しない建物の外壁に固定され、供内管2dは建物の
内部に配管される。
[0005] In a part A where the gas pipe is buried underground (for example, under a road), a service pipe 2a branches from the main branch pipe 1, and the service pipe 2a is bent at several places by elbows 3, etc. . An elbow is a joint pipe that connects service pipes at a certain angle, and is a pipe with a small radius of curvature. A gas meter 4 is connected to the service pipes 2b and 2c at the part B where the gas pipe is exposed above the ground.For example, the gas meter 4 is fixed to the outer wall of a building (not shown), and the service pipe 2d is connected to the outside wall of the building (not shown). Piped inside.

【0006】地中に埋設されたガス管が腐食したり、破
損したときはその部分を修理したり、交換したりするこ
とが必要になるが、その場合、地面を掘って供内管を露
出させて修理する方法と、地面を掘らずに供内管を修理
する非掘削内面修理工法とがある。非掘削内面修理工法
は、修理を必要とする供内管内に外部から流動状態の樹
脂を流し込み、その後真空引きを行い、硬化させて供内
管の内面に樹脂をコ−ティングする方法であり、コスト
上、保安上有利であるためその開発が急がれている。と
ころがこの工法においては外部から流し込む樹脂が多い
と供内管が樹脂で詰まり、逆に樹脂の量が少ないとコ−
ティングが不十分となってしまう。そのため、この非堀
削内面修理工法においては、管内に流し込む樹脂の量を
計量するため、あらかじめ管内の容積を計算する必要が
あり、供内管の内径は既知なので、供内管の全長を測定
することが必要となる。
[0006] When a gas pipe buried underground corrodes or breaks, it is necessary to repair or replace the part, but in that case, the underground pipe is exposed by digging the ground. There are two methods: one is to repair the pipe by digging the ground, and the other is the non-excavation inner surface repair method, which repairs the service pipe without digging into the ground. The non-excavation inner surface repair method is a method in which resin in a fluid state is poured from the outside into the service pipe that requires repair, and then vacuumed and cured to coat the inner surface of the service pipe with resin. Its development is urgent because it is advantageous in terms of cost and security. However, with this construction method, if too much resin is poured in from the outside, the service pipes will become clogged with resin, and conversely, if there is too little resin, the pipes will become clogged with resin.
This results in insufficient timing. Therefore, in this non-excavation inner surface repair method, in order to measure the amount of resin poured into the pipe, it is necessary to calculate the volume inside the pipe in advance, and since the inner diameter of the service pipe is known, the total length of the service pipe is measured. It is necessary to do so.

【0007】従来、供内管の長さを測定する技術として
は以下に示すように音波を利用する方法が知られている
(日本音響学会講演論文集平成2年3月)。
[0007] Conventionally, as a technique for measuring the length of a service pipe, a method using sound waves is known as shown below (Acoustical Society of Japan Lecture Papers, March 1990).

【0008】(1)長尺管測定システム図5に示すよう
に、長尺管5の一端側に1つのスピ−カ6と2つのマイ
クロフォン7,8とを取り付け、スピ−カ6には発振器
9を接続し、マイクロフォン7,8にはオシロスコ−プ
10を接続している。このシステムはスピ−カ6から発
せられたパルス状音波を2つのマイクロフォン7,8で
受けて、音波の波形をオシロスコ−プ10で観測して音
速を計算し、音波が長尺管5の前端5aから終端5bに
伝播する時間を求めることにより長尺管5の長さを測定
するものである。
(1) Long tube measurement system As shown in FIG. 5, one speaker 6 and two microphones 7 and 8 are attached to one end of the long tube 5, and the speaker 6 is equipped with an oscillator. 9 is connected, and an oscilloscope 10 is connected to microphones 7 and 8. This system receives pulsed sound waves emitted from a speaker 6 with two microphones 7 and 8, observes the waveform of the sound waves with an oscilloscope 10, calculates the speed of sound, and calculates the speed of the sound waves at the front end of a long tube 5. The length of the long tube 5 is measured by determining the propagation time from the end 5a to the terminal end 5b.

【0009】(2)P.E.管測長システム図6に示す
ように、ホ−ス状のP.E.(ポリエチレン)管11の
一端にスピ−カ12が取り付けられており、他端にマイ
クロフォン13が取り付けられている。 スピ−カ12とマイクロフォン13は測定装置14に接
続されている。このシステムは数KHzのパルス状の音
波をスピ−カ12から発してからマイクロフォン13で
受けるまでの時間と音速から管11の長さを測定するも
のである。なお、図ではスピ−カ12とマイクロフォン
13とは共に管11と離れているが、実際には密着して
いる。
(2) P. E. Pipe length measuring system As shown in Figure 6, a hose-shaped P. E. A speaker 12 is attached to one end of a (polyethylene) tube 11, and a microphone 13 is attached to the other end. A speaker 12 and a microphone 13 are connected to a measuring device 14. This system measures the length of the tube 11 from the time taken from when a pulsed sound wave of several kHz is emitted from a speaker 12 until it is received by a microphone 13 and from the speed of sound. Although the speaker 12 and microphone 13 are both separated from the tube 11 in the figure, they are actually in close contact with each other.

【0010】0010

【発明が解決しようとする課題】一般に、密閉された管
の長さを音波を使用して測定する場合、管内の気体の種
類、成分および温度によって管内を伝達する音波の音速
が異なるので、上述したシステム(1)および(2)の
ように音波を管内に送出してから反射してもどるまでの
時間に基づいて管路長を測定する測定器では、音波の伝
播時間が変わってしまうため管路長の測定値が条件によ
って異なってしまう。
[Problem to be Solved by the Invention] Generally, when measuring the length of a sealed pipe using sound waves, the speed of sound waves transmitted inside the pipe varies depending on the type, composition, and temperature of the gas inside the pipe. Measuring instruments such as systems (1) and (2), which measure the length of the pipe based on the time it takes from sending sound waves into the pipe until they are reflected back, change the propagation time of the sound waves, so the length of the pipe is measured. The measured value of path length varies depending on the conditions.

【0011】本発明は、上記の点にかんがみてなされた
ものであり、その目的とするところは管内の気体の種類
や温度に影響されずに管の長さを正確に測定することに
ある。
The present invention has been made in view of the above points, and its object is to accurately measure the length of a tube without being affected by the type or temperature of the gas inside the tube.

【0012】0012

【課題を解決するための手段】前記目的は、本発明によ
ると、管状部材の一端から管状部材内にパルス状の音波
を送出する発音手段と、管状部材の一端において管状部
材の他端で反射したパルス状の音波を集音する集音手段
と、管状部材内の温度を検出する温度検出手段と、管状
部材内に存在する気体の基準温度における音速値を記憶
する記憶手段と、パルス状の音波が送出されてから集音
されるまでの時間と温度および基準温度における音速値
より求められた管状部材内の音速値とから管状部材の管
路長を測定する制御手段とにより音響式管路長測定器を
構成した。
[Means for Solving the Problems] According to the present invention, the above-mentioned object is to provide a sounding means for transmitting a pulsed sound wave from one end of the tubular member into the tubular member, and a sound generating means for transmitting a pulsed sound wave from one end of the tubular member to the other end of the tubular member. sound collecting means for collecting the pulsed sound waves; temperature detection means for detecting the temperature inside the tubular member; storage means for storing the sound velocity value at a reference temperature of the gas existing within the tubular member; The acoustic conduit is controlled by a control means that measures the length of the tubular member from the time from when the sound wave is sent until it is collected, the temperature, and the sound velocity value inside the tubular member determined from the sound velocity value at the reference temperature. A length measuring device was constructed.

【0013】[0013]

【作用】本発明の音響式管路長測定器は、発音手段によ
り管状部材の一端から送出されたパルス状音波が管状部
材の他端で反射し、管状部材の一端で集音手段により集
音されるまでの時間を計時するとともに、温度検出手段
により管状部材内の温度を検出し、検出して得られた温
度から管内の気体の音速を算出し、計時して得られた時
間と音速とから管の長さを測定するように構成されてい
る。
[Operation] In the acoustic pipe length measuring device of the present invention, a pulsed sound wave sent out from one end of the tubular member by the sounding means is reflected at the other end of the tubular member, and the sound is collected by the sound collecting means at one end of the tubular member. At the same time, the temperature within the tubular member is detected by the temperature detection means, the sound speed of the gas inside the pipe is calculated from the detected temperature, and the time and sound speed obtained by timing are calculated. is configured to measure the length of the tube from.

【0014】[0014]

【実施例】以下本発明を図面に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below based on the drawings.

【0015】図1は、本発明による管路長測定器の一実
施例の概略構成を示している。
FIG. 1 shows a schematic configuration of an embodiment of a pipe length measuring device according to the present invention.

【0016】同図に示すように、管路長測定器は、結合
部材16、増幅器17,18、D/A変換器19、A/
D変換器20、温度センサ駆動回路21、CPU22、
表示器23、スイッチSおよびメモリ24で構成されて
いる。結合部材16はたとえば金属製の筒状部材で構成
され、その一端の内側に形成されたネジ溝16aにより
供内管28と着脱可能に取り付けることができる。結合
部材16の他端にはスピ−カ25とマイクロフォン26
とが固定され、他端近くには、管内温度測定用の温度セ
ンサ27が管壁を貫通して固定され、先端が管内に露出
している。この結合部材16は、供内管28に取り付け
られたとき供内管28の一端が密閉状態となるように形
成されている。なお、温度センサ27と温度センサ駆動
回路21とで温度検出手段を構成している。
As shown in the figure, the pipe length measuring device includes a coupling member 16, amplifiers 17 and 18, a D/A converter 19, and an A/A converter 19.
D converter 20, temperature sensor drive circuit 21, CPU 22,
It is composed of a display 23, a switch S, and a memory 24. The coupling member 16 is made of a cylindrical member made of metal, for example, and can be detachably attached to the supply pipe 28 through a thread groove 16a formed inside one end of the coupling member 16. A speaker 25 and a microphone 26 are connected to the other end of the coupling member 16.
A temperature sensor 27 for measuring the temperature inside the tube is fixed near the other end through the tube wall, and the tip thereof is exposed inside the tube. This coupling member 16 is formed so that when attached to the internal tube 28, one end of the internal tube 28 is in a sealed state. Note that the temperature sensor 27 and the temperature sensor drive circuit 21 constitute a temperature detection means.

【0017】スピ−カ25はCPU22からの指令に基
づいて供内管28の内部にパルス状の音波を送出し、マ
イクロフォン26は供内管28からの反射音を集音し、
その出力信号は増幅器18により増幅される。
The speaker 25 sends pulsed sound waves into the internal tube 28 based on a command from the CPU 22, and the microphone 26 collects the reflected sound from the internal tube 28.
The output signal is amplified by amplifier 18.

【0018】A/D変換器20は増幅器18からのアナ
ログ信号をデジタル信号に変換する。
A/D converter 20 converts the analog signal from amplifier 18 into a digital signal.

【0019】温度センサ27はたとえばサ−ミスタによ
り構成されており、供内管28内の温度を抵抗値に変換
して検出するものであるが、これに限らず熱電対を用い
てもよい。
The temperature sensor 27 is composed of, for example, a thermistor, and detects the temperature inside the supply pipe 28 by converting it into a resistance value, but is not limited to this, and a thermocouple may also be used.

【0020】温度センサ駆動回路21は温度センサ27
の抵抗変化を電圧変化に変換する。
The temperature sensor drive circuit 21 is a temperature sensor 27
Converts resistance changes into voltage changes.

【0021】メモリ24は供内管28内の気体の種類(
たとえば天然ガス、プロパンガス)と、基準温度(たと
えば0°C)における音速値との関係のデ−タを記憶し
ており、気体の種類に対応する音速のデ−タの選択は操
作者がスイッチSを切り換えることにより行われるので
異なる気体に対しても管路長を測定することができる。 なお、ガスセンサ(図示せず)を用いて供内管28内の
気体の種類を判断し、気体の種類に対応する音速のデ−
タを読み出すようにしてもよい。
The memory 24 stores information about the type of gas (
For example, data on the relationship between natural gas, propane gas) and the sound velocity value at a reference temperature (for example, 0°C) are stored, and the operator can select the sound velocity data corresponding to the type of gas. Since this is done by switching the switch S, the pipe length can be measured even for different gases. Note that the type of gas in the service pipe 28 is determined using a gas sensor (not shown), and the sound speed data corresponding to the type of gas is determined.
The data may also be read out.

【0022】表示器23はこの測定器で測定した供内管
28の長さの値を表示するためのもので、液晶表示装置
を用いてもLED(発光ダイオ−ド)を用いてもよい。
The display 23 is for displaying the length of the service pipe 28 measured by this measuring device, and may be a liquid crystal display or an LED (light emitting diode).

【0023】CPU22は、たとえばマイクロプロセッ
サで構成されており、D/A変換器19、A/D変換器
20、表示器23およびスイッチSに接続されている。 CPU22は、D/A変換器19にパルス状音波を発生
させる信号を指令するとともにマイクロフォン26で集
音したパルス状音波の反射波をA/D変換器20から受
け、音波を送出してから集音するまでの時間を計測する
とともに、温度センサ駆動回路21から供内管28内の
温度の信号を受け、供内管28内のガスの種類に対して
メモリ24から読み出した基準温度における音速値のデ
−タに基づいて音速を演算する。CPU22は、この演
算された音速と上述の時間とから供内管28の長さを算
出し、算出した値を表示器23に表示する。
The CPU 22 is composed of, for example, a microprocessor, and is connected to the D/A converter 19, the A/D converter 20, the display 23, and the switch S. The CPU 22 instructs the D/A converter 19 to generate a pulsed sound wave, receives the reflected wave of the pulsed sound wave collected by the microphone 26 from the A/D converter 20, transmits the sound wave, and then collects the sound wave. In addition to measuring the time until the sound is heard, a signal of the temperature inside the service pipe 28 is received from the temperature sensor drive circuit 21, and the sound velocity value at the reference temperature read from the memory 24 for the type of gas inside the service pipe 28 is measured. The speed of sound is calculated based on the data. The CPU 22 calculates the length of the service pipe 28 from the calculated sound speed and the above-mentioned time, and displays the calculated value on the display 23.

【0024】次に図2および図3を参照して管路長測定
器の動作について説明する。
Next, the operation of the pipe length measuring device will be explained with reference to FIGS. 2 and 3.

【0025】図2および図3は音響式管路長測定器の動
作を説明するためのフロ−チャ−トである。
FIGS. 2 and 3 are flowcharts for explaining the operation of the acoustic pipe length measuring device.

【0026】図2において、供内管28の管路長の測定
が開始されると、CPU22は各パラメ−タを初期化す
るとともに配列「DATA(4000)」を宣言する。 なお「DATA(4000)」は、個数が4000の配
列であり、これはマイクロフォン26で集音され出力す
る音波信号をΔt(s)の時間間隔でサンプリングして
取り込んだ値を時間の順に並べたものである(S−1)
In FIG. 2, when measurement of the pipe length of the service pipe 28 is started, the CPU 22 initializes each parameter and declares an array "DATA (4000)". Note that "DATA (4000)" is an array with a number of 4000 pieces, and this is an array in which the values obtained by sampling the sound wave signals collected and output by the microphone 26 at time intervals of Δt (s) are arranged in the order of time. It is something (S-1)
.

【0027】演算の繰り返し回数を表わす変数Nに0を
代入し(S−2)、DATA(*)に0を代入する。こ
れは配列DATA(4000)の全ての要素を0にする
ことを表わす(S−3)。
0 is assigned to a variable N representing the number of repetitions of the operation (S-2), and 0 is assigned to DATA (*). This represents setting all elements of the array DATA (4000) to 0 (S-3).

【0028】D/A変換器19からパルス状音波を発生
するためのアナログ信号が増幅器17に出力される(S
−4)。この結果スピ−カ25からパルス状音波が供内
管28に1サイクル分だけ発生される。
An analog signal for generating pulsed sound waves is output from the D/A converter 19 to the amplifier 17 (S
-4). As a result, a pulsed sound wave is generated from the speaker 25 in the service pipe 28 for one cycle.

【0029】配列の個数を表わす変数tに0を代入し(
S−5)、A/D変換器20に増幅器18の出力「da
ta」を取り込む(S−6)。これはマイクロフォン2
6で受けたパルス状音波の反射波の信号(出力「dat
a」)がサンプリング時間Δtごとに取り込まれている
ことを表わす。配列「DATA(4000)」の各要素
DATA(t)にDATA(t)+dataの値を代入
する(S−6)。このdataの値は変数tにおける増
幅器18の出力値であり、各配列の要素DATA(t)
にそれぞれ代入される。変数t+1を変数tに代入し(
S−8)、変数tの値が4000未満かどうかを判別し
、4000未満のときはステップ(S−6)にもどる(
S−9)。これによりパルス状音波1サイクル分のデ−
タがサンプリングされる。変数NにN+1の値を代入し
(S−10)、次のステップ(S−11)に進む。
Assign 0 to the variable t representing the number of arrays (
S-5), the output “da” of the amplifier 18 is sent to the A/D converter 20.
ta' is taken in (S-6). This is microphone 2
The signal of the reflected wave of the pulsed sound wave received at 6 (output “dat
a'') is captured at every sampling time Δt. The value of DATA(t)+data is assigned to each element DATA(t) of the array "DATA(4000)" (S-6). The value of this data is the output value of the amplifier 18 at the variable t, and the element DATA(t) of each array
are assigned to each. Assign variable t+1 to variable t (
S-8), determine whether the value of variable t is less than 4000, and if it is less than 4000, return to step (S-6) (
S-9). This allows data for one cycle of the pulsed sound wave to be
data is sampled. The value N+1 is assigned to the variable N (S-10), and the process proceeds to the next step (S-11).

【0030】図3において変数Nの値が100未満であ
るかどうかを判別し、変数Nの値が100未満であれば
ステップ(S−4)からステップ(S−10)までの演
算を繰り返す(S−11)。これは100回分のデ−タ
を加算平均することにより雑音を除去するためであり、
Nは加算の回数を表わしている。ちなみに100回の加
算平均を行なうとノイズの強さは100分の1の平方根
、すなわち10分の1の強さに低減する。なお、回数N
の値は100に限定されるものではない。
In FIG. 3, it is determined whether the value of variable N is less than 100, and if the value of variable N is less than 100, the calculations from step (S-4) to step (S-10) are repeated ( S-11). This is to remove noise by averaging 100 times of data.
N represents the number of additions. Incidentally, if the averaging is performed 100 times, the noise intensity will be reduced to the square root of 1/100, that is, to 1/10. In addition, the number of times N
The value of is not limited to 100.

【0031】ステップ(S−11)で変数Nが100以
上のときは、A/D変換器20は温度センサ27の出力
電圧を読み込む(S−12)。
If the variable N is 100 or more in step (S-11), the A/D converter 20 reads the output voltage of the temperature sensor 27 (S-12).

【0032】CPU22は4000個の配列要素DAT
A(t)の中から絶対値が最大となるようなtの値を選
択する(S−13)。これは供内管28の開放端におけ
る反射波の振幅が最大となり、その最大値を利用するも
のである。ここで最大値をとるのは反射波の波形が理論
的には正の成分と負の成分とが対称形となるので最大値
が2つ存在することになるが、実際にはスピ−カ25か
ら音波が出力されるとスピ−カ25の振動面の振動が慣
性によって一方の面たとえば正の成分に対応する面が弱
く振動し、負の成分に対応する面が強く振動するので反
射波が非対称形となる。その結果負の成分(2番目)の
振幅のピ−ク値が選択される。
[0032] The CPU 22 has 4000 array elements DAT.
The value of t whose absolute value is the maximum is selected from A(t) (S-13). This is because the amplitude of the reflected wave at the open end of the service tube 28 becomes maximum, and that maximum value is utilized. The reason why the maximum value is taken here is that the waveform of the reflected wave is theoretically symmetrical with its positive and negative components, so there are two maximum values, but in reality there are two maximum values. When a sound wave is output from the speaker 25, one side of the vibrating surface of the speaker 25 vibrates weakly due to inertia, for example, the surface corresponding to the positive component, and the surface corresponding to the negative component vibrates strongly, resulting in reflected waves. It has an asymmetrical shape. As a result, the peak value of the amplitude of the negative component (second) is selected.

【0033】メモリ22から供内管28の内部の気体の
0°Cにおける音速値vo(m/s)を読み出す(S−
14)。なお、前述したように測定者がスイッチSを切
り換えることで供内管28内の気体の種類に対応した0
°Cにおける音速値が得られる。
The sound velocity value vo (m/s) at 0°C of the gas inside the service tube 28 is read out from the memory 22 (S-
14). In addition, as mentioned above, by changing the switch S by the measuring person, the 0 corresponding to the type of gas in the service pipe 28 is
The sound velocity value in °C is obtained.

【0034】温度センサ27および温度センサ駆動回路
21で得られた供内管28内の温度T(°C)を用いて
数1から供内管28の内の現在の気体の音速v(m/s
)を演算し(S−15)、
Using the temperature T (°C) inside the service tube 28 obtained by the temperature sensor 27 and the temperature sensor drive circuit 21, the current sound velocity v (m/m/ s
) is calculated (S-15),

【0035】[0035]

【数1】v=vo{1+T/273}1/2次に以下の
数2により供内管28の管路長L(m)を算出する(S
−16)。
[Equation 1] v=vo{1+T/273}1/2 Next, calculate the pipe length L (m) of the service pipe 28 using the following equation 2 (S
-16).

【0036】[0036]

【数2】L=v・t・Δt/2 こうして算出した供内管28の管路長Lの値は表示器2
3に表示される(S−17)。
[Equation 2] L=v・t・Δt/2 The value of the pipe length L of the service pipe 28 calculated in this way is displayed on the display 2.
3 (S-17).

【0037】以上詳細に説明したように本実施例によれ
ば、供内管28内の気体の温度を検知し、この検知され
た温度を用いてその温度における音速値を演算し、この
演算した音速値を用いて供内管28の管路長を算出する
ようにしたので、供内管28の気体の温度や種類に関係
なく供内管の長さを正確に測定することができる。
As described in detail above, according to this embodiment, the temperature of the gas in the service pipe 28 is detected, the detected temperature is used to calculate the sound velocity value at that temperature, and the calculated value is Since the length of the service pipe 28 is calculated using the sound velocity value, the length of the service pipe 28 can be accurately measured regardless of the temperature or type of gas in the service pipe 28.

【0038】[0038]

【発明の効果】以上説明したように、本発明においては
、管状部材内に存在する気体の基準温度における音速値
を記憶しておき、管路長測定器における管状部材内の温
度を検出し、パルス状の音波が送出されてから集音され
るまでの時間と温度およびこの測定温度における音速値
を演算し、この音速値を用いてから管状部材の管路長を
測定するようにしたので、管状部材内の気体の種類や環
境温度に関係なく管状部材の長さが正確に測定できる。
As explained above, in the present invention, the sound velocity value at the reference temperature of the gas existing inside the tubular member is stored, and the temperature inside the tubular member is detected by a pipe length measuring device. The time and temperature from when a pulsed sound wave is sent out to when it is collected, as well as the sound velocity value at this measured temperature, are calculated, and this sound velocity value is used to measure the pipe length of the tubular member. The length of the tubular member can be accurately measured regardless of the type of gas inside the tubular member or the environmental temperature.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明による音響式管路長測定器の一実施例の
概略構成を示すブロック線図である。
FIG. 1 is a block diagram showing a schematic configuration of an embodiment of an acoustic pipe length measuring device according to the present invention.

【図2】図1に示した管路長測定器の動作を説明するた
めのフロ−チャ−トである。
FIG. 2 is a flowchart for explaining the operation of the pipe length measuring device shown in FIG. 1;

【図3】図2に示したフロ−チャ−トに継続するフロ−
チャ−トである。
[Fig. 3] Flow continuing from the flowchart shown in Fig. 2.
It is a chart.

【図4】ガス管およびガスメ−タの位置関係を示す図で
ある。
FIG. 4 is a diagram showing the positional relationship between a gas pipe and a gas meter.

【図5】従来の管路長測定システムの一例を示す線図で
ある。
FIG. 5 is a diagram showing an example of a conventional pipe length measurement system.

【図6】従来の管路長測定システムの他の例を示す線図
である。
FIG. 6 is a diagram showing another example of a conventional pipe length measurement system.

【符号の説明】[Explanation of symbols]

16  結合部材 17,18  増幅器 19  D/A変換器 20  A/D変換器 21  温度センサ駆動回路 22  CPU 23  表示器 24  メモリ 25  スピ−カ 26  マイクロフォン 27  温度センサ 16 Connecting member 17,18 Amplifier 19 D/A converter 20 A/D converter 21 Temperature sensor drive circuit 22 CPU 23 Display 24 Memory 25 Speaker 26 Microphone 27 Temperature sensor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  管状部材の一端から該管状部材内にパ
ルス状の音波を送出する発音手段と、前記管状部材の一
端において前記管状部材の他端で反射したパルス状の音
波を集音する集音手段と、前記管状部材内の温度を検出
する温度検出手段と、前記管状部材内に存在する気体の
基準温度における音速値を記憶する記憶手段と、前記パ
ルス状の音波が送出されてから集音されるまでの時間と
前記温度および前記基準温度における音速値より求めら
れた前記管状部材内の音速値とから前記管状部材の管路
長を測定する制御手段とを備えたことを特徴とする音響
式管路長測定器。
1. Sound generating means for transmitting pulsed sound waves into the tubular member from one end of the tubular member, and a sound collector for collecting the pulsed sound waves reflected at the other end of the tubular member at one end of the tubular member. sound means; temperature detection means for detecting the temperature within the tubular member; storage means for storing a sound velocity value at a reference temperature of the gas existing within the tubular member; It is characterized by comprising a control means for measuring the pipe length of the tubular member from the time until the sound is heard and the sound velocity value inside the tubular member determined from the sound velocity value at the temperature and the reference temperature. Acoustic pipe length measuring device.
JP3087921A 1991-03-27 1991-03-27 Acoustic pipe length measuring instrument Expired - Lifetime JP3023199B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3087921A JP3023199B2 (en) 1991-03-27 1991-03-27 Acoustic pipe length measuring instrument
US07/857,026 US5195059A (en) 1991-03-27 1992-03-24 Acoustic pipe length measuring apparatus
CA002063918A CA2063918C (en) 1991-03-27 1992-03-25 Acoustic pipe length measuring apparatus
DE69202091T DE69202091T2 (en) 1991-03-27 1992-03-26 Apparatus for acoustic measurement of the length of a pipe.
EP92302636A EP0506406B1 (en) 1991-03-27 1992-03-26 Accoustic pipe length measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3087921A JP3023199B2 (en) 1991-03-27 1991-03-27 Acoustic pipe length measuring instrument

Publications (2)

Publication Number Publication Date
JPH04297815A true JPH04297815A (en) 1992-10-21
JP3023199B2 JP3023199B2 (en) 2000-03-21

Family

ID=13928388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3087921A Expired - Lifetime JP3023199B2 (en) 1991-03-27 1991-03-27 Acoustic pipe length measuring instrument

Country Status (1)

Country Link
JP (1) JP3023199B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122078A (en) * 2006-11-08 2008-05-29 Hitachi Ltd Detection device of position in pipe
CN102095391A (en) * 2010-12-03 2011-06-15 华中科技大学 Duct length measuring device based on sound waves

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438415A (en) * 1990-06-04 1992-02-07 Tokimec Inc Apparatus for measuring pipe length

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438415A (en) * 1990-06-04 1992-02-07 Tokimec Inc Apparatus for measuring pipe length

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122078A (en) * 2006-11-08 2008-05-29 Hitachi Ltd Detection device of position in pipe
CN102095391A (en) * 2010-12-03 2011-06-15 华中科技大学 Duct length measuring device based on sound waves

Also Published As

Publication number Publication date
JP3023199B2 (en) 2000-03-21

Similar Documents

Publication Publication Date Title
JP4979838B2 (en) Method and apparatus for calibrating a measurement transducer of an ultrasonic flow measurement unit
US5058419A (en) Method and apparatus for determining the location of a sound source
RU2182335C2 (en) Procedure measuring time of propagation of sound signal in fluid medium and method measuring velocity of flow of fluid medium
US20060022680A1 (en) Ultrasonic distance measure
CN100387942C (en) Ultrasonic method for measuring a flow rate of liquid and/or gaseous media and device for carrying out said method
US20080059085A1 (en) Device for Determining and/or Monitoring the Volume Flow Rate and/or Mass Flow Rate of a Medium to be Measured
JP3045677B2 (en) Ultrasonic flow meter
JP2007530933A (en) Zero-crossing detection of ultrasonic signals with variable threshold
WO1988008516A1 (en) Ultrasonic fluid flowmeter
KR100276462B1 (en) Ultrasonic flow velocity measuring apparatus.
JP2007187506A (en) Ultrasonic flowmeter
CN112903043B (en) Multichannel ultrasonic flowmeter system
US5195059A (en) Acoustic pipe length measuring apparatus
JPH04297815A (en) Acoustic conduit length meter
JP2003014515A (en) Ultrasonic flowmeter
JP5965292B2 (en) Ultrasonic flow meter
JP3668119B2 (en) Flow measuring device
GB2321705A (en) Acoustic measurement of fluid properties
RU2620023C1 (en) Method of determining the place of the flow in the pipeline and the device for its implementation
CN106643940B (en) The method for calculating the ultrasonic flowmeter propagation time based on backward energy
JP3048284B2 (en) Sound velocity calibration device for acoustic pipe length measurement system
JPS58208636A (en) Detecting device for position of leakage from piping such as leakage of water
JPH0861945A (en) Acoustic pipeline length measuring system and temperature correcting device therefor
JP3384197B2 (en) Pipe shape estimation method
RU2313068C2 (en) Mode of measuring gas consumption in main pipelines and an arrangement for its execution

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000104

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 12