JPH04296829A - Manufactuer of optical wave guide type optical element generatingf second harmonics - Google Patents

Manufactuer of optical wave guide type optical element generatingf second harmonics

Info

Publication number
JPH04296829A
JPH04296829A JP3063467A JP6346791A JPH04296829A JP H04296829 A JPH04296829 A JP H04296829A JP 3063467 A JP3063467 A JP 3063467A JP 6346791 A JP6346791 A JP 6346791A JP H04296829 A JPH04296829 A JP H04296829A
Authority
JP
Japan
Prior art keywords
diffusion
optical waveguide
wave guide
harmonics
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3063467A
Other languages
Japanese (ja)
Inventor
Naoji Nada
直司 名田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP3063467A priority Critical patent/JPH04296829A/en
Publication of JPH04296829A publication Critical patent/JPH04296829A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3558Poled materials, e.g. with periodic poling; Fabrication of domain inverted structures, e.g. for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • G02F1/3775Non-linear optics for second-harmonic generation in an optical waveguide structure with a periodic structure, e.g. domain inversion, for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • G02F1/3548Quasi phase matching [QPM], e.g. using a periodic domain inverted structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To manufacture an optical wave guide type optical device generating second harmonics, provided with a pseudo-phase adjusting means, for example, due to polarization reversal structure, at a stable characteristic. CONSTITUTION:After a cyclic polarization reversal structure 2 is formed on the surface of a LiNbO3 base 1 by Ti diffusion or Li2O external diffusion, a mirror surface polishing is carried out including mechanical polishing so that the surface layer is removed, and an optical wave guide 3 is then formed, so as to manufacture an aimed optical wave guide type optical device generating second harmonics.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、光導波路型光第2高調
波発生素子の製法、特にその光導波路内にあるいは光導
波路に接して分極反転構造を有する光導波路型光第2高
調波発生素子の製法に係わる。
[Industrial Application Field] The present invention relates to a method for manufacturing an optical waveguide-type optical second harmonic generation device, and in particular an optical waveguide-type optical second harmonic generation device having a polarization inversion structure within the optical waveguide or in contact with the optical waveguide. It is related to the manufacturing method of the element.

【0002】0002

【従来の技術】光ディスク、光磁気ディスク等の高密度
記録、高解像度再生等の目的から短波長光の必要性が高
まっている。
2. Description of the Related Art The need for short wavelength light is increasing for purposes such as high-density recording and high-resolution reproduction of optical discs, magneto-optical discs, etc.

【0003】この短波長光を取出すものとして、その第
2高調波発生効率の高い光導波路型光第2高調波発生素
子(光導波路型SHG素子)の実用化に向っての研究開
発が目覚ましい。
As a device for extracting this short wavelength light, there has been remarkable research and development toward the practical application of optical waveguide type optical second harmonic generation elements (optical waveguide type SHG elements) which have high second harmonic generation efficiency.

【0004】この種の光導波路型SHG素子は、図2C
にその略線的断面図を示すように、非線形光学定数が大
で耐熱性に優れた非線形光学結晶としてのLiNbO3
 基体1上にその基本波と第2高調波の位相整合を採り
、第2高調波発生効率いわゆるSHG効率を高めるため
に周期的に分極(ドメイン)が反転する分極反転構造部
2による擬似位相整合手段を、光導波路3内に形成する
構成が採られる。
This type of optical waveguide type SHG device is shown in FIG. 2C.
As shown in its schematic cross-sectional view, LiNbO3 is a nonlinear optical crystal with a large nonlinear optical constant and excellent heat resistance.
Pseudo-phase matching is achieved by a polarization inversion structure 2 in which the polarization (domain) is periodically inverted in order to achieve phase matching between the fundamental wave and the second harmonic on the substrate 1 and to increase the second harmonic generation efficiency, so-called SHG efficiency. A configuration is adopted in which the means is formed within the optical waveguide 3.

【0005】また、LiNbO3 の非線形光学単結晶
基板上に線形導波路を形成して、この導波路に基本波を
入力し非線形光学結晶基体側からチェレンコフ放射によ
る第2高調波成分を取出すようにしたチェレンコフ放射
型SHGにおいても、そのチェレンコフ放射角αの縮小
化をはっかて、周期分極反転構造部を形成することの提
案がなされている。
[0005] Furthermore, a linear waveguide was formed on a nonlinear optical single crystal substrate of LiNbO3, a fundamental wave was input to this waveguide, and a second harmonic component due to Cerenkov radiation was extracted from the nonlinear optical crystal substrate side. In the Cerenkov radiation type SHG as well, it has been proposed to reduce the Cerenkov radiation angle α and form a periodic polarization inversion structure.

【0006】このような分極反転構造を形成する方法と
しては、例えばTiを結晶表面から拡散させるTi拡散
法(伊藤弘昌、張英海、稲場文男、第49回応用物理学
会講演会予稿集919(1988))、あるいはLi2
 Oの外拡散法(Jonas Webjoern et
. al, IEEE. PHOTONICS TEC
HNOL. LETT. 1, 1989, PP31
6−318)が提案されている。
As a method for forming such a polarization-inverted structure, for example, a Ti diffusion method in which Ti is diffused from the crystal surface (Hiromasa Ito, Hidekai Zhang, Fumio Inaba, Proceedings of the 49th Japan Society of Applied Physics Conference 919 (1988)) is used. ), or Li2
Out-diffusion method of O (Jonas Webjoern et al.
.. al, IEEE. PHOTONICS TEC
HNOL. LETT. 1, 1989, PP31
6-318) has been proposed.

【0007】Ti拡散法は、図2Aに示すように、その
分極方向を矢印aで示すように単分域化されたLiNb
O3 (LNという)基板1の例えば+z(+c)面側
の主面1a上に分極周期反転を形成しようとするパター
ンに対応するパターンの波長Λに対応するピッチをもっ
て図2において紙面と直交する方向に延びる平行ストラ
イプ状のTi金属層4を蒸着あるいはスパッタ等によっ
て数10Åの厚さに成膜し、これをフォトリソグラフィ
による選択的エッチングによってパターン化することに
よって形成する。
As shown in FIG. 2A, the Ti diffusion method uses LiNb whose polarization direction is made into a single domain as indicated by the arrow a.
O3 (referred to as LN) in a direction perpendicular to the plane of paper in FIG. 2 with a pitch corresponding to the wavelength Λ of a pattern corresponding to a pattern in which polarization period inversion is to be formed on the main surface 1a on the +z (+c) side of the substrate 1, for example. A Ti metal layer 4 in the form of parallel stripes extending over the area is formed to a thickness of several tens of angstroms by vapor deposition or sputtering, and is patterned by selective etching using photolithography.

【0008】その後酸素雰囲気中で1000〜1100
℃の温度で熱拡散させることによって図2Bに示すよう
に、Tiが拡散したところで矢印bで示す分極の反転を
生じさせる。
1000-1100 in an oxygen atmosphere
By performing thermal diffusion at a temperature of .degree. C., as shown in FIG. 2B, the polarization is reversed as indicated by arrow b at the point where Ti is diffused.

【0009】その後基体1の面1a側に、プロトン交換
法等によってそれぞれ図2Cで示すように、分極の周期
的反転方向に沿って例えばストライプ状の導波路3を形
成する。
[0009] Thereafter, for example, a striped waveguide 3 is formed on the surface 1a side of the substrate 1 by a proton exchange method or the like along the direction of periodic reversal of polarization, as shown in FIG. 2C.

【0010】このような構成によれば導波路3に、その
導波方向に順次分極が繰返し反転した周期的分極反転構
造部2が形成され、これによって擬似位相整合手段を構
成する。Li2 Oの外拡散法としては、図2AのTi
金属層4に代えて、LiNbO3 (LN)基板1の表
面にSiO2 などLNと相互に拡散しない物質例えば
SiO2 のマスク層を、例えば全面的蒸着或いはスパ
ッタの後のフォトリソグラフィによる選択的エッチング
によって前述と同様に最終的に得ようとする周期的分極
反転の周期に対応するピッチを有するパターンをもって
形成する。
[0010] According to such a configuration, a periodic polarization inversion structure portion 2 in which polarization is repeatedly inverted in the waveguide direction is formed in the waveguide 3, thereby forming a quasi-phase matching means. As for the Li2O outdiffusion method, the Ti
Instead of the metal layer 4, a mask layer of a material such as SiO2 that does not interdiffuse with LN, such as SiO2, is formed on the surface of the LiNbO3 (LN) substrate 1 by, for example, full-surface vapor deposition or selective etching by photolithography after sputtering, as described above. Similarly, a pattern having a pitch corresponding to the period of periodic polarization inversion to be finally obtained is formed.

【0011】その後、同様の熱処理を施してマスク層が
被着形成されていない部分のLN基体1中のLi2 O
を外拡散させ、そのLi2 Oが脱出した部分によって
分極反転を形成するものである。
[0011] Thereafter, similar heat treatment is performed to remove Li2O in the LN substrate 1 in the areas where the mask layer is not formed.
In this method, the Li2O is diffused out, and polarization inversion is formed by the portion where the Li2O escapes.

【0012】そして、その後に同様にプロトン交換法に
よって、ストライプ状の導波路3を形成する。
[0012] Thereafter, a striped waveguide 3 is formed similarly by the proton exchange method.

【0013】上述したTi拡散法による場合、LN基体
1上に形成されたTi金属層4はその拡散によってほと
んど表面に残っていないものとされ、またLi2 O外
拡散法による場合のSiO2 マスク層もこれが充分薄
いものであることから導波路3の形成に影響を及ぼさな
いものとして、例えば単に表面を化学的エッチングする
とか洗浄する程度で導波路3の形成がなされる。
In the case of the Ti diffusion method described above, almost no Ti metal layer 4 formed on the LN substrate 1 remains on the surface due to the diffusion, and in the case of the Li2O out-diffusion method, the SiO2 mask layer also remains. Since this is sufficiently thin, it does not affect the formation of the waveguide 3, and the waveguide 3 can be formed by simply chemically etching or cleaning the surface, for example.

【0014】ところが、これらの方法によって得た導波
路型SHGは、図3A及びBにその平面図及び断面図を
示すように、導波路3の入射端にLの光を導入した場合
、出射端からの出射光のスクリーン上でのスポットは図
3B及び図4のスクリーンS上でのパターンを示すよう
に、導波モードによるスポットLgと、導波路3からの
図3B中符号Cで示す放射モードによるスポットLcが
例えば楕円もしくは三日月状になり、また擬似位相整合
により発生した第2高調波も放射モードが多く効率よく
導波モードの第2高調波が得られない。
However, in the waveguide type SHG obtained by these methods, as shown in the plan view and cross-sectional view of FIGS. 3A and 3B, when light of L is introduced into the input end of the waveguide 3, the output end As shown in the patterns on the screen S in FIGS. 3B and 4, the spots of the emitted light on the screen are a spot Lg due to the waveguide mode and a radiation mode indicated by C in FIG. 3B from the waveguide 3. The spot Lc becomes, for example, elliptical or crescent-shaped, and the second harmonic generated by quasi-phase matching also has many radiation modes, making it impossible to efficiently obtain the second harmonic in the guided mode.

【0015】例えばSHG素子端面より放射された第2
高調波のパワーは、導波モードと放射モードを含めて1
mWであるが導波モードのみを測定すると0.45mW
であった。
For example, the second radiation emitted from the end face of the SHG element
The power of harmonics is 1 including guided mode and radiation mode.
mW, but when only the waveguide mode is measured, it is 0.45mW
Met.

【0016】このような放射モードの発生は、上述した
Ti拡散法による場合、そのLN基体1の主面1a側に
、拡散されず残ったTiあるいは表面に多量に拡散され
たTiが、その後の酸素雰囲気中での高温の加熱拡散処
理に際して酸化されて図2B及びCに破線をもって示す
ようにTiO2 となって残るとか、あるいはLi2 
O外拡散のマスクとしてのSiO2 がその後の光導波
路3のプロトン交換工程でいわばマスクの効果を生じさ
せるとか、表面に凹凸を形成することになり、導波路3
に、図5に更にその断面を拡散して示すように、光導波
路3に厚みむらを発生するとか、不連続部分を形成する
とか、さらに屈折率むらを生じさせて上述した放射モー
ドの発生と共にさらに伝搬損失を増大させる原因となっ
ていることを究明した。
The generation of such a radiation mode is caused by the fact that when the above-mentioned Ti diffusion method is used, Ti that remains undiffused on the main surface 1a side of the LN substrate 1 or Ti that has been diffused in large quantities on the surface is then During the high-temperature heat diffusion treatment in an oxygen atmosphere, it is oxidized and remains as TiO2, as shown by the broken lines in FIGS. 2B and 2C, or as Li2.
SiO2, which acts as a mask for O out-diffusion, produces a so-called mask effect in the subsequent proton exchange process of the optical waveguide 3, or forms irregularities on the surface.
In addition, as shown in FIG. 5, the cross section of the optical waveguide 3 is further diffused and unevenness is generated in the optical waveguide 3, discontinuous portions are formed, and unevenness in the refractive index is caused. Furthermore, we have determined that this is the cause of increased propagation loss.

【0017】[0017]

【発明が解決しようとする課題】本発明においては、基
本波の伝搬損失の効果的な低減化、導波パワーの増加と
SHG変換効率の向上と、さらに発生した第2高調波(
SH波)の伝搬損失の減少化をはかることができるよう
にした光導波路型光第2高調波発生素子の製法を提供す
るものである。
Problems to be Solved by the Invention In the present invention, it is possible to effectively reduce the propagation loss of the fundamental wave, increase the waveguide power, improve the SHG conversion efficiency, and further reduce the generated second harmonic (
The present invention provides a method for manufacturing an optical waveguide type optical second harmonic generation element that can reduce the propagation loss of SH waves.

【0018】[0018]

【課題を解決するための手段】本発明においては、図1
A〜Cに各工程の略線的断面図を示すように、矢印aで
示す単分域化したLiNbO3 基体1の表面(主面1
a)に、Ti拡散、あるいはLi2 O外拡散法により
分極反転構造部2を形成する工程(図1B)と、その後
この分極反転構造部2の表面層を機械的研磨によって除
去する鏡面研磨工程とを採り、その後例えばプロトン交
換による光導波路3の形成(図1C)を行う。
[Means for solving the problem] In the present invention, FIG.
As shown in the schematic cross-sectional views of each process in A to C, the surface of the LiNbO3 substrate 1 (principal surface 1
a) a step of forming the domain-inverted structure 2 by Ti diffusion or Li2O out-diffusion method (FIG. 1B); and a mirror polishing step of removing the surface layer of the domain-inverted structure 2 by mechanical polishing. After that, the optical waveguide 3 is formed by, for example, proton exchange (FIG. 1C).

【0019】[0019]

【作用】上述の本発明製法においては、Ti拡散あるい
はLi2 O外拡散法によって形成した分極反転構造部
2の表面層を機械的に除去して鏡面に研磨するようにし
たことから、上述した不安定なTiあるいはSiO2 
、Ti拡散あるいはLi2 O外拡散時に生じた酸化物
等の異物、更にこれの存在による凹凸表面が除去されて
鏡面とされたことから、この鏡面側からプロトン交換に
よって形成する光導波路3は、その全長にわたって確実
に均一の厚さに、不連続部を生じさせることなく均質に
形成することができるものである。
[Operation] In the above-mentioned manufacturing method of the present invention, the surface layer of the polarization inversion structure 2 formed by Ti diffusion or Li2O out-diffusion method is mechanically removed and polished to a mirror surface. Stable Ti or SiO2
The optical waveguide 3, which is formed by proton exchange from this mirror side, is formed by removing foreign substances such as oxides generated during Ti diffusion or Li2O out-diffusion, and by removing the uneven surface due to the presence of these particles. It can be formed uniformly and reliably to have a uniform thickness over the entire length without creating discontinuities.

【0020】また、基体1の表面層のTi濃度が高い部
分が除去されることから、例えばTiの残存による屈折
率変化等も解消されることから屈折率変化がほとんど伴
わない分極反転構造部2が形成される。
Furthermore, since the portion of the surface layer of the substrate 1 with a high Ti concentration is removed, changes in the refractive index due to residual Ti, for example, are eliminated, so that the polarization inversion structure portion 2 is formed with almost no change in the refractive index. is formed.

【0021】したがって、これによって得られた第2高
調波も放射モードが少い良好な歪の少いスポット形状を
得ることができる。
[0021] Therefore, the second harmonic obtained thereby can also have a good spot shape with less radiation mode and less distortion.

【0022】[0022]

【実施例】図1を参照して本発明製法をTi拡散法によ
って分極反転構造部を形成する場合を説明する。
EMBODIMENTS Referring to FIG. 1, a case will be described in which the manufacturing method of the present invention is formed by a Ti diffusion method to form a polarization inversion structure.

【0023】先ず、図1Aに示すように、単分域化され
たLN基体1の+z(+c)面による主面1aに、Ti
を蒸着、スパッタ等によって数10Å程度に成膜し、こ
れをフォトリソグラフィによって最終的に得る分極周期
反転のパターンに対応する周期の平行ストライプパター
ンのTi金属層4を形成する。
First, as shown in FIG. 1A, Ti is deposited on the +z (+c) main surface 1a of the single-domain LN substrate 1.
A Ti metal layer 4 is formed in a parallel stripe pattern with a period corresponding to the pattern of polarization period inversion to be finally obtained by photolithography.

【0024】その後、酸素雰囲気中で1000〜110
0℃の熱処理による熱拡散処理を行い、Tiが拡散され
た部分に、最深部の深さdが例えば1μm以上10μm
以下程度、望ましくは3μm以上10μm以下の分極反
転構造部2の形成を行う。
[0024] Then, in an oxygen atmosphere, 1000 to 110
Thermal diffusion treatment is performed by heat treatment at 0°C, and the deepest part depth d is, for example, 1 μm or more and 10 μm in the part where Ti is diffused.
The polarization inversion structure portion 2 is formed to have a thickness of approximately 3 μm or more and 10 μm or less, preferably 3 μm or more and 10 μm or less.

【0025】その後、図1Bに示すように、LN基板1
の主面1a側から水性もしくは油性溶液中にダイアモン
ド粉を混入したダイアモンドスラリー、あるいはコロイ
ダルシリカによって機械的に、図1B中鎖線fで示す位
置まで、例えば1μm〜3μmの研磨厚をもって、分極
反転構造部2の最深部の深さdよりは浅く研磨する。こ
の場合、残存する反転構造部2の深さdp が1μm以
上例えば1〜2μmとなるように平滑に鏡面研磨する。 そして、この鏡面とされた新たに生じた平滑な鏡面1A
側から周知の例えば熱りん酸への浸漬、その後の熱処理
によるプロトン交換法によって光導波路3を形成する。
Thereafter, as shown in FIG. 1B, the LN substrate 1
The polarization-inverted structure is mechanically polished from the main surface 1a side of the main surface 1a to the position shown by the dashed line f in FIG. Polishing is performed to a depth shallower than the depth d of the deepest part of part 2. In this case, mirror polishing is performed so that the remaining inverted structure portion 2 has a depth dp of 1 μm or more, for example, 1 to 2 μm. And this newly created smooth mirror surface 1A
The optical waveguide 3 is formed from the side by a well-known proton exchange method, for example, by immersion in hot phosphoric acid and subsequent heat treatment.

【0026】実施例1 単分域化されたLN基板1にの+z面(+c面)より成
る主面1aに臨んでTi拡散により周期的分極反転構造
部2を反転最深部の深さdがLN基体1の主面1aから
4μmになるように形成した。
Example 1 A periodic polarization inversion structure 2 is inverted by Ti diffusion facing the main surface 1a consisting of the +z plane (+c plane) of a single-domain LN substrate 1. It was formed at a distance of 4 μm from the main surface 1a of the LN substrate 1.

【0027】その後に1/4μmのダイアモンド粉によ
るダイアモンドスラリーによる機械的研磨を行い、続い
て1/10μmの粒径のダイアモンドスラリーを用いて
研磨して全体として主面1aより3μmの深さをもって
研磨除去を行い平滑な鏡面1Aを形成した。
[0027] After that, mechanical polishing is performed using a diamond slurry made of 1/4 μm diamond powder, and then polishing is performed using a diamond slurry with a particle size of 1/10 μm, so that the entire surface is polished to a depth of 3 μm from the main surface 1a. After removal, a smooth mirror surface 1A was formed.

【0028】その後プロトン交換法によるチャンネル型
の即ちストライプ状の光導波路3を形成した。この導波
路に866nmの近赤外レーザ光を導波させることによ
り導波モードで0.5mWの青色レーザ光が得られた。 この場合、発生した青色光の放射モードはほとんど観測
されなかった。
Thereafter, a channel-type, ie, striped, optical waveguide 3 was formed by the proton exchange method. By guiding a near-infrared laser beam of 866 nm through this waveguide, a blue laser beam of 0.5 mW was obtained in the waveguide mode. In this case, the emission mode of the generated blue light was hardly observed.

【0029】上述した実施例1においては、Ti拡散法
によって分極反転構造部2を形成した場合であるが、例
えばSiO2 マスク層を所定のパターンに形成し熱処
理を行うことによってLi2 O外拡散を行って周期的
分極反転構造部を形成して実施例1におけると同様の研
磨及び光導波路の形成を行うこともできる。尚、上述し
た例においては、非線型光学結晶にプロトン交換法によ
って光導波路を形成した光導波路型SHG素子を得るよ
うにした場合であるが、チェレンコフ放射型の光導波路
型SHG  素子を得る場合に本発明を適用することも
できる。
In the first embodiment described above, the polarization inversion structure 2 is formed by the Ti diffusion method, but for example, Li2O is diffused out by forming a SiO2 mask layer in a predetermined pattern and performing heat treatment. It is also possible to form a periodic polarization inversion structure and perform the same polishing and optical waveguide formation as in Example 1. In the above example, an optical waveguide type SHG element is obtained in which an optical waveguide is formed in a nonlinear optical crystal by a proton exchange method, but when obtaining a Cerenkov radiation type optical waveguide type SHG element, The present invention can also be applied.

【0030】また、上述した例においては、ダイアモン
ドスラリーあるいはコロイダルシリカによる機械的研磨
によって分極反転構造部の表面の除去を行うようにした
場合であるが、機械的研磨と同時に化学的エッチングを
行ういわゆる機械化学的研磨法によって分極反転構造の
表面層の除去を行うこともできる。
In the above example, the surface of the polarization inversion structure is removed by mechanical polishing using diamond slurry or colloidal silica. The surface layer of the polarization inversion structure can also be removed by a mechanochemical polishing method.

【0031】[0031]

【発明の効果】上述したように本発明においては、Ti
拡散法あるいはLi2 O外拡散法によって形成した分
極反転構造部の表面層を機械的に除去して鏡面化するよ
うしたことによって表面性が均一化されるので、その後
のプロトン交換によって形成した光導波路3は、その全
長にわたって均質一様な光導波路として形成することが
できる。
Effects of the Invention As mentioned above, in the present invention, Ti
By mechanically removing the surface layer of the polarization-inverted structure formed by the diffusion method or the Li2O out-diffusion method and making it mirror-finished, the surface properties are made uniform, so that the optical waveguide formed by subsequent proton exchange can be 3 can be formed as a homogeneous optical waveguide over its entire length.

【0032】これによって基本波の伝搬損失の大幅な低
減化と、導波パワーの増大化、SHG変換効率の向上、
放射モードの改善、スポット形状の改善等がはかれると
いう実用上優れた特性を有する光導波路型SHG素子を
確実に得ることができる。
[0032] As a result, fundamental wave propagation loss is significantly reduced, waveguide power is increased, SHG conversion efficiency is improved,
It is possible to reliably obtain an optical waveguide type SHG element having practically excellent characteristics such as improved radiation mode and improved spot shape.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明製法の一実施例の工程図である。FIG. 1 is a process diagram of one embodiment of the production method of the present invention.

【図2】従来製法の分極反転法の工程図である。FIG. 2 is a process diagram of a conventional polarization inversion method.

【図3】SHG素子の光路の平面図及び断面図である。FIG. 3 is a plan view and a cross-sectional view of an optical path of an SHG element.

【図4】従来のSHG素子の放射モードのパターン図で
ある。
FIG. 4 is a pattern diagram of a radiation mode of a conventional SHG element.

【図5】従来製法によって得た光導波路型SHG素子の
断面図である。
FIG. 5 is a cross-sectional view of an optical waveguide type SHG element obtained by a conventional manufacturing method.

【符号の説明】[Explanation of symbols]

1  LiNbO3 基体 2  分極反転構造部 3  光導波路 1 LiNbO3 base 2 Polarization inversion structure part 3 Optical waveguide

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  LiNbO3 基体表面に、Ti拡散
、あるいはLi2 O外拡散法により分極反転構造部を
形成する工程と、その後上記分極反転構造部の表面層を
除去する機械的研磨を含む鏡面研磨工程と、その後該鏡
面側に光導波路3を形成することを特徴とする光導波路
型光第2高調波発生素子の製法。
1. A step of forming a polarization inversion structure on the surface of a LiNbO3 substrate by Ti diffusion or Li2O out-diffusion, and a mirror polishing step that includes mechanical polishing to remove the surface layer of the polarization inversion structure. A method for manufacturing an optical waveguide type optical second harmonic generating element, which comprises: and then forming an optical waveguide 3 on the mirror surface side.
JP3063467A 1991-03-27 1991-03-27 Manufactuer of optical wave guide type optical element generatingf second harmonics Pending JPH04296829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3063467A JPH04296829A (en) 1991-03-27 1991-03-27 Manufactuer of optical wave guide type optical element generatingf second harmonics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3063467A JPH04296829A (en) 1991-03-27 1991-03-27 Manufactuer of optical wave guide type optical element generatingf second harmonics

Publications (1)

Publication Number Publication Date
JPH04296829A true JPH04296829A (en) 1992-10-21

Family

ID=13230075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3063467A Pending JPH04296829A (en) 1991-03-27 1991-03-27 Manufactuer of optical wave guide type optical element generatingf second harmonics

Country Status (1)

Country Link
JP (1) JPH04296829A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100766413B1 (en) * 2006-05-12 2007-10-12 국방과학연구소 Fabrication method of integrated optic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100766413B1 (en) * 2006-05-12 2007-10-12 국방과학연구소 Fabrication method of integrated optic device

Similar Documents

Publication Publication Date Title
US5249191A (en) Waveguide type second-harmonic generation element and method of producing the same
JP5235994B2 (en) Ferroelectric domain inversion method
JP3052501B2 (en) Manufacturing method of wavelength conversion element
US7170671B2 (en) High efficiency wavelength converters
JPH0523413B2 (en)
JPH04296829A (en) Manufactuer of optical wave guide type optical element generatingf second harmonics
US5218661A (en) Device for doubling the frequency of a light wave
JP4578710B2 (en) Method of creating domain-inverted structure by femtosecond laser irradiation
JPS6170541A (en) Thin film type optical element and its manufacture
JPH04254835A (en) Light wavelength conversion element and laser beam source utilizing the element
JP2765112B2 (en) Optical waveguide device, optical wavelength conversion element, and short wavelength laser light source
JPH03191332A (en) Production of optical waveguide and optical wavelength converting element
JP2921207B2 (en) Optical wavelength conversion element and method of manufacturing the same
JPS60133405A (en) Formation of pattern
JP2660217B2 (en) Manufacturing method of wavelength conversion element
JP2921209B2 (en) Manufacturing method of wavelength conversion element
JPH05107421A (en) Method of forming partial polarization inverting layer and manufacture of second harmonic wave generating element
JPH04264534A (en) Production of wavelength converting element
JPH0827471B2 (en) Method of manufacturing thin film type optical element
JP3006217B2 (en) Optical wavelength conversion element and method of manufacturing the same
JPS60216335A (en) Preparation of shifting element of wavelength of light
JPS60133406A (en) Formation of pattern
JPH06230445A (en) Production of periodic polarization inversion structure and production of wavelength conversion element
JPH07253603A (en) Second harmonic generating element
JPH06342111A (en) Production of polarization inversion layer and wavelength conversion element