JPH04296512A - Fiber reinforced material - Google Patents

Fiber reinforced material

Info

Publication number
JPH04296512A
JPH04296512A JP3084460A JP8446091A JPH04296512A JP H04296512 A JPH04296512 A JP H04296512A JP 3084460 A JP3084460 A JP 3084460A JP 8446091 A JP8446091 A JP 8446091A JP H04296512 A JPH04296512 A JP H04296512A
Authority
JP
Japan
Prior art keywords
fiber
fiber reinforcement
fibers
stress
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3084460A
Other languages
Japanese (ja)
Other versions
JP2606472B2 (en
Inventor
Katsuro Obata
小畠 克朗
Kozo Kimura
耕三 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP3084460A priority Critical patent/JP2606472B2/en
Publication of JPH04296512A publication Critical patent/JPH04296512A/en
Application granted granted Critical
Publication of JP2606472B2 publication Critical patent/JP2606472B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reinforcement Elements For Buildings (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Abstract

PURPOSE:To provide a fiber reinforced concrete rod having a high strength corresponding to its cross-section and being bearable with a large breaking loads even when the rod has a large diameter. CONSTITUTION:A fiber reinforced material 1 is constructed such that high strength such as carbon fiber or aramid fiber is aligned in one direction and then made into a rod-shape by allowing resin to be impregnated therein, and multiple circumferential grooves 2a-2c provided in the material end part, and further the depth of the circumferential grooves 2a-2c is made successively deeper to the material end part.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、コンクリート躯体内
等に埋設されて、特に引張力に対する補強材として使用
される繊維補強材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber reinforcing material which is buried within a concrete structure and used as a reinforcing material particularly against tensile forces.

【0002】0002

【従来の技術】近時、コンクリート構造物にあっては、
各種繊維素材を、鋼材に代わる補強材として適用するこ
とが盛んであり、例えば炭素繊維やアラミド繊維などの
高強度繊維をプルトルージョン法により一方向に引揃え
、樹脂を含浸させてロッド状とした繊維補強材が知られ
ている。そうした繊維補強材は、鋼材をはるかにしのぐ
耐久性と強靭さ等を発揮するので、コンクリートの補強
材として注目を集めている。
[Prior Art] Recently, in concrete structures,
Various fiber materials are often used as reinforcing materials in place of steel. For example, high-strength fibers such as carbon fibers and aramid fibers are aligned in one direction using the pultrusion method, impregnated with resin, and made into rod shapes. Fiber reinforcement materials are known. Such fiber reinforcement materials exhibit durability and toughness that far exceed those of steel materials, so they are attracting attention as reinforcement materials for concrete.

【0003】ところで、この繊維素材は表面が平滑であ
り、コンクリートとの付着性に難がある。このため繊維
補強材としては、複数の長繊維を組み紐状に編むなど、
表層に凹凸を施すことが行われており、このような手法
により付着性の向上が図られている。
[0003] However, this fiber material has a smooth surface and has difficulty adhering to concrete. For this reason, fiber reinforcing materials such as braiding multiple long fibers in the form of a braid are recommended.
The surface layer is made uneven, and this method is used to improve adhesion.

【0004】0004

【発明が解決しようとする課題】しかしながら、従来の
繊維補強材にあっては、作用外力は一般に表層に位置す
る繊維から徐々に中心部側の繊維に伝達されるという挙
動を呈し、従って発生する応力は、表層に比して中央部
で小さくなり、このため中央部の繊維が破断限界に至る
前でも表層の繊維が破断することがある。すなわち、補
強材としての繊維材の破断限界を向上するために、たと
え外径を太くしたとしても、設定した破断荷重以前に表
層の繊維が早々と破断に至ることとなり、単に補強材の
外径を太径にしても、中央部の繊維が強度向上に寄与し
なかった。換言すれば、外径寸法つまり断面積は、強度
性能の向上に比例的には相関せず限界があって、繊維素
材の本来的な強度性能を充分に発揮させることができな
いという問題があった。
[Problem to be Solved by the Invention] However, in conventional fiber reinforcement materials, the acting external force generally exhibits a behavior in which it is gradually transmitted from the fibers located in the surface layer to the fibers in the center, and therefore, the external force is generated. The stress is smaller in the center than in the surface layer, so that the fibers in the surface layer may break even before the fibers in the center reach their breaking limit. In other words, even if the outer diameter is increased in order to improve the breaking limit of the reinforcing material, the fibers in the surface layer will quickly break before the set breaking load, and the outer diameter of the reinforcing material will simply increase. Even if the diameter was increased, the fibers in the center did not contribute to improving the strength. In other words, the outer diameter dimension, that is, the cross-sectional area, does not correlate proportionally with the improvement of strength performance and has a limit, making it impossible to fully demonstrate the inherent strength performance of the fiber material. .

【0005】なお、繊維素材の本来的な強度性能を比較
的ムダなく発揮させることができる限界は、今のところ
外径が10mm程度のものである。そして、より高強度
な繊維補強材を得るためには、外径が5mm程度の単線
を多数、撚り合せるようにしているが、このような撚合
せ構造では、単線相互間に隙間が生ずることを避けるこ
とはできず、外径が極めて大きくなってしまうと共に、
繊維の強度を十分に発揮させることができなかった。
[0005] At present, the outer diameter of the fiber material is about 10 mm, which is the limit at which the inherent strength performance of the fiber material can be exhibited in a relatively wasteful manner. In order to obtain a fiber reinforcement material with higher strength, a large number of single wires with an outer diameter of about 5 mm are twisted together, but in such a twisted structure, gaps are created between the single wires. Unavoidable, the outer diameter becomes extremely large, and
It was not possible to fully demonstrate the strength of the fibers.

【0006】この発明は、上記のような背景に鑑みてな
されたものであり、太径化してもその断面積に見合った
強度性能を発揮させることができ、破断荷重を格段に向
上させることができる高強度な繊維補強材の提供をその
目的とする。
The present invention was made in view of the above background, and it is possible to exhibit strength performance commensurate with the cross-sectional area even when the diameter is increased, and it is possible to significantly improve the breaking load. The purpose is to provide a high-strength fiber reinforcing material.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
この発明は、炭素繊維やアラミド繊維などの高強度繊維
に樹脂を含浸させてロッド状に形成した繊維補強材にお
いて、引張力が入力される部分に、材軸方向に間隔を隔
てて複数の凹凸部を並設したことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a fiber reinforcing material formed into a rod shape by impregnating high-strength fibers such as carbon fibers and aramid fibers with a resin, in which tensile force is input. The material is characterized in that a plurality of concave and convex portions are arranged in parallel at intervals in the direction of the material axis.

【0008】また上記並設される凹部の深さが、材端方
向に向かうに従って順次深く形成されていることを特徴
とする。
[0008] Furthermore, the depth of the recesses arranged in parallel is gradually increased toward the end of the material.

【0009】[0009]

【作用】本発明の作用について述べると、隣接する凹凸
部間にフランジが区画形成されて、このフランジが、入
力される引張力を受けることになる。そして、フランジ
で受け止められた作用外力は、凹部の底部、即ち繊維補
強材の表層よりも深い中心部に応力を生じさせることと
なり、発生応力を直接繊維補強材の中心部に負担させる
ことができる。また、凹部の深さが、材端側でより深く
形成されるので、材端側で繊維補強材の中心部に応力を
発生させつつ、材端側から材軸方向に沿って次第に繊維
補強材の表層側へ向かって発生応力の負担を分散させる
ことができ、繊維補強材に発生する応力分布を、断面全
体に亘って均一化させることができる。
[Operation] Regarding the operation of the present invention, a flange is defined between adjacent concave and convex portions, and this flange receives an input tensile force. The external force received by the flange generates stress at the bottom of the recess, that is, at the center deeper than the surface layer of the fiber reinforcement, and the generated stress can be directly borne by the center of the fiber reinforcement. . In addition, since the depth of the recess is deeper on the material end side, stress is generated in the center of the fiber reinforcement material on the material end side, and the fiber reinforcement material gradually increases from the material end side along the material axis direction. The burden of generated stress can be distributed toward the surface layer side of the fiber reinforcement material, and the stress distribution generated in the fiber reinforcement material can be made uniform over the entire cross section.

【0010】0010

【実施例】以下、この発明の実施例を、添付図面を参照
しながら説明する。図1は、本発明による繊維補強材の
好適な一実施例を示す一部破断側面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a partially cutaway side view showing a preferred embodiment of the fiber reinforcement material according to the present invention.

【0011】この繊維補強材1は、炭素繊維やアラミド
繊維などの高強度繊維をプルトルージョン法により一方
向に引揃え、樹脂を含浸させてロッド状としたものであ
り、本実施例にあっては基本的には、その材端部周面に
凹凸部、具体的には周回溝2a〜2cを多段に設けると
共に、それら周回溝2a〜2cの深さは、材端側に向か
って順次、より深溝となす構成がとられ、本実施例では
周回溝2a〜2cは三段設けられている。
This fiber reinforcing material 1 is made into a rod shape by aligning high-strength fibers such as carbon fibers and aramid fibers in one direction by the pultrusion method and impregnating them with resin. Basically, uneven portions, specifically circumferential grooves 2a to 2c, are provided in multiple stages on the circumferential surface of the material end, and the depths of these circumferential grooves 2a to 2c are sequentially set toward the material end. A configuration with deeper grooves is adopted, and in this embodiment, the circumferential grooves 2a to 2c are provided in three stages.

【0012】なお、周回溝2a〜2cは、繊維補強材1
の周面を旋盤で切削するなど適宜方法により形成される
[0012] The circumferential grooves 2a to 2c are formed using the fiber reinforcing material 1.
It is formed by an appropriate method such as cutting the peripheral surface with a lathe.

【0013】図2は、図1のものをコンクリート構造物
に緊張材として適用した例を示しており、また各部にお
ける応力分布も併せて概略的に示されている。
FIG. 2 shows an example in which the material shown in FIG. 1 is applied to a concrete structure as a tendon material, and also schematically shows the stress distribution in each part.

【0014】この適用例は、円筒形状の定着スリーブ3
を介装して構成した例であり、繊維補強材1は、その端
部に定着スリーブ3が被せられ、その隙間に樹脂やモル
タル等のグラウト材4が充填される。もちろん定着に際
しては、繊維補強材1には引張力Tが加えられる。この
場合、引張力Tの作用により、定着スリーブ3の外周ネ
ジ部に歯合させた止めナット5がコンクリート躯体6に
当接されて、定着スリーブ3がコンクリート躯体6に係
止される。
This application example uses a cylindrical fixing sleeve 3.
This is an example in which a fixing sleeve 3 is placed on the end of the fiber reinforcing material 1, and a grouting material 4 such as resin or mortar is filled in the gap therebetween. Of course, during fixing, a tensile force T is applied to the fiber reinforcing material 1. In this case, due to the action of the tensile force T, the fixing nut 5 meshed with the outer circumferential threaded portion of the fixing sleeve 3 comes into contact with the concrete body 6, and the fixing sleeve 3 is locked to the concrete body 6.

【0015】このような構成によれば、繊維補強材1は
、多段に設けた周回溝2a〜2cの隣り合う間がフラン
ジ12a〜12cを成し、このフランジ12a〜12c
が引張力Tを受けることになり、周回溝2a〜2cの底
部、つまり繊維補強材1の中心部20a〜20cに応力
が生ずることになる。即ち、フランジ12a〜12cで
受け止められた引張力Tは、周回溝2a〜2cの底部、
即ち繊維補強材1の表層よりも深い中心部20a〜20
cに応力を生じさせることとなり、発生応力を直接繊維
補強材1の中心部20a〜20cに負担させることがで
きる。また、周回溝2a〜2cの深さが、材端側でより
深く形成されるので、材端側で繊維補強材1の中心部2
0a〜20cに応力を発生させつつ、材端側から材軸方
向に沿って次第に繊維補強材1の表層側へ向かって発生
応力の負担を分散させることができ、繊維補強材1に発
生する応力分布を、断面全体に亘って均一化させること
ができる。したがって、太径化してもその断面積に見合
った強度性能を発揮させることができ、破断荷重を格段
と大きくできて高強度を得ることができる。
According to such a structure, in the fiber reinforcing material 1, the spaces between adjacent circumferential grooves 2a to 2c provided in multiple stages form flanges 12a to 12c, and the flanges 12a to 12c
is subjected to the tensile force T, and stress is generated at the bottoms of the circumferential grooves 2a to 2c, that is, at the center portions 20a to 20c of the fiber reinforcing material 1. That is, the tensile force T received by the flanges 12a to 12c is applied to the bottoms of the circumferential grooves 2a to 2c,
That is, the central portions 20a to 20 deeper than the surface layer of the fiber reinforcing material 1
c, and the generated stress can be directly borne by the central portions 20a to 20c of the fiber reinforcing material 1. Moreover, since the depth of the circumferential grooves 2a to 2c is deeper on the material end side, the central part of the fiber reinforcement material 1 is formed on the material end side.
While generating stress at 0a to 20c, the stress generated in the fiber reinforcement material 1 can be gradually distributed from the material end side toward the surface layer side of the fiber reinforcement material 1 along the material axis direction, thereby reducing the stress generated in the fiber reinforcement material 1. The distribution can be made uniform over the entire cross section. Therefore, even if the diameter is increased, strength performance commensurate with the cross-sectional area can be exhibited, the breaking load can be significantly increased, and high strength can be obtained.

【0016】また上記構成によれば、高強度を得るため
の撚合せ構造等、従来の手法は不必要であり、超高強度
部材の製作およびその施工において省力化を図れる。
Further, according to the above structure, conventional methods such as a twisted structure for obtaining high strength are unnecessary, and labor can be saved in manufacturing and constructing an ultra-high strength member.

【0017】なお、図2に示す適用例では定着スリーブ
3を介装して構成したが、これに限定されるものではな
い。すなわち、定着スリーブ3を用いずに直接コンクリ
ート躯体6に埋設しても良く、またアンカー筋と組合せ
るなど適宜であり、そうした適用においても同様の作用
効果を奏することは言うまでもない。
Although the application example shown in FIG. 2 is constructed with the fixing sleeve 3 interposed, the present invention is not limited to this. That is, it may be directly buried in the concrete frame 6 without using the fixing sleeve 3, or may be combined with anchor bars as appropriate, and it goes without saying that similar effects can be achieved in such applications.

【0018】上記実施例では、凹凸部を、繊維材の表面
から切削して形成した周回溝で構成するようにしたが、
繊維材の表面に別途炭素繊維等の繊維材を周方向に且つ
材軸方向に多段に設けるなどして、凹凸部を形成するよ
うにしても良く、このような構成であっても、同様な効
果を発揮する。
[0018] In the above embodiment, the uneven portion is formed by a circumferential groove cut from the surface of the fiber material.
The surface of the fibrous material may be provided with a fibrous material such as carbon fiber in multiple stages in the circumferential direction and in the axial direction of the material to form an uneven portion. be effective.

【0019】[0019]

【発明の効果】以上実施例で詳細に説明したように、こ
の発明にかかる繊維補強材によれば、隣接する凹凸部間
にフランジを区画形成して、このフランジにより入力さ
れる引張力を受けることになる。そして、フランジで受
け止められた作用外力は、凹部の底部、即ち繊維補強材
の表層よりも深い中心部に応力を生じさせることとなり
、発生応力を直接繊維補強材の中心部に負担させること
ができる。また、凹部の深さが、材端側でより深く形成
されるので、材端側で繊維補強材の中心部に応力を発生
させつつ、材端側から材軸方向に沿って次第に繊維補強
材の表層側へ向かって発生応力の負担を分散させること
ができ、繊維補強材に発生する応力分布を、断面全体に
亘って均一化させることができる。従って、繊維補強材
を太径化してもその断面積に見合った強度性能を発揮さ
せることができ、破断荷重を格段に大きくできて、高強
度を得ることができる。
Effects of the Invention As explained in detail in the embodiments above, according to the fiber reinforcing material of the present invention, a flange is formed between adjacent uneven portions, and the tensile force inputted by the flange is received. It turns out. The external force received by the flange generates stress at the bottom of the recess, that is, at the center deeper than the surface layer of the fiber reinforcement, and the generated stress can be directly borne by the center of the fiber reinforcement. . In addition, since the depth of the recess is deeper on the material end side, stress is generated in the center of the fiber reinforcement material on the material end side, and the fiber reinforcement material gradually increases from the material end side along the material axis direction. The burden of generated stress can be distributed toward the surface layer side of the fiber reinforcement material, and the stress distribution generated in the fiber reinforcement material can be made uniform over the entire cross section. Therefore, even if the diameter of the fiber reinforcing material is increased, strength performance commensurate with its cross-sectional area can be exhibited, the breaking load can be significantly increased, and high strength can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例を示す一部破断側面図である
FIG. 1 is a partially cutaway side view showing an embodiment of the present invention.

【図2】図1のものを緊張材とした適用例を示すと共に
、その応力分布を説明する図である。
FIG. 2 is a diagram showing an example of application of the tension material shown in FIG. 1 and explaining its stress distribution.

【符号の説明】[Explanation of symbols]

1  繊維補強材 2  周回溝 1 Fiber reinforcement material 2 Circumferential groove

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  炭素繊維やアラミド繊維などの高強度
繊維に樹脂を含浸させてロッド状に形成した繊維補強材
において、引張力が入力される部分に、材軸方向に間隔
を隔てて複数の凹凸部を並設したことを特徴とする繊維
補強材。
Claim 1: In a fiber reinforcement material made of high-strength fibers such as carbon fibers or aramid fibers impregnated with resin and formed into a rod shape, a plurality of fiber reinforcements are provided at intervals in the axial direction of the material in the part where tensile force is input. A fiber reinforcement material characterized by having uneven parts arranged side by side.
【請求項2】  上記並設される凹部の深さが、材端方
向に向かうに従って順次深く形成されていることを特徴
とする請求項1記載の繊維補強材。
2. The fiber reinforcing material according to claim 1, wherein the depths of the recesses arranged in parallel are gradually increased toward the end of the material.
JP3084460A 1991-03-26 1991-03-26 Fiber reinforcement Expired - Fee Related JP2606472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3084460A JP2606472B2 (en) 1991-03-26 1991-03-26 Fiber reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3084460A JP2606472B2 (en) 1991-03-26 1991-03-26 Fiber reinforcement

Publications (2)

Publication Number Publication Date
JPH04296512A true JPH04296512A (en) 1992-10-20
JP2606472B2 JP2606472B2 (en) 1997-05-07

Family

ID=13831239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3084460A Expired - Fee Related JP2606472B2 (en) 1991-03-26 1991-03-26 Fiber reinforcement

Country Status (1)

Country Link
JP (1) JP2606472B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111070735A (en) * 2019-12-30 2020-04-28 扬州大学 Preparation and application method of prestressed shape memory alloy-continuous fiber composite bar

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2425883A (en) * 1941-08-08 1947-08-19 John G Jackson Concrete structural element reinforced with glass filaments
JPS61274036A (en) * 1985-04-26 1986-12-04 ソシエテ・ナシヨナル・ド・ラミアント Structural rod and reinforced structural member

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2425883A (en) * 1941-08-08 1947-08-19 John G Jackson Concrete structural element reinforced with glass filaments
JPS61274036A (en) * 1985-04-26 1986-12-04 ソシエテ・ナシヨナル・ド・ラミアント Structural rod and reinforced structural member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111070735A (en) * 2019-12-30 2020-04-28 扬州大学 Preparation and application method of prestressed shape memory alloy-continuous fiber composite bar

Also Published As

Publication number Publication date
JP2606472B2 (en) 1997-05-07

Similar Documents

Publication Publication Date Title
US6060163A (en) Optimized geometries of fiber reinforcement of cement, ceramic and polymeric based composites
AU2008271894B2 (en) Arrangement for connecting an elongate element to a further component
JP2023071791A (en) Joint structure of precast concrete slab
JPH06240998A (en) Fixing device of cylindrical tension member consisting of fiber composite material and fixing member used for said device
JP2884465B2 (en) Terminal fixing structure of FRP reinforcement
DE102007037951A1 (en) Concrete composite column for multi-storey building construction, has support core comprising high performance concrete, which is partly or completely surrounded by coating layer from normal-fixed concrete
JP2000054646A (en) Device for reinforcing concrete columnar body
JPH04296512A (en) Fiber reinforced material
EP4265863A1 (en) Fixing implement and pre-stressed concrete
EP2417310B1 (en) Reinforcement element for structural concrete construction
GB2255354A (en) Strand anchorage
RU2684699C1 (en) Grid shell from composition materials
KR101455716B1 (en) Nozzle, Method and Apparatus for Manufacturing of FRP Bar Using Rotational Nozzle Structure
US2298102A (en) Reinforced concrete
KR102554723B1 (en) CFRP bar to prevent deterioration of rib attachment ability and method thereof
EP3705657B1 (en) Textile reinforcing structure for a component, method for producing a reinforcing structure, component and semi-finished part
JP3121424U (en) Carbon fiber concrete reinforcement
KR102608870B1 (en) A concrete electric pole that is easy to fix the tension member and a method for fixing the tensile member of the concrete electric pole
JP6715875B2 (en) blade
JP2023109654A (en) Cfrp reinforcement and reinforced concrete structure with cfrp reinforcement
JP3706382B2 (en) Supporting stress dispersion member, tension anchor, and prestressed concrete
JP2009185488A (en) Precast concrete beam
JPH01290414A (en) Stretching member made of fiber reinforced resin composite body
RU2122088C1 (en) Gear to join stressed reinforcement bundles
JPH01290415A (en) Stretching member made of fiber reinforced resin composite body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees