JPH04296485A - Ceramic heater - Google Patents

Ceramic heater

Info

Publication number
JPH04296485A
JPH04296485A JP8457091A JP8457091A JPH04296485A JP H04296485 A JPH04296485 A JP H04296485A JP 8457091 A JP8457091 A JP 8457091A JP 8457091 A JP8457091 A JP 8457091A JP H04296485 A JPH04296485 A JP H04296485A
Authority
JP
Japan
Prior art keywords
terminal
heat
metal plate
ceramic
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8457091A
Other languages
Japanese (ja)
Other versions
JPH0727797B2 (en
Inventor
▲昇▼ 和宏
Kazuhiro Nobori
Ryusuke Ushigoe
牛越 隆介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP8457091A priority Critical patent/JPH0727797B2/en
Publication of JPH04296485A publication Critical patent/JPH04296485A/en
Publication of JPH0727797B2 publication Critical patent/JPH0727797B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Surface Heating Bodies (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To provide a ceramic heater in which the connecting part between the terminal of a resistant heating element and an electrode member is excellent in durability and reliability by using a brazing filler metal containing titanium component. CONSTITUTION:A heat resisting metal plate 5 is joined between the terminal of a resistance heating element 2 and an electrode member 4 by a titanium evaporated brazing filler metal. Thus, the heat resisting metal plate 5 and a ceramic base body 1 are firmly joined to each other by the diffusive joining of Ti in the titanium evaporated brazing filler metal. The heat resisting metal plate 5 and the terminal 3 are also firmly joined to each other by the diffusive joining of Ti. Therefore, the sealing property of the connecting part between the terminal 3 and the electrode member 4 by corrosive gas or heat is enhanced, the deterioration can be prevented, and the durability and reliability of a heater can be improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、プラズマCVD 、減
圧CVD 、プラズマエッチング、光エッチング装置等
に好適に使用されるセラミックスヒーターに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic heater suitable for use in plasma CVD, low pressure CVD, plasma etching, photoetching equipment, and the like.

【0002】0002

【従来の技術】スーパークリーン状態を必要とする半導
体製造用装置では、デポジション用ガス、エッチング用
ガス、クリーニング用ガスとして塩素系ガス、弗素系ガ
ス等の腐食性ガスが使用されている。このため、ウエハ
ーをこれらの腐食性ガスに接触させた状態で加熱するた
めの加熱装置として、抵抗発熱体の表面をステンレスス
チール、インコネル等の金属により被覆した従来のヒー
ターを使用すると、これらのガスの曝露によって、塩化
物、酸化物、弗化物等の粒径数μm の、好ましくない
パーティクルが発生する。
2. Description of the Related Art Corrosive gases such as chlorine-based gases and fluorine-based gases are used as deposition gases, etching gases, and cleaning gases in semiconductor manufacturing equipment that requires super-clean conditions. For this reason, if a conventional heater with a resistance heating element coated with a metal such as stainless steel or Inconel is used as a heating device to heat the wafer while it is in contact with these corrosive gases, the Exposure to these substances generates undesirable particles of chlorides, oxides, fluorides, etc. with a particle size of several μm.

【0003】そこで図1に示されるように、デポジショ
ン用ガス等に曝露される容器26の外側に赤外線ランプ
47を設置し、容器外壁に赤外線透過窓46を設け、グ
ラファイト等の耐食性良好な材質からなる被加熱体48
に赤外線を放射し、被加熱体48の上面に置かれたウエ
ハーを加熱する、間接加熱方式のウエハー加熱装置が開
発されている。ところがこの方式のものは、直接加熱式
のものに比較して熱損失が大きいこと、温度上昇に時間
がかかること、赤外線透過窓46へのCVD 膜の付着
により赤外線の透過が次第に妨げられ、赤外線透過窓4
6で熱吸収が生じて窓が加熱すること等の問題があった
Therefore, as shown in FIG. 1, an infrared lamp 47 is installed on the outside of the container 26 that is exposed to the deposition gas, an infrared transmitting window 46 is provided on the outer wall of the container, and the container is made of a material with good corrosion resistance such as graphite. A heated body 48 consisting of
An indirect heating type wafer heating device has been developed that radiates infrared rays to heat a wafer placed on the top surface of the object to be heated 48. However, with this type, the heat loss is greater than with the direct heating type, it takes time to raise the temperature, and the CVD film attached to the infrared transmitting window 46 gradually blocks the transmission of infrared rays. Transparent window 4
6, there were problems such as heat absorption and heating of the window.

【0004】0004

【発明が解決しようとする課題】セラミックス基体内に
埋設するコイルは、セラミックス基体の熱膨張係数及び
焼結温度に対する熱膨張係数及び融点の観点から耐熱高
融点金属に限定される。熱膨張係数は、セラミックス基
体としてSi3N4 を例にとると 2.8×10−6
℃−1であり、コイルとして使用できるW、Mo及びP
tの熱膨張係数は夫々4.58×10−6℃−1、5.
10×10−6℃−1及び10.1×10−6℃−1で
あり、Si3N4 の焼結温度は1850℃、W、Mo
及びPtの融点は夫々3380℃、2610℃及び17
69℃である。セラミックス基体の製造にあたっては、
Si3N4 を例にとると、Si3N4 成形体中にコ
イルを埋設し、1850℃で焼結するため、焼結温度で
コイルが溶融したり劣化したりしては不可である。また
、Ptは熱膨張が Si3N4から大きくずれており、
かつ融点が1760℃と低く、W、Mo、W/Mo合金
が好ましい。然し、メタル膜以外の絶縁膜をプラズマC
VD、熱CVD、バイアスECRプラズマCVD、スパ
ッタで生成する場合、その雰囲気ガスとしてO2、N2
を用い、最高1200℃程度までヒーターを昇温する。 その場合現在のセラミックスヒーターの製造方法では、
ホットプレス焼結後、表面を研削加工し、タングステン
等の電極端子表面を削り出す。また、W、Moコイルは
 Si3N4から熱膨張がずれているため、焼結後コイ
ルと Si3N4基体との間に隙間ができる。従って、
W、Mo等高融点金属では、O2等より酸化され、ヒー
ター表面の電極棒接続箇所及びコイルと Si3N4基
体との隙間にO2が拡散して酸化タングステン、酸化モ
リブデンが生成し、ヒーターが劣化する。このため、ヒ
ーターとして機能しなくなる欠点があった。
The coil to be embedded in the ceramic substrate is limited to heat-resistant, high-melting point metals from the viewpoint of the thermal expansion coefficient and melting point relative to the thermal expansion coefficient and sintering temperature of the ceramic substrate. Taking Si3N4 as an example of a ceramic substrate, the coefficient of thermal expansion is 2.8×10-6
℃-1 and can be used as a coil W, Mo and P
The thermal expansion coefficients of t are 4.58×10-6°C-1 and 5.
10 × 10-6 °C-1 and 10.1 × 10-6 °C-1, the sintering temperature of Si3N4 is 1850 °C, W, Mo
The melting points of Pt and Pt are 3380°C, 2610°C and 17°C, respectively.
It is 69°C. When manufacturing ceramic substrates,
Taking Si3N4 as an example, since the coil is embedded in the Si3N4 molded body and sintered at 1850°C, it is impossible if the coil melts or deteriorates at the sintering temperature. In addition, the thermal expansion of Pt is significantly different from that of Si3N4,
In addition, since the melting point is as low as 1760° C., W, Mo, and W/Mo alloys are preferable. However, insulating films other than metal films can be exposed to plasma C.
When generated by VD, thermal CVD, bias ECR plasma CVD, or sputtering, O2, N2 is used as the atmospheric gas.
Raise the temperature of the heater to a maximum of about 1200°C. In that case, with the current manufacturing method of ceramic heaters,
After hot press sintering, the surface is ground and the surface of the electrode terminal made of tungsten, etc. is carved out. Furthermore, since the thermal expansion of the W and Mo coils is different from that of Si3N4, a gap is created between the coil and the Si3N4 substrate after sintering. Therefore,
High melting point metals such as W and Mo are oxidized by O2, etc., and O2 diffuses into the electrode rod connection area on the heater surface and the gap between the coil and the Si3N4 base, producing tungsten oxide and molybdenum oxide, which deteriorates the heater. For this reason, there was a drawback that it no longer functions as a heater.

【0005】本発明の課題は、半導体製造装置等のよう
な高温、酸化性腐食性ガスを使用する装置において、装
置内の汚染や熱効率の低下を防止でき、しかも抵抗発熱
体の端子と電極部材との結合部分が耐久性、信頼性に優
れたセラミックスヒーターを提供することである。
An object of the present invention is to prevent contamination within the equipment and decrease in thermal efficiency in equipment such as semiconductor manufacturing equipment that uses high temperature, oxidizing and corrosive gas, and to prevent terminals and electrode members of resistance heating elements. The aim is to provide a ceramic heater with excellent durability and reliability.

【0006】本発明は、セラミックス基体と、前記セラ
ミックス基体の内部に埋設された抵抗発熱体と、前記抵
抗発熱体の端部に設けられて前記セラミックス基体の表
面へと露出する端子と、前記端子及び前記セラミックス
基体の表面上に設けられてチタン成分を含むろうにより
前記端子及び前記セラミックス基体に接合された耐熱金
属板と、前記耐熱金属板上に機械的に結合された電極部
材とを有することを特徴とするセラミックスヒーターで
ある。普通、酸化され難いコバール等の耐熱金属板を用
い、端子表面にろう付けし、耐熱金属板の表面に雌ネジ
を切り、雄ネジのステンレス等の電極棒を機械的に固定
する。
The present invention provides a ceramic substrate, a resistance heating element buried inside the ceramic substrate, a terminal provided at an end of the resistance heating element and exposed to the surface of the ceramic substrate, and the terminal. and a heat-resistant metal plate provided on the surface of the ceramic base and joined to the terminal and the ceramic base by a wax containing a titanium component, and an electrode member mechanically bonded to the heat-resistant metal plate. This is a ceramic heater featuring the following. Usually, a heat-resistant metal plate such as Kovar, which is difficult to oxidize, is used, and the terminal surface is brazed, a female thread is cut on the surface of the heat-resistant metal plate, and a male-threaded electrode rod made of stainless steel or the like is mechanically fixed.

【0007】耐熱金属板としては、コバール、43Ni
−Fe、Pt、Cu、26Cr−Fe 、デュメット、
Al、Niがある。これ等のものの大気中作動温度は夫
々 600℃、 600℃、1400℃、150 ℃、
1000℃、 150℃、 400℃及び 600℃で
ある。チタン成分を含むろうの融点は、例えば半導体製
造装置へセラミックスヒーターを適用する場合には、 
880℃以上とすることが好ましい。この点で、チタン
蒸着金ろう、チタン蒸着銀ろうが好ましい。このような
チタン成分を含むろうとしては、本出願人の出願に係る
特公平2−23500号がある。
[0007] As the heat-resistant metal plate, Kovar, 43Ni
-Fe, Pt, Cu, 26Cr-Fe, Dumet,
There are Al and Ni. The operating temperatures of these items in the atmosphere are 600℃, 600℃, 1400℃, 150℃, respectively.
1000°C, 150°C, 400°C and 600°C. The melting point of wax containing a titanium component is, for example, when applying a ceramic heater to semiconductor manufacturing equipment.
The temperature is preferably 880°C or higher. In this respect, titanium-deposited gold solder and titanium-deposited silver solder are preferred. A wax containing such a titanium component is disclosed in Japanese Patent Publication No. 2-23500 filed by the present applicant.

【0008】[0008]

【作用】従来のステンレスヒーターの場合には、半導体
ウエハー加熱面と抵抗発熱体の端子とは大きく離れてお
り、端子と外部の電極ケーブルとは、半導体製造装置の
容器外で結合されていた。これに対し、本発明のセラミ
ックスヒーターでは、端子周辺が高温、腐食性雰囲気に
曝されるが、上記のチタン成分を含むろうの融点が、ヒ
ーターの表面温度よりも高く、また機械的結合が腐食性
雰囲気に対して安定であり、更に熱変化に曝された後も
充分な結合強度と導電性を保持している為、耐久性、信
頼性に優れたセラミックスヒーターが得られる。また、
一般の金ろう、銀ろうではコバール等の金属とヒーター
の端子W、Mo等とは良好な接合性を示すものの、ヒー
ター基体である窒化珪素との接合力が無い。このため端
子の接合強度が不足するばかりでなく、ヒーター基体の
界面にガス通過可能な隙間が生じ、十分な耐雰囲気ガス
タイト性が得られなかった。これに対し、本発明のセラ
ミックスヒーターでは、ろう材にTiを混入させたこと
によってTiが Si3N4等に拡散し、特公平2−2
3500号に記したように 14.7kgf/mm2 
の接合強度の強固でガス密封性の接合界面が得られる。
[Operation] In the case of conventional stainless steel heaters, the semiconductor wafer heating surface and the terminals of the resistance heating element are far apart, and the terminals and external electrode cables are connected outside the container of the semiconductor manufacturing equipment. In contrast, in the ceramic heater of the present invention, the area around the terminals is exposed to a high temperature and corrosive atmosphere, but the melting point of the titanium-containing solder is higher than the surface temperature of the heater, and the mechanical bond is corroded. The ceramic heater is stable in a harsh atmosphere and maintains sufficient bonding strength and conductivity even after being exposed to thermal changes, making it possible to obtain a ceramic heater with excellent durability and reliability. Also,
Although general gold solder and silver solder exhibit good bonding properties between metals such as Kovar and heater terminals W, Mo, etc., they lack bonding strength with silicon nitride, which is the heater base. For this reason, not only was the bonding strength of the terminal insufficient, but also a gap was created at the interface of the heater base through which gas could pass, making it impossible to obtain sufficient atmospheric gas tightness. On the other hand, in the ceramic heater of the present invention, by mixing Ti into the brazing material, Ti diffuses into Si3N4 etc.
As noted in issue 3500, 14.7kgf/mm2
A gas-tight bonding interface with a strong bonding strength of .

【0009】[0009]

【実施例】以下、本発明を実施例につきさらに詳細に説
明する。図2はセラミックスヒーターを熱CVD 装置
へと取付けた状態を示す断面図、図3は耐熱金属板5と
電極部材4との結合部分を示す拡大断面図である。図2
において、26は半導体製造用CVD に使用される容
器、60はその内部のケース6に取付けられたウェハー
加熱用の円盤状のセラミックスヒーターであり、ウェハ
ー加熱面30の大きさは4〜8インチとしてウェハーを
設置可能なサイズとしておく。
EXAMPLES The present invention will now be explained in more detail with reference to examples. FIG. 2 is a cross-sectional view showing the ceramic heater attached to a thermal CVD apparatus, and FIG. 3 is an enlarged cross-sectional view showing the joint portion between the heat-resistant metal plate 5 and the electrode member 4. Figure 2
, 26 is a container used for CVD for semiconductor manufacturing, 60 is a disk-shaped ceramic heater for heating the wafer attached to the case 6 inside the container, and the size of the wafer heating surface 30 is 4 to 8 inches. The size is set so that the wafer can be installed.

【0010】容器26の内部にはガス供給孔19から熱
CVD 用のガスが供給され、吸引孔20から真空ポン
プにより内部の空気が排出される。円盤状セラミックス
ヒーター60は、窒化珪素のような緻密でガスタイトな
円盤状セラミックス基体1の内部にタングステン系等の
抵抗発熱体2をスパイラル状に埋設したもので、その中
央及び端部の電極部材4を介して外部から電力が供給さ
れ、円盤状セラミックスヒーター60を例えば1100
℃程度に加熱することができる。16はケース6の上面
を覆う水冷ジャケット18付きのフランジであり、Oリ
ング10により容器26の側壁との間がシールされ、容
器26の天井面が構成されている。7はこのような容器
26のフランジ16の壁面を貫通して容器26の内部へ
と挿入された中空シースであり、セラミックスヒーター
60に接合されている。中空シース7の内部に、ステン
レスシース付きの熱電対8が挿入されている。中空シー
ス7と容器26のフランジ16との間にはOリングを設
け、外気の侵入を防止している。
A gas for thermal CVD is supplied to the inside of the container 26 through a gas supply hole 19, and the air inside is exhausted through a suction hole 20 by a vacuum pump. The disk-shaped ceramic heater 60 has a resistance heating element 2 made of tungsten or the like embedded in a spiral shape inside a dense and gas-tight disk-shaped ceramic base 1 made of silicon nitride, and electrode members 4 at the center and ends of the disk-shaped ceramic heater 60 . Power is supplied from the outside through the disc-shaped ceramic heater 60, for example,
It can be heated to about ℃. Reference numeral 16 denotes a flange with a water cooling jacket 18 that covers the upper surface of the case 6, and is sealed with the side wall of the container 26 by an O-ring 10, thereby forming the ceiling surface of the container 26. A hollow sheath 7 is inserted into the interior of the container 26 through the wall of the flange 16 of the container 26, and is joined to the ceramic heater 60. A thermocouple 8 with a stainless steel sheath is inserted inside the hollow sheath 7. An O-ring is provided between the hollow sheath 7 and the flange 16 of the container 26 to prevent outside air from entering.

【0011】抵抗発熱体2の端子3はヒーター背面36
へと露出し、端子3と電極部材4との間には耐熱金属板
5が介在している。耐熱金属板5は予め別途に製造した
もので、図3に示すように座金状に形成したものであり
、これを電極部材4に機械的に連結するには、例えばネ
ジ切り等によりネジ溝5aを設けて、電極部材4の下部
に設けた突出部のネジ山4aと螺合させる。耐熱金属板
5を、チタン蒸着ろうによって、セラミックス基板1及
び端子3に気密に接合する。
The terminal 3 of the resistance heating element 2 is connected to the back surface 36 of the heater.
A heat-resistant metal plate 5 is interposed between the terminal 3 and the electrode member 4. The heat-resistant metal plate 5 is manufactured separately in advance and is formed into a washer shape as shown in FIG. is provided and screwed into the thread 4a of the protrusion provided at the lower part of the electrode member 4. A heat-resistant metal plate 5 is hermetically bonded to the ceramic substrate 1 and the terminal 3 by titanium vapor deposition brazing.

【0012】なお、端子3の上面は必ずしもセラミック
ス基体1の上面と同一平面にある必要はなく、図4に示
すように僅かに上面をセラミックス基体の上面より低く
する。このようにすると、耐熱金属板5の位置合わせが
容易となり、チタン成分を含むろうの密封及び結合作用
と相俟って端子3に対する外気侵入が一そう確実に防止
される。また、耐熱金属板5に一だんと深い穴を設けて
、電極部材4を強固に固定することができる。
Note that the upper surface of the terminal 3 does not necessarily have to be on the same plane as the upper surface of the ceramic base 1, but is made slightly lower than the upper surface of the ceramic base as shown in FIG. In this way, the positioning of the heat-resistant metal plate 5 becomes easy, and together with the sealing and bonding effect of the titanium-containing solder, the intrusion of outside air into the terminal 3 is more reliably prevented. Further, by providing deeper holes in the heat-resistant metal plate 5, the electrode member 4 can be firmly fixed.

【0013】本実施例のセラミックスヒーターによれば
、従来の金属ヒーターの場合のような汚染や、間接加熱
方式の場合のような熱効率の悪化の問題を解決できる。 そして、ケース6は例えばグラファイト等からなり、ヒ
ーター背面36側へと腐食性ガスが不可避的に混入する
。また、セラミックス基体1は円盤状であるので、抵抗
発熱体2の端子3と電極部材4との結合部分は、高温へ
の加熱と冷却とに繰り返し曝される。しかし、この点、
本発明では端子3と電極部材4との間に耐熱金属板5を
チタン蒸着ろうにより接合してあるので、耐熱金属板5
とセラミックス基体1とがチタン蒸着ろう中のTiの拡
散接合により強固に接合され、耐熱金属板5と端子3も
同様にTiの拡散接合により強固に接合されている為、
腐食性ガスや熱による端子3と電極部材4との接合部分
の密閉性を高めると共に劣化を防止でき、ヒーターの耐
久性、信頼性を向上させることができる。円盤状セラミ
ックス基体1の材質としては、窒化珪素、サイアロン、
窒化アルミニウム等が好ましく、窒化珪素やサイアロン
が耐熱衝撃性の点で更に好ましい。
According to the ceramic heater of this embodiment, it is possible to solve the problems of contamination as in the case of conventional metal heaters and deterioration of thermal efficiency as in the case of indirect heating methods. The case 6 is made of, for example, graphite, and corrosive gas inevitably enters the back side of the heater 36. Furthermore, since the ceramic base 1 is disk-shaped, the joint portion between the terminal 3 of the resistance heating element 2 and the electrode member 4 is repeatedly exposed to high temperature heating and cooling. However, on this point,
In the present invention, since the heat-resistant metal plate 5 is bonded between the terminal 3 and the electrode member 4 by titanium vapor deposition brazing, the heat-resistant metal plate 5
and the ceramic substrate 1 are firmly bonded by diffusion bonding of Ti in the titanium vapor deposition solder, and the heat-resistant metal plate 5 and the terminal 3 are also strongly bonded by diffusion bonding of Ti.
The hermeticity of the joint between the terminal 3 and the electrode member 4 due to corrosive gas or heat can be improved and deterioration can be prevented, and the durability and reliability of the heater can be improved. The material of the disc-shaped ceramic substrate 1 includes silicon nitride, sialon,
Aluminum nitride and the like are preferred, and silicon nitride and sialon are more preferred in terms of thermal shock resistance.

【0014】抵抗発熱体2としては、高融点であり、し
かも窒化珪素等との密着性に優れたタングステン、モリ
ブデン、白金等を使用することが適当である。ウエハー
加熱面30は平滑面とすることが好ましく、特にウエハ
ー加熱面30にウエハーが直接セットされる場合には、
平面度を 500μm 以下としてウエハーの裏面への
デポジション用ガスの侵入を防止する必要がある。円盤
状セラミックスヒーターを製造する際には、予め端子3
を設けた抵抗発熱体2をセラミックス成形体中に埋設し
、セラミックス成形体を焼結し、こうして得た円盤状セ
ラミックス基体1の背面側を研削して端子3の端面を背
面36へと露出させ、次いで耐熱金属板5をチタン蒸着
ろうによりセラミックス基体1の背面36に接合し、次
いで耐熱金属板5と電極部材4とを機械的に結合させる
As the resistance heating element 2, it is appropriate to use materials such as tungsten, molybdenum, and platinum, which have a high melting point and have excellent adhesion to silicon nitride and the like. The wafer heating surface 30 is preferably a smooth surface, especially when the wafer is set directly on the wafer heating surface 30.
It is necessary to set the flatness to 500 μm or less to prevent the deposition gas from entering the back surface of the wafer. When manufacturing a disc-shaped ceramic heater, the terminal 3
The resistance heating element 2 provided with the above is embedded in a ceramic molded body, the ceramic molded body is sintered, and the back side of the thus obtained disc-shaped ceramic base 1 is ground to expose the end face of the terminal 3 to the back face 36. Next, the heat-resistant metal plate 5 is bonded to the back surface 36 of the ceramic substrate 1 by titanium vapor deposition brazing, and then the heat-resistant metal plate 5 and the electrode member 4 are mechanically bonded.

【0015】図3及び図4を参照し、ねじ切り法による
機械的結合の例を示す。例えばタングステンからなる端
子3を例えば径5mm、長さ10mmとし、この端子3
を例えばニッケルからなる電極部材4へと結合するに当
たり、コバール板5に M3×6mmの雌ネジ5aを切
り、タングステン電極部材4には M3×5mmの雄ネ
ジ4aを切り、ネジ止め結合を行った。タングステン端
子は極めて硬く脆く通常のダイスによる加工が不可能で
ある為、タングステン端子に雌ネジを切るよりもコバー
ル板5に雌ネジを切る作業は極めて容易であった。従っ
て、従来タングステン端子3に行なっていた放電加工は
省略することができた。このようにして機械的結合を行
なったものは、タングステン端子3の上面とタングステ
ン電極部材4の下面とが接触し、他に、接触していない
場合にも導電性のあるチタン蒸着ろうを間に介在させて
接合してある為、充分な導電性と密閉性が達成される。 また、充分な接触面積が得られる為、接合部で電流集中
することはない。また他の機械的接合方法として、コバ
ール板5に径3mm×7mmの穴を開け、ニッケル電極
部材4に径3mm×6mmの凸部を設け、締代20μm
 で圧入圧1000kgf/cm2 で圧入を行った。 締代0〜50μm の範囲において、室温と800 ℃
との間の冷熱サイクルを1000回行なっても強固な接
合状態であった。
Referring to FIGS. 3 and 4, an example of mechanical connection by thread cutting is shown. For example, the terminal 3 made of tungsten has a diameter of 5 mm and a length of 10 mm.
For example, to connect the electrode member 4 made of nickel, an M3 x 6 mm female thread 5a was cut in the Kovar plate 5, and an M3 x 5 mm male thread 4a was cut in the tungsten electrode member 4, and the connection was performed with screws. . Since tungsten terminals are extremely hard and brittle and cannot be machined with a normal die, it was much easier to cut female threads in Kovar plate 5 than to cut female threads in tungsten terminals. Therefore, the electric discharge machining conventionally performed on the tungsten terminal 3 can be omitted. In the case where the mechanical connection is made in this way, the upper surface of the tungsten terminal 3 and the lower surface of the tungsten electrode member 4 are in contact with each other, and even when they are not in contact, a conductive titanium vapor-deposited solder is placed between them. Since they are interposed and joined, sufficient conductivity and airtightness are achieved. Furthermore, since a sufficient contact area is obtained, there is no possibility of current concentration at the joint. In addition, as another mechanical joining method, a hole with a diameter of 3 mm x 7 mm is made in the Kovar plate 5, a convex part with a diameter of 3 mm x 6 mm is provided on the nickel electrode member 4, and a tightening interference of 20 μm is formed.
Press-fitting was carried out at a press-fitting pressure of 1000 kgf/cm2. Room temperature and 800℃ in the range of tightening allowance 0 to 50μm
Even after 1000 cycles of cooling and heating, the bond remained strong.

【0016】上記各例において、セラミックスヒーター
の形状は、円形ウエハーを均等に加熱するためには円盤
状とするのが好ましいが、他の形状、例えば四角盤状、
六角盤状等としてもよい。本発明は、プラズマエッチン
グ装置、光エッチング装置等におけるセラミックスヒー
ターに対しても適用可能である。
In each of the above examples, the shape of the ceramic heater is preferably a disk shape in order to uniformly heat a circular wafer, but other shapes such as a square disk shape,
It may also be shaped like a hexagonal disc. The present invention is also applicable to ceramic heaters in plasma etching equipment, photoetching equipment, and the like.

【0017】[0017]

【発明の効果】チタン成分を含むろうのチタン拡散接合
作用により、耐熱金属板とセラミックス基体との間及び
耐熱金属板と端子との間を、強固に且つ気密に接合する
ことができる。また、高温の酸化性腐食性ガス中で、ろ
う材の融点まで高い接合強度を発揮することができる。 従って、高温の酸化性腐食性のガス中で電極部材と端子
を長時間確実に使用することができる。チタンを含むろ
う材の導電作用により、電極部材と端子とを確実に電気
的に導通することができる。従って両者の接合部の長さ
及び端面を正確に適合させる必要がない。耐熱金属板の
穴開け加工は、端子の放電加工による穴開け加工よりも
、極めて容易である。
Effects of the Invention: Due to the titanium diffusion bonding effect of the solder containing a titanium component, it is possible to firmly and airtightly bond between the heat-resistant metal plate and the ceramic substrate and between the heat-resistant metal plate and the terminal. Furthermore, high bonding strength can be exhibited up to the melting point of the brazing filler metal in high-temperature oxidizing and corrosive gas. Therefore, the electrode member and the terminal can be reliably used for a long time in high-temperature oxidizing and corrosive gas. The electrical conductivity of the brazing material containing titanium ensures electrical continuity between the electrode member and the terminal. Therefore, it is not necessary to precisely match the length and end surface of the joints. Drilling holes in heat-resistant metal plates is much easier than drilling holes in terminals by electrical discharge machining.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】従来の間接加熱方式のウエハー加熱装置の線図
的横断面図である。
FIG. 1 is a schematic cross-sectional view of a conventional indirect heating type wafer heating apparatus.

【図2】本出願人の発明に係る未公開のウエハー加熱装
置の線図的横断面図である。
FIG. 2 is a diagrammatic cross-sectional view of a previously unpublished wafer heating device according to the applicant's invention;

【図3】耐熱金属板と電極端子棒との結合構造の一例を
示す線図的横断面図である。
FIG. 3 is a diagrammatic cross-sectional view showing an example of a coupling structure between a heat-resistant metal plate and an electrode terminal bar.

【図4】耐熱金属板と電極端子棒との、結合構造の他の
一例を示す線図的横断面図である。
FIG. 4 is a diagrammatic cross-sectional view showing another example of a coupling structure between a heat-resistant metal plate and an electrode terminal bar.

【符号の説明】 1  セラミックス基体 2  抵抗発熱体 3  端子 4  電極部材 4a  電極部材4のネジ山 5  耐熱金属板 5a  耐熱金属板5のネジ溝 5b  耐熱金属板5の突出部 8  熱電対 16  フランジ 26  半導体製造用CVD 用の容器30  ウエハ
ー加熱面 36  セラミックスヒーター60の背面60  セラ
ミックスヒーター
[Explanation of symbols] 1 Ceramic base 2 Resistive heating element 3 Terminal 4 Electrode member 4a Thread 5 of electrode member 4 Heat-resistant metal plate 5a Thread groove 5b of heat-resistant metal plate 5 Projection portion 8 of heat-resistant metal plate 5 Thermocouple 16 Flange 26 Container 30 for CVD for semiconductor manufacturing Wafer heating surface 36 Back side 60 of ceramic heater 60 Ceramic heater

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  セラミックス基体と、前記セラミック
ス基体の内部に埋設された抵抗発熱体と、前記抵抗発熱
体の端部に設けられて前記セラミックス基体の表面へと
露出する端子と、前記端子及び前記セラミックス基体の
表面上に設けられてチタン成分を含むろうにより前記端
子及び前記セラミックス基体に接合された耐熱金属板と
、前記耐熱金属板上に機械的に結合された電極部材とを
有することを特徴とするセラミックスヒーター。
1. A ceramic base, a resistance heating element buried inside the ceramic base, a terminal provided at an end of the resistance heating element and exposed to the surface of the ceramic base, and a combination of the terminal and the resistance heating element. A heat-resistant metal plate provided on the surface of a ceramic base and joined to the terminal and the ceramic base by a solder containing a titanium component, and an electrode member mechanically bonded to the heat-resistant metal plate. Ceramic heater.
JP8457091A 1991-03-26 1991-03-26 Ceramics heater Expired - Lifetime JPH0727797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8457091A JPH0727797B2 (en) 1991-03-26 1991-03-26 Ceramics heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8457091A JPH0727797B2 (en) 1991-03-26 1991-03-26 Ceramics heater

Publications (2)

Publication Number Publication Date
JPH04296485A true JPH04296485A (en) 1992-10-20
JPH0727797B2 JPH0727797B2 (en) 1995-03-29

Family

ID=13834330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8457091A Expired - Lifetime JPH0727797B2 (en) 1991-03-26 1991-03-26 Ceramics heater

Country Status (1)

Country Link
JP (1) JPH0727797B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633073A (en) * 1995-07-14 1997-05-27 Applied Materials, Inc. Ceramic susceptor with embedded metal electrode and eutectic connection
US5817406A (en) * 1995-07-14 1998-10-06 Applied Materials, Inc. Ceramic susceptor with embedded metal electrode and brazing material connection
WO2005008749A1 (en) * 2003-07-16 2005-01-27 Ibiden Co., Ltd. Ceramic bonded compact, process for producing ceramic bonded compact, ceramic temperature controller and ceramic temperature control unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633073A (en) * 1995-07-14 1997-05-27 Applied Materials, Inc. Ceramic susceptor with embedded metal electrode and eutectic connection
US5817406A (en) * 1995-07-14 1998-10-06 Applied Materials, Inc. Ceramic susceptor with embedded metal electrode and brazing material connection
WO2005008749A1 (en) * 2003-07-16 2005-01-27 Ibiden Co., Ltd. Ceramic bonded compact, process for producing ceramic bonded compact, ceramic temperature controller and ceramic temperature control unit

Also Published As

Publication number Publication date
JPH0727797B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
JP3790000B2 (en) Bonding structure of ceramic member and power supply connector
TWI308366B (en)
JPH1112053A (en) Bonded structure of ceramic and its production
JP2525974B2 (en) Semiconductor wafer-heating device
JP4005268B2 (en) Bonding structure of ceramics and metal and intermediate insert used for this
JPH03501061A (en) Electrically conductive feed-through connection and method of forming the feed-through connection
JP2004203706A (en) Joined product of different kinds of materials and its producing method
JPH04296485A (en) Ceramic heater
JP2644650B2 (en) Ceramic heater
JP2543638B2 (en) Ceramic heater
JP3776499B2 (en) Bonding structure between metal member and ceramic member and method for manufacturing the same
JP2518962B2 (en) Ceramic heater
JP2604944B2 (en) Semiconductor wafer heating equipment
JP2005032842A (en) Electrode structure and ceramic joint
JP3045860B2 (en) Heating equipment
JPH04104494A (en) Ceramics heater
JP3545866B2 (en) Wafer holding device
JP3131009B2 (en) Heating equipment
JP2875095B2 (en) Heating equipment
JPH07318435A (en) Manufacture of glass sealing type thermistor element
JP2698537B2 (en) Heating equipment
JPH0593275A (en) Semiconductor wafer heater
JP3720606B2 (en) Bonded body of ceramic member and metal member and wafer support member using the same
JP4441080B2 (en) Manufacturing method of composite member
JP3131012B2 (en) Heating equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110329

Year of fee payment: 16

EXPY Cancellation because of completion of term