JP3776499B2 - Bonding structure between metal member and ceramic member and method for manufacturing the same - Google Patents

Bonding structure between metal member and ceramic member and method for manufacturing the same Download PDF

Info

Publication number
JP3776499B2
JP3776499B2 JP06744496A JP6744496A JP3776499B2 JP 3776499 B2 JP3776499 B2 JP 3776499B2 JP 06744496 A JP06744496 A JP 06744496A JP 6744496 A JP6744496 A JP 6744496A JP 3776499 B2 JP3776499 B2 JP 3776499B2
Authority
JP
Japan
Prior art keywords
metal member
accommodation hole
hole
metal
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06744496A
Other languages
Japanese (ja)
Other versions
JPH09235166A (en
Inventor
知之 藤井
隆介 牛越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP06744496A priority Critical patent/JP3776499B2/en
Publication of JPH09235166A publication Critical patent/JPH09235166A/en
Application granted granted Critical
Publication of JP3776499B2 publication Critical patent/JP3776499B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、セラミックス部材と金属部材との接合構造およびその製造方法に関するものである。
【0002】
【従来の技術】
窒化アルミニウムは、高熱伝導性、高電気絶縁性、低熱膨張性、低誘電率特性等の特性を有していることから、高出力半導体素子用基板材料といった種々の用途に使用されている。特に、窒化アルミニウム部材と金属部材との接合体は、種々の構成のものが様々な用途に使用されている。例えば、半導体製造装置において用いられるセラミックスヒーター、静電チャックおよび高周波電極等においては、窒化アルミニウム部材と種々のセラミック部材との間、窒化アルミニウム部材と熱電対セット用の金具との間、窒化アルミニウム部材と電極との間等を接合する必要がある。
【0003】
従来、セラミックス部材を金属部材に対して接合する方法としては、セラミックス部材と金属部材との間にろう材を介在させ、ろう材を加熱して溶融させることで、接合させることが知られている。しかし、金属用のろう材は多数知られているが、セラミックス部材、特に非酸化物系セラミックスに対しては、いずれのろう材も濡れ性が悪い。このため、非酸化物系セラミックス部材を金属部材等に対して接合するためのろう材としては、ろう材の濡れ性を改善するために、チタン、ジルコニウム等の活性金属を含有するろう材が使用されている。例えば、「窒化アルミニウムと金属の接合」(中尾 嘉邦、「軽金属溶接」Vol.31 1993年 No.8 第359頁〜365頁)によれば、窒化アルミニウムを銅と接合するためのろう材として、Ag−Cu系合金、Ag−Cu−Ti系合金といった各種の合金が試験されてきており、これらの合金からなるろう材の中に、活性金属として、チタン、ジルコニウム、ニオブ、ハフニウム、バナジウムを含有させることが知られている。
【0004】
【発明が解決しようとする課題】
本発明者は、半導体製造装置において用いられるセラミックスヒーター、静電チャックおよび高周波電極を製造するのに際して、窒化アルミニウムや窒化珪素等からなる基体に機械加工によって孔を形成し、この孔に内部の金属電極を露出させ、この孔に円柱状の金具を挿入し、金具の先端面をろう付けすることを提案した(特願平7−21657号明細書)。
【0005】
しかし、本発明者が更に検討を進めるのにつれて、次の問題が生ずることが判明した。即ち、初期においては所定の接合強度および導電性を確保することには成功したが、室温と600℃の間での熱サイクル試験と600℃での長期間の保持試験を行ったところ、収容孔の側壁面の周囲に、窒化アルミニウム基体の方にクラックが発生し、あるいはこのクラックが進展することがあった。
【0006】
本発明の課題は、セラミックス部材の収容孔に金属部材の少なくとも一部を収容し、金属部材とセラミックス部材とを接合する形態の接合構造において、セラミックス部材に残留する応力を減少させ、接合体を高温と低温との間の熱サイクルに供したり、あるいは高温で長期間保持した場合にも、セラミックス部材の方にクラックや破損が発生するおそれをなくすることである。
【0007】
【課題を解決するための手段】
本発明に係る接合構造は、金属部材と、この金属部材の少なくとも一部を収容する収容孔を備えているセラミックス部材とを接合するものであり、金属部材が収容孔内に収容されており、金属部材の底面側で収容孔の側壁面と金属部材との間に幅0.2mm以上の間隙部が設けられており、金属部材とセラミックス部材とを接合する接合層が金属部材の底面と収容孔の底面との間に形成されており、かつこの接合層の一部分が収容孔の底面を被覆するように間隙部に露出していることを特徴とする。
【0008】
また、本発明に係る接合構造は、金属部材と、この金属部材の少なくとも一部を収容する収容孔を備えているセラミックス部材との接合に際して、金属部材が収容孔内に収容されており、金属部材が、本体とこの本体から収容孔の底面側へと突出している前記本体よりも横断面方向の寸法が小さい先端部とを備えており、先端部、本体、収容孔の側壁面および収容孔の底面によって包囲された間隙部が形成されており、金属部材とセラミックス部材とを接合する接合層が金属部材の底面と収容孔の底面との間に形成されており、かつこの接合層の一部分が収容孔の底面を被覆するように間隙部に露出していることを特徴とする。
【0009】
また、本発明は、金属部材と、金属部材の少なくとも一部を収容する収容孔を備えているセラミックス部材との接合構造を製造するのに際して、金属部材を収容孔内へと収容し、少なくとも金属部材の底面側で収容孔の側壁面と金属部材との間に幅0.2mm以上の間隙部を設け、金属部材と収容孔の底面との間に接合用材料を介在させ、接合用材料を加熱して金属部材の底面と収容孔の底面との間に接合層を形成し、接合層の一部分を底面を被覆するように前記間隙部に露出させることを特徴とする。
【0010】
また、本発明は、金属部材と、金属部材の少なくとも一部を収容する収容孔を備えているセラミックス部材との接合構造を製造するのに際して、金属部材が、本体と、本体から収容孔の底面側へと突出している、本体よりも横断面方向の寸法が小さい先端部とを備えており、金属部材を先端部側から収容孔内へと収容し、この際先端部と収容孔の底面との間に接合用材料を介在させ、先端部、本体、収容孔の側壁面および収容孔の底面によって間隙部を形成し、少なくとも接合用材料を加熱して金属部材の底面と収容孔の底面との間に接合層を形成し、この接合層の一部分を底面を被覆するように間隙部に露出させることを特徴とする。
【0011】
以下、図1〜図4を参照しつつ、本発明の課題解決手段について詳細に説明する。
【0012】
本発明者は、まず、図1(a)に示すような形態のセラミックス部材1に対して金属部材2を接合する実験を行った。ここで、セラミックス部材1中には、後述するような網状電極5が埋設され、一体焼結されている。部材1の背面20側に円形の凹部1cを形成し、凹部1cの内側に、横断面が略円形の収容孔6を形成する。本例では、円柱形状の金属部材2を収容孔6内に収容するのに先立って、収容孔6の底面6bおよび側壁面6cの底面側部分を覆うように金属箔4を形成した。従って金属箔4は、底面6bを覆う水平部分4aと、側壁面6cの底面側を覆う垂直部分4bとを含む。
【0013】
金属部材2の底面2bと収容孔の底面6bとを対向させ、これらの間に平板形状のろう材7を介在させた。金属部材2の側壁面2aと収容孔6の側壁面6cとの間の間隙の大きさtを、できるだけ少なくすることによって、金属部材2に対して加わる曲げ応力を緩和する構造を採用した。
【0014】
この状態でろう付けを行うことによって、図1(b)に示すように、金属部材2とセラミックス部材1とを接合層8によって接合することに成功した。しかし、接合後に熱サイクル試験や高温での保持試験を行うと、ほぼ30で示すようなクラックが発生することがあった。この接合構造のうち金属部材2の角部付近を拡大して図2に示す。
【0015】
本発明者はこの理由について検討したが、この過程で、ろう材の一部分が金属部材2と収容孔の側壁面6cとの僅かな隙間を上昇することに着目した。即ち、ろう付け時には、ろう材7に流動性が生ずるために、金属部材2に加えられる若干の荷重や金属部材2の自重によって、ろう材が流動して収容孔の周縁部分へと向かう。この際、金属部材2と収容孔の側壁面との間のクリアランスは可能な限り小さくされており、通常は0.05mm以下である。このため、ろう材がクリアランスを高い位置まで上昇する。即ち、接合層8のうち8aは金属部材の底面2bと収容孔の底面6bとの間に形成されるが、8bは金属部材の側壁面2aと収容孔の側壁面6cとの間に形成される。
【0016】
しかし、ろう付け材直後の冷却時には、ろう材とセラミックス部材1との熱膨張差に由来する引っ張り応力が、細長い接合層8bの長さ方向へと向かって、セラミックス部材内に働く。しかも、この接合層8bは金属部材2によっても強く拘束されているので、ろう材とセラミックス部材との熱膨張差による応力を逃がすことができない。このためにセラミックス部材に残留応力があり、これによって熱サイクル時または高温保持時にセラミックス部材内にクラック30が発生し、または既に存在するクラック30が進展するものと考えられる。
【0017】
なお、図2においては、金属部2の角部材に面取り部材2cが形成されており、また収容孔6の角部6aには加工上の都合からアール6aが生成している。また、11は、接合層6cの最上部を示す。
【0018】
本発明者は、この接合構造を更に検討し、典型的には図3(a)、(b)および図4に示すような形態の接合構造を想到した。即ち、金属部材12の本体12fは略円形とするが、本体12fの先端側に、収容孔の幅方向に見た寸法が小さい、即ち直径が小さい先端部12dを形成する。即ち、先端部12dの横の方にはリング状の凹部12cを形成する。
【0019】
収容孔6の底面6b上を被覆するように金属箔33を形成する。この際金属箔33の両端は、収容孔のアール6aまでは被覆するが、収容孔6の側壁面6cまでは形成されないようにする。金属箔33上に円盤形状のろう材13を配置する。
【0020】
金属部材12を収容孔6内に収容し、先端部12dの底面12bをろう材13に対して対向させる。この状態でろう付けを行うことによって、図3(b)に示すように、金属部材の底面12bと収容孔の底面6bとの間に接合層16を形成する。金属部材の本体12fの側壁面12aと収容孔の側壁面6cとの間の隙間15の大きさtは、金属部材12が挿入可能な範囲で可能な限り小さくする。
【0021】
図3の接合構造の主要部を、図4に拡大して示す。本体12f、先端部12d、収容孔の底面6bおよび側壁面6cによって、間隙部14が生ずる。金属部材の底面12bと収容孔の底面6bとの間に接合層16aが形成されるが、このろう材の一部は、流動の結果、金属部材の底面12bから間隙部14の方へと向かって流れる。このとき、間隙部14には収容孔の底面6bの周縁部分とアール6aと側壁面6cとが露出しているので、ろう材は、この順序で、収容孔への露出面を濡らすように流れる。
【0022】
この際、ろう材は先端部12dの側壁面12eに対して濡れ易いので、側壁面12eに沿って若干上昇する。この結果、金属部材の側壁面12eに沿って延びる第一の隆起部分16bが生成する。また、金属箔33を収容孔の底面6bの全体にわたって、アール6aをも含んで被覆するように形成することによって、底面6bがその周縁部を含んでろう材によって濡れやすくなり、この結果側壁面6cに沿ってろう材が濡れる。従って側壁面に沿って少し上昇したろう材によって隆起部分16dが形成され、隆起部分16bと16dとの間に陥没部分16cが形成される。
【0023】
こうした構造を有する接合体は、図1、図2の接合構造と同じ材質を使用した場合であっても、熱サイクル等に対する耐久性が極めて高く、セラミックス部材1の内部にクラックが発生しないことが判明した。この理由は、図1(b)、図2に示す構造とは異なり、間隙部14内に露出する接合層は、こうしたセラミックス部材と金属部材との間に強固に拘束された細長い形態とはならず、接合層の表面が間隙部14内に露出するためと考えられる。このため、ろう材とセラミックス部材との間の熱膨張差が生じても、これはろう材の流動や変形によって吸収される。
【0024】
しかも、第一の隆起部分と第二の隆起部分との間に陥没部分を有するような形態の接合層を採用することによって、金属部材12に図4において水平方向に向かって応力が加わった場合に、隆起部分16bおよび16dによってこの応力が受けられるので、この方向の応力に対する接合強度が一層向上する。しかも、これらの隆起部分16bと16dとの間には陥没部分16cを設け、この部分における接合層を厚さを小さくすることによって、接合層からセラミックス部材加わる残留応力も小さくできる。
【0025】
本発明の作用効果を良好に奏するためには、金属部材の側壁面と収容孔の側壁面との距離uは0.2mm以上とする必要があった。本発明の前記作用効果を一層向上させるためには、これを0.5mm以上とすることが好ましい。一方、前記距離が大きくなりすぎると、接合層が収容孔の側壁面6cまで到達しにくくなり、この結果、金属部材に対して収容孔の幅方向に向かって応力が加わったときに金属部材が剥離し易くなる。このため、前記距離は10mm以下とすることが好ましい。
【0026】
この際、金属部材の側壁面と収容孔の側壁面との間は、接合部分から収容孔の出口までの全体にわたって一定値にすることも可能であり、この接合構造によっても前記の作用効果は達成することができる(この場合には、金属部材の横断面方向の寸法が一定であるので、寸法の小さい先端部および間隙部14は生成しない)。しかし、この場合には収容孔の側壁面と金属部材の側壁面との間の隙間が大きいことから、金属部材に対して収容孔の幅方向に向かって応力が加わったときに金属部材が剥離し易くなる。
【0027】
このため、前記の間隙部を設ける方が好ましい。この際、金属部材12の側壁面12aと収容孔6の側壁面6cとの距離tを0.1mm以下とすることによって、金属部材に対して収容孔の幅方向に向かって応力が加わったときに、この応力を大きく緩和することができる。ただし、tが小さすぎる場合には、収容孔中に金属部材を挿入する工程の実施が難しくなってくるので、tは0.02mm以上とすることが好ましい。
【0028】
収容孔6の深さ方向に見た間隙部14の寸法sは、特に制限はないが、0.5〜5mmとすることが好ましい。
【0029】
本発明においては、セラミックス部材の収容孔の底面に、セラミックス部材の内部の金属部材の一部分を露出させて金属露出部を部分的に形成し、セラミックス部材とろう材とを接合させるのと共に、セラミックスの間から露出している金属露出部をも、ろう材と接合させることができる。これによって、セラミックス部材と金属部材との接合強度を、一層向上させることができる。こうした特異な接合構造を採用すれば、たとえセラミックス部材がろう材によって濡れにくいような場合でも、強固な接合力を得ることができる。
【0030】
ここで、図3(b)および図4においては、収容孔6の底面6bに、セラミックス部材の内部の金属5の一部分が露出し、金属露出部5Aを部分的に形成している。セラミックス部材1と接合層16aとを接合させるのと共に(接合部分9)、金属露出部5Aをも接合層16aと接合させることができる(接合部分10)。
【0031】
本発明において、セラミックス部材の材質は限定されないが、窒化アルミニウム、窒化珪素、炭化珪素、サイアロン等の非酸化物系セラミックス、更には窒化物系セラミックスに対して特に好適である。また、金属部材の材質も特に限定されないが、ニッケル、モリブデン、タングステン、白金、ロジウムおよびこれらの合金のような、高融点金属が特に好適である。
【0032】
ろう材の化学組成は特に限定されない。しかし、セラミックス部材そのものに対して、良好な接合力ないし濡れ易さを有するろう材が好ましい。特に、ハロゲン系腐食性ガスに対してさらされる用途の接合体においては、セラミックス部材として、緻密質アルミナ部材または窒化アルミニウム部材を使用することが好ましいが、この場合には、主成分がCu、Ni、AgおよびAlからなる群より選ばれた一種以上の金属からなり、Mg、Ti、Zr、Hfおよびベリリウムからなる群より選ばれた一種以上の活性金属を0.3〜10重量%(好ましくは5重量%以下)含有しているろう材が好ましいが、活性金属は必須ではない。
【0033】
主成分の含有割合は、ろう材の全重量を100重量%とした場合に、活性成分および活性成分以外の添加成分の含有割合を100重量%から差し引いた残部である。しかし、主成分は、50重量%以上含有されている必要があり、その上限は99.5重量%である。特に、主成分がAlからなるろう材を用いると、低温で接合するため、接合後の熱応力が小さくなる。また、活性金属からなる箔を用いる場合は、ろう材として純金属を用いることができる。
【0034】
活性金属の配合量が0.3重量%未満であると、濡れ性が悪くなり、接合しない場合がある。50重量%を超えると、接合界面の反応層が厚くなり、クラックが発生する場合がある。
【0035】
活性金属以外の添加成分としては、Si、Al、CuおよびInのうちの少なくとも1種を用いることが、主成分に影響を与えない点から好ましい。
【0036】
また、活性金属以外の添加成分の合計の配合量は、50wt%を超えると、金属間化合物が多くなり、接合界面にクラックが発生する場合があるため、50wt%以下であると好ましい。この添加成分は含有されていなくとも良い。
【0037】
マグネシウムを1〜2重量%含有しており、かつ珪素を9〜12重量%含有しているアルミニウム合金ろうが、濡れ性の向上の観点から最も好ましい。
【0038】
また、接合にあたり、収容孔の底面に、または収容孔の底面に対向しているろう材の表面に、銅、アルミニウムおよびニッケルからなる群より選ばれた一種以上の金属からなる膜を、スパッタ、蒸着、摩擦圧接、メッキおよび金属箔の挿入等の方法により設けることが、より好ましい。これらの膜は、ろう材とのぬれ性を良くする効果がある。また、接合にあたり、収容孔の底面に、または収容孔の底面に対向しているろう材の表面に、マグネシウム、チタン、ジルコニウムおよびハフニウムからなる群より選ばれた一種以上の金属からなる膜を、スパッタ、蒸着、摩擦圧接、メッキおよび金属箔の挿入等の方法により設けることがより好ましい。これらの膜によって、ろう材との反応が良くなる効果がある。これらの各金属膜の膜厚は、0.5〜5μmとすることが好ましい。
【0039】
セラミックス部材の内部に電極を埋設する形態においては、セラミックス部材中に抵抗発熱体を埋設したセラミックスヒーター、セラミックス部材中に静電チャック用電極を埋設したセラミックス静電チャック、セラミックス部材中に抵抗発熱体と静電チャック用電極とを埋設した静電チャック付きヒーター、セラミックス部材中にプラズマ発生用電極を埋設した高周波発生用電極装置のような能動型装置を例示することができる。
【0040】
更に、ダミーウエハー、シャドーリング、高周波プラズマを発生させるためのチューブ、高周波プラズマを発生させるためのドーム、高周波透過窓、赤外線透過窓、半導体ウエハーを支持するためのリフトピン、シャワー板等の装置を例示できる。
【0041】
【実施例】
図5は、本発明を静電チャックに対して適用した実施例を示す断面図である。21は、円盤形状のセラミックス部材からなる静電チャック本体である。このような、高周波電極を有する静電チャックは、ハロゲン系腐食性ガス雰囲気下で使用されることが多く、このような腐食性雰囲気下では、窒化アルミニウムまたは緻密質のアルミナが耐食性があることがわかっているため、セラミックス部材は窒化アルミニウムまたは緻密質アルミナで形成することが好ましい。
【0042】
22は、電極接合部である。本体1の内部の背面21b側の近傍には、網状電極ないしメッシュ31が埋設されている。このメッシュ31は、抵抗発熱体や静電チャック用電極として使用できるものである。静電チャック本体1には収容孔26が形成されており、収容孔26が背面21bに開口している。21は半導体ウエハー設置面である。
【0043】
収容孔26の底面26aに、メッシュ31の一部分が露出しており、金属露出部を形成している。ニッケル等の耐蝕性金属からなる端子24の先端側に、端子24の他の部分よりも直径が大きな円柱形状の金属部材25が形成されている。金属部材25の本体25fは略円形とするが、本体の先端側に、収容孔の幅方向に見た直径が小さい先端部25dを形成する。先端部25dの横の方にはリング状の凹部25cを形成する。
【0044】
収容孔の底面26aを被覆するように金属箔33を形成する。金属箔33上に円盤形状のろう材13を配置する。
【0045】
金属部材25を収容孔26内に収容し、先端部25dの底面25bをろう材13に対して対向させる。この状態でろう付けを行う。本体25f、先端部25d、収容孔の底面26aおよび収容孔の側壁面26bによって、間隙部14が生ずる。なお、図面中、25aは金属部材25の側壁面である。
【0046】
また、23は、熱電対の接合部である。静電チャック本体1には、収容孔26よりも若干小さい深さを有する収容孔30が形成されており、収容孔30が背面21bに開口している。
【0047】
熱電対を形成する一対の電極28の先端部28aの周囲には、熱電対保護用のニッケル製のキャップ29(金属部材の一例)が設けられており、キャップ29の雌ねじ29eに対して電極28の雄ねじ28aをはめ込む。キャップ29の外径は、収容孔30の内径より若干小さくなるように設計されている。キャップ29の先端側に、キャップ29の収容孔の幅方向に見た直径が小さい先端部29dを形成する。先端部29dの横の方にはリング状の凹部29cを形成する。
【0048】
収容孔の底面30aを被覆するように金属箔33を形成する。金属箔33上に円盤形状のろう材13を配置する。
【0049】
キャップ29を収容孔30内に収容し、先端部29dの底面29bをろう材13に対して対向させる。この状態でろう付けを行う。本体29f、先端部29d、収容孔の底面30aおよび収容孔の側壁面30bによって、間隙部14が生ずる。なお、図面中、29aはキャップ29の側壁面である。
【0050】
特に、22においては、金属露出部として網状構造を採用しているために、接合層には、平面的に見て、セラミックスと接触する部分と金属露出部と接触する部分とが交互に形成されているために、より一層強固な接合が達成される。
【0051】
以下、更に具体的な実験結果について述べる。
(本発明例1)
図3および図4を参照しつつ説明した手順に従って、接合体を製造した。ただし、セラミックス部材としては、モリブデン製のメッシュが埋設された相対密度99%以上の窒化アルミニウム基体を使用した。窒化アルミニウム基体の背面側に直径5mm(図3におけるm)、深さ8mmの収容孔6を設け、メッシュ5を収容孔の底面に露出させた。収容孔のアール6aの曲率半径Rは0.5mmとした。
【0052】
直径5mmのチタン箔(厚さ5μm)33と、直径(図3におけるr)4.5mm、厚さ200μmの銀板13とを使用した。長さ5mmの端子(金属部材の一例)12を収容孔内に挿入した。端子12の中心には、接合後にトルク試験を実施できるように、M3のネジ穴が深さ2mmに加工されている。ただし、図3において、uを0.5mmとし、sを2mmとし、tを0.05mmとし、qを4.0mmとした。端子12の中心部分には、直径3mm、深さ3mmの雌ねじを設けた。端子12に50gの荷重を加えつつ、真空中で970℃で熱処理を行い、ろう付けを行った。
【0053】
この結果、図4に示すような接合構造が形成された。ここで、隆起部分16bおよび16dの底面6bからの高さは0.5mmであり、窒化アルミニウム中にクラックは観察されなかった。
【0054】
この接合体を2個使用し、それぞれについて真空中で熱サイクル試験を実施した。接合体を室温から600℃まで加熱し、600℃で10分間保持し、室温に下げるのを1サイクルとし、これを10サイクル実施した。そして、この接合体に6kg/cmのトルクを負荷し、次いで接合部分の断面を光学顕微鏡で観察したが、接合部分に破断やクラックは生じなかった。
【0055】
また、この接合体を2個使用し、それぞれについて真空中で高温保持試験をを実施した。接合体を室温から600℃まで加熱し、600℃で50時間保持し、室温に下げた。そして、この接合体に6kg/cmのトルクを負荷し、次いで接合部分の断面を光学顕微鏡で観察したが、接合部分に破断やクラックは生じなかった。
【0056】
また、本実施例の接合体の接合部分の断面の光学顕微鏡写真を図6に示す。図4を参照しつつ説明した構造を有していることが判る。
【0057】
(本発明例2)
本発明例1と同様にして接合体を製造した。ただし、間隙部の幅uは0.2mmとした。この結果、図4および図6に示したものと同様の接合構造が形成された。ここで、隆起部分16bおよび16dの底面6bからの高さは0.5mmであり、窒化アルミニウム中にクラックは観察されなかった。
【0058】
この接合体を2個使用し、それぞれについて真空中で前記の熱サイクル試験を実施した。接合部分の断面を光学顕微鏡で観察したが、接合部分に破断やクラックは生じなかった。また、この接合体を2個使用し、それぞれについて真空中で前記の高温保持試験を実施した。接合部分の断面を光学顕微鏡で観察したが、接合部分に破断やクラックは生じなかった。
【0059】
(本発明例3)
本発明例1と同様にして接合体を製造した。ただし、間隙部の幅uは0.8mmとした。この結果、図4および図6に示したものと同様の接合構造が形成された。ここで、隆起部分16bおよび16dの底面6bからの高さは0.5mmであり、窒化アルミニウム中にクラックは観察されなかった。
【0060】
この接合体を2個使用し、それぞれについて真空中で前記の熱サイクル試験を実施した。接合部分の断面を光学顕微鏡で観察したが、接合部分に破断やクラックは生じなかった。また、この接合体を2個使用し、それぞれについて真空中で前記の高温保持試験を実施した。接合部分の断面を光学顕微鏡で観察したが、接合部分に破断やクラックは生じなかった。
【0061】
(比較例1)
図1および図2を参照しつつ説明した手順に従って、接合体を製造した。ただし、セラミックス部材1、収容孔6は本発明例1と同様とした。
【0062】
直径5mmのチタン箔(厚さ5μm)33と、直径(図1におけるp)4.5mm、厚さ200μmの銀板13とを使用した。長さ5mmの金属部材2を収容孔内に挿入した。図1において、tを0.05mmとした。部材2の中心部分には、直径3mm、深さ3mmの雌ねじを設けた。部材2に50gの荷重を加えつつ、真空中で970℃で熱処理を行い、ろう付けを行った。
【0063】
この結果、図2に示すような接合構造が形成された。ここで、接合層の底面6bからの最大高さn(図1(b)参照)は2mmであった。比較例1の接合体の接合部分の断面の光学顕微鏡写真を図7に示す。図2を参照しつつ説明した構造を有していることが判る。また、窒化アルミニウムの組織内に、細いクラック30が観察された。
【0064】
この接合体を2個使用し、それぞれについて前記の熱サイクル試験を実施した。接合部分の断面を光学顕微鏡で観察したところ、接合部分に破断が見られた。また、この接合体を2個使用し、それぞれについて前記の高温保持試験を実施した。接合部分の断面を光学顕微鏡で観察したところ、接合部分に破断が見られた。
【0065】
(比較例2)
比較例1と同様の手順に従って、接合体を製造した。ただし、図1(a)に示すように、直径9mmのチタン箔(厚さ5μm)4を使用した。この結果、図2および図7に示したものと同様の接合構造が形成された。ここで、接合層の底面6bからの最大高さnは4mmであった。また、窒化アルミニウムの組織内に、細いクラック30が観察された。
【0066】
この接合体を2個使用し、それぞれについて前記の熱サイクル試験を実施した。接合部分の断面を光学顕微鏡で観察したところ、接合部分に破断が見られた。また、この接合体を2個使用し、それぞれについて前記の高温保持試験を実施した。接合部分の断面を光学顕微鏡で観察したところ、接合部分に破断が見られた。
【0067】
(比較例3)
比較例1と同様の手順に従って、接合体を製造した。ただし、直径5mmのチタン箔(厚さ5μm)33を使用し、かつ端子2の側壁面と収容孔6の側壁面6cとの隙間の大きさtを0.1mmとした。この結果、図2および図7に示したものと同様の接合構造が形成された。ここで、接合層の底面6bからの最大高さnは3mmであった。また、窒化アルミニウムの組織内に、細いクラック30が観察された。
【0068】
この接合体を2個使用し、それぞれについて前記の熱サイクル試験を実施した。接合部分の断面を光学顕微鏡で観察したところ、接合部分に破断が見られた。また、この接合体を2個使用し、それぞれについて前記の高温保持試験を実施した。接合部分の断面を光学顕微鏡で観察したところ、接合部分に破断が見られた。
【0069】
【発明の効果】
以上から判るように、本発明によれば、セラミックス部材の収容孔に金属部材の少なくとも一部を収容し、金属部材とセラミックス部材とを接合する形態の接合構造において、セラミックス部材に残留する応力を減少させ、接合体を高温と低温との間の熱サイクルに供したり、あるいは高温で長期間保持した場合にも、セラミックス部材の方にクラックや破損が発生するおそれをなくすることができる。
【図面の簡単な説明】
【図1】(a)は、参考例に係る接合構造を作製する直前の段階を示す断面図であり、(b)は、参考例に係る接合構造を示す断面図である。
【図2】図1(b)の接合構造の主要部分を拡大して示す断面図である。
【図3】(a)は、本発明例に係る接合構造を作製する直前の段階を示す断面図であり、(b)は、本発明例に係る接合構造を示す断面図である。
【図4】図3(b)の接合構造の主要部分を拡大して示す断面図である。
【図5】本発明の接合構造をセラミックス静電チャックの保持構造に適用した実施例を示す断面図である。
【図6】図4の接合構造に対応するセラミックス組織および金属組織を示す光学顕微鏡写真である。
【図7】図2の接合構造に対応するセラミックス組織および金属組織を示す光学顕微鏡写真である。
【符号の説明】
1 セラミックス部材 1c 円形の凹部 4 金属箔 5、31 網状電極ないしメッシュ 6、26、30 収容孔 6b、26a、30a 収容孔の底面 6c、26b、30b 収容孔の側壁面 9 セラミックス部材とろう材との接合部分 10 金属露出部とろう材との接合部分 12、25 金属部材 12c、25c、29c リング状の凹部 12d、25d、29d 金属部材の先端部 12e、25a、29a 金属部材の側壁面 12f、25f 金属部材の本体 33 金属箔 13円盤形状のろう材 14 間隙部 16、16a 接合層 16b 第一の隆起部分 16c 陥没部分 16d 第二の隆起部分 21 円盤形状のセラミックス部材からなる静電チャック本体 22 電極接合部 23 熱電対の接合部 29 熱電対保護用のニッケル製のキャップ(金属部材の一例) 30 クラック t 金属部材の側壁面と収容孔の側壁面との距離 s 収容孔の深さ方向に見た間隙部の寸法
[0001]
[Industrial application fields]
The present invention relates to a joint structure between a ceramic member and a metal member and a method for manufacturing the same.
[0002]
[Prior art]
Aluminum nitride has characteristics such as high thermal conductivity, high electrical insulation, low thermal expansion, and low dielectric constant, and is therefore used in various applications such as a substrate material for high-power semiconductor elements. In particular, a joined body of an aluminum nitride member and a metal member has various configurations and is used for various applications. For example, in ceramic heaters, electrostatic chucks and high-frequency electrodes used in semiconductor manufacturing equipment, between aluminum nitride members and various ceramic members, between aluminum nitride members and thermocouple set fittings, aluminum nitride members It is necessary to join between the electrode and the electrode.
[0003]
Conventionally, as a method for joining a ceramic member to a metal member, it is known to join the ceramic member by joining a brazing material between the ceramic member and the metallic member, and heating and melting the brazing material. . However, many brazing materials for metals are known, but for ceramic members, particularly non-oxide ceramics, all brazing materials have poor wettability. For this reason, a brazing material containing an active metal such as titanium or zirconium is used as a brazing material for joining a non-oxide ceramic member to a metal member or the like in order to improve the wettability of the brazing material. Has been. For example, according to “joining of aluminum nitride and metal” (Nakao Yoshikuni, “Light Metal Welding” Vol. 31 1993 No. 8, pages 359 to 365), as a brazing material for joining aluminum nitride to copper, Various alloys such as Ag-Cu alloys and Ag-Cu-Ti alloys have been tested, and brazing materials made of these alloys contain titanium, zirconium, niobium, hafnium, vanadium as active metals. It is known to let
[0004]
[Problems to be solved by the invention]
When manufacturing ceramic heaters, electrostatic chucks, and high-frequency electrodes used in semiconductor manufacturing apparatuses, the inventor forms holes in a substrate made of aluminum nitride, silicon nitride, or the like by machining, and internal metal is formed in the holes. It has been proposed to expose the electrode, insert a cylindrical metal fitting into the hole, and braze the tip of the metal fitting (Japanese Patent Application No. 7-21657).
[0005]
However, it has been found that the following problems arise as the inventors further study. That is, in the initial stage, it was successful to ensure a predetermined bonding strength and conductivity, but when a heat cycle test between room temperature and 600 ° C. and a long-term holding test at 600 ° C. were performed, In some cases, a crack was generated in the aluminum nitride substrate around the side wall surface of the metal, or the crack was developed.
[0006]
An object of the present invention is to reduce at least a part of a metal member in an accommodation hole of a ceramic member and reduce a residual stress on the ceramic member in a joining structure in which the metal member and the ceramic member are joined. The object is to eliminate the possibility of cracking or breakage of the ceramic member even when it is subjected to a heat cycle between high and low temperatures or when it is kept at a high temperature for a long time.
[0007]
[Means for Solving the Problems]
The joining structure according to the present invention joins a metal member and a ceramic member having an accommodation hole for accommodating at least a part of the metal member, and the metal member is accommodated in the accommodation hole. A gap portion having a width of 0.2 mm or more is provided between the side wall surface of the housing hole and the metal member on the bottom surface side of the metal member, and a joining layer for joining the metal member and the ceramic member is accommodated with the bottom surface of the metal member. It is formed between the bottom surface of the hole and a part of the bonding layer is exposed in the gap so as to cover the bottom surface of the accommodation hole.
[0008]
In the joining structure according to the present invention, the metal member is accommodated in the accommodation hole when joining the metal member and the ceramic member having the accommodation hole for accommodating at least a part of the metal member. The member protrudes from the main body and the main body toward the bottom surface of the receiving hole. Smaller cross-sectional dimension than the main body A gap portion surrounded by the tip portion, the main body, the side wall surface of the accommodation hole, and the bottom surface of the accommodation hole, and a joining layer that joins the metal member and the ceramic member is formed of the metal member. It is formed between the bottom surface and the bottom surface of the accommodation hole, and a part of the bonding layer is exposed in the gap so as to cover the bottom surface of the accommodation hole.
[0009]
Further, the present invention provides a metal member accommodated in an accommodation hole when manufacturing a joining structure of a metal member and a ceramic member provided with an accommodation hole for accommodating at least a part of the metal member. A gap of 0.2 mm or more width is provided between the side wall surface of the housing hole and the metal member on the bottom surface side of the member, and a joining material is interposed between the metal member and the bottom surface of the housing hole, A bonding layer is formed between the bottom surface of the metal member and the bottom surface of the accommodation hole by heating, and a part of the bonding layer is exposed to the gap so as to cover the bottom surface.
[0010]
Further, according to the present invention, when manufacturing a joint structure between a metal member and a ceramic member having an accommodation hole that accommodates at least a part of the metal member, the metal member has a main body and a bottom surface of the accommodation hole from the main body. And a tip portion projecting to the side and having a smaller dimension in the cross-sectional direction than the main body, and accommodating the metal member from the tip portion side into the accommodation hole, and at this time, the tip portion and the bottom surface of the accommodation hole And a gap portion is formed by the tip portion, the main body, the side wall surface of the accommodation hole, and the bottom surface of the accommodation hole, and at least the joining material is heated to form a bottom surface of the metal member and the bottom surface of the accommodation hole. A bonding layer is formed between the layers, and a part of the bonding layer is exposed to the gap so as to cover the bottom surface.
[0011]
Hereinafter, the problem solving means of the present invention will be described in detail with reference to FIGS.
[0012]
The inventor first conducted an experiment in which a metal member 2 was joined to a ceramic member 1 having a configuration as shown in FIG. Here, in the ceramic member 1, a mesh electrode 5 as described later is embedded and integrally sintered. A circular recess 1c is formed on the back surface 20 side of the member 1, and an accommodation hole 6 having a substantially circular cross section is formed inside the recess 1c. In this example, prior to housing the cylindrical metal member 2 in the housing hole 6, the metal foil 4 was formed so as to cover the bottom surface 6 b of the housing hole 6 and the bottom surface side portion of the side wall surface 6 c. Therefore, the metal foil 4 includes a horizontal portion 4a covering the bottom surface 6b and a vertical portion 4b covering the bottom surface side of the side wall surface 6c.
[0013]
The bottom surface 2b of the metal member 2 and the bottom surface 6b of the accommodation hole are opposed to each other, and a flat brazing material 7 is interposed therebetween. A structure in which the bending stress applied to the metal member 2 is reduced by reducing the size t of the gap between the side wall surface 2a of the metal member 2 and the side wall surface 6c of the accommodation hole 6 as much as possible is adopted.
[0014]
By brazing in this state, the metal member 2 and the ceramic member 1 were successfully joined by the joining layer 8 as shown in FIG. However, when a thermal cycle test or a holding test at a high temperature is performed after joining, cracks as indicated by 30 may occur. FIG. 2 shows an enlarged view of the vicinity of the corner of the metal member 2 in this joining structure.
[0015]
The inventor examined the reason for this, but in this process, he focused on the fact that a part of the brazing material raised a slight gap between the metal member 2 and the side wall surface 6c of the accommodation hole. That is, at the time of brazing, fluidity is generated in the brazing material 7, so that the brazing material flows toward the peripheral portion of the accommodation hole due to a slight load applied to the metal member 2 and the weight of the metal member 2. At this time, the clearance between the metal member 2 and the side wall surface of the accommodation hole is made as small as possible, and is usually 0.05 mm or less. For this reason, the brazing material rises to a high position in the clearance. That is, 8a of the bonding layer 8 is formed between the bottom surface 2b of the metal member and the bottom surface 6b of the receiving hole, but 8b is formed between the side wall surface 2a of the metal member and the side wall surface 6c of the receiving hole. The
[0016]
However, at the time of cooling immediately after the brazing material, a tensile stress derived from the difference in thermal expansion between the brazing material and the ceramic member 1 acts in the ceramic member in the length direction of the elongated bonding layer 8b. In addition, since the bonding layer 8b is strongly restrained by the metal member 2, stress due to the difference in thermal expansion between the brazing material and the ceramic member cannot be released. For this reason, it is considered that there is a residual stress in the ceramic member, and as a result, a crack 30 is generated in the ceramic member at the time of thermal cycling or at a high temperature, or the crack 30 that already exists is developed.
[0017]
In FIG. 2, a chamfering member 2 c is formed on the corner member of the metal portion 2, and a radius 6 a is generated at the corner portion 6 a of the accommodation hole 6 for convenience of processing. Reference numeral 11 denotes the uppermost portion of the bonding layer 6c.
[0018]
The present inventor further examined this joining structure, and has conceived a joining structure typically shown in FIGS. 3 (a), 3 (b) and FIG. That is, the main body 12f of the metal member 12 has a substantially circular shape, but a front end portion 12d having a small dimension in the width direction of the accommodation hole, that is, a small diameter, is formed on the front end side of the main body 12f. That is, a ring-shaped concave portion 12c is formed on the side of the tip portion 12d.
[0019]
A metal foil 33 is formed so as to cover the bottom surface 6 b of the accommodation hole 6. At this time, both ends of the metal foil 33 are covered up to the radius 6 a of the accommodation hole, but are not formed up to the side wall surface 6 c of the accommodation hole 6. A disc-shaped brazing material 13 is disposed on the metal foil 33.
[0020]
The metal member 12 is accommodated in the accommodation hole 6, and the bottom surface 12 b of the distal end portion 12 d is opposed to the brazing material 13. By brazing in this state, as shown in FIG. 3B, the bonding layer 16 is formed between the bottom surface 12b of the metal member and the bottom surface 6b of the accommodation hole. The size t of the gap 15 between the side wall surface 12a of the metal member main body 12f and the side wall surface 6c of the accommodation hole is made as small as possible within the range in which the metal member 12 can be inserted.
[0021]
The main part of the joining structure of FIG. 3 is enlarged and shown in FIG. The gap portion 14 is formed by the main body 12f, the distal end portion 12d, the bottom surface 6b of the accommodation hole, and the side wall surface 6c. A joining layer 16a is formed between the bottom surface 12b of the metal member and the bottom surface 6b of the receiving hole. A part of the brazing material flows from the bottom surface 12b of the metal member toward the gap portion 14 as a result of the flow. Flowing. At this time, since the peripheral portion of the bottom surface 6b of the accommodation hole, the radius 6a and the side wall surface 6c are exposed in the gap portion 14, the brazing material flows in this order so as to wet the exposure surface to the accommodation hole. .
[0022]
At this time, the brazing material is likely to get wet with respect to the side wall surface 12e of the front end portion 12d, and therefore rises slightly along the side wall surface 12e. As a result, a first raised portion 16b extending along the side wall surface 12e of the metal member is generated. Further, by forming the metal foil 33 so as to cover the entire bottom surface 6b of the accommodation hole so as to include the rounded portion 6a, the bottom surface 6b can easily be wetted by the brazing material including the peripheral portion thereof, and as a result, the side wall surface. The brazing material gets wet along 6c. Accordingly, the raised portion 16d is formed by the brazing material slightly raised along the side wall surface, and the depressed portion 16c is formed between the raised portions 16b and 16d.
[0023]
Even if the joined body having such a structure uses the same material as that of the joined structure of FIGS. 1 and 2, the durability against a thermal cycle or the like is extremely high, and cracks are not generated in the ceramic member 1. found. This is because, unlike the structure shown in FIGS. 1B and 2, the bonding layer exposed in the gap 14 does not have an elongated shape firmly bound between the ceramic member and the metal member. This is probably because the surface of the bonding layer is exposed in the gap 14. For this reason, even if a thermal expansion difference occurs between the brazing material and the ceramic member, this is absorbed by the flow and deformation of the brazing material.
[0024]
Moreover, when a stress is applied to the metal member 12 in the horizontal direction in FIG. 4 by adopting a bonding layer having a depressed portion between the first raised portion and the second raised portion. In addition, since this stress is received by the raised portions 16b and 16d, the bonding strength against the stress in this direction is further improved. In addition, by providing a depressed portion 16c between the raised portions 16b and 16d and reducing the thickness of the bonding layer in this portion, the residual stress applied to the ceramic member from the bonding layer can be reduced.
[0025]
In order to achieve the effects of the present invention satisfactorily, the distance u between the side wall surface of the metal member and the side wall surface of the accommodation hole needs to be 0.2 mm or more. In order to further improve the function and effect of the present invention, it is preferable to set it to 0.5 mm or more. On the other hand, if the distance becomes too large, the bonding layer is difficult to reach the side wall surface 6c of the accommodation hole. As a result, when the stress is applied to the metal member in the width direction of the accommodation hole, the metal member It becomes easy to peel. For this reason, the distance is preferably 10 mm or less.
[0026]
At this time, it is possible to make a constant value between the side wall surface of the metal member and the side wall surface of the housing hole from the joint portion to the outlet of the housing hole. (In this case, since the dimension in the cross-sectional direction of the metal member is constant, the tip part and the gap part 14 having a small dimension are not generated). However, in this case, since the gap between the side wall surface of the receiving hole and the side wall surface of the metal member is large, the metal member peels when stress is applied to the metal member in the width direction of the receiving hole. It becomes easy to do.
[0027]
For this reason, it is preferable to provide the gap. At this time, when the distance t between the side wall surface 12a of the metal member 12 and the side wall surface 6c of the accommodation hole 6 is 0.1 mm or less, stress is applied to the metal member in the width direction of the accommodation hole. Moreover, this stress can be greatly relieved. However, when t is too small, it becomes difficult to perform the step of inserting the metal member into the accommodation hole. Therefore, t is preferably 0.02 mm or more.
[0028]
The dimension s of the gap 14 seen in the depth direction of the accommodation hole 6 is not particularly limited, but is preferably 0.5 to 5 mm.
[0029]
In the present invention, a part of the metal member inside the ceramic member is exposed on the bottom surface of the ceramic member housing hole to partially form a metal exposed portion, and the ceramic member and the brazing material are joined together. The exposed metal portion exposed from the space can also be joined to the brazing material. As a result, the bonding strength between the ceramic member and the metal member can be further improved. By adopting such a unique bonding structure, a strong bonding force can be obtained even when the ceramic member is not easily wetted by the brazing material.
[0030]
Here, in FIGS. 3B and 4, a part of the metal 5 inside the ceramic member is exposed on the bottom surface 6 b of the accommodation hole 6, and a metal exposed portion 5 </ b> A is partially formed. The ceramic member 1 and the bonding layer 16a can be bonded (bonding portion 9), and the metal exposed portion 5A can also be bonded to the bonding layer 16a (bonding portion 10).
[0031]
In the present invention, the material of the ceramic member is not limited, but is particularly suitable for non-oxide ceramics such as aluminum nitride, silicon nitride, silicon carbide, sialon, and further nitride ceramics. Also, the material of the metal member is not particularly limited, but a refractory metal such as nickel, molybdenum, tungsten, platinum, rhodium and alloys thereof is particularly suitable.
[0032]
The chemical composition of the brazing material is not particularly limited. However, it is preferable to use a brazing material having a good bonding strength or ease of wetting with respect to the ceramic member itself. In particular, in a joined body exposed to a halogen-based corrosive gas, it is preferable to use a dense alumina member or an aluminum nitride member as the ceramic member. In this case, the main component is Cu, Ni. 0.3 to 10 wt% (preferably one or more active metals selected from the group consisting of Mg, Ti, Zr, Hf and beryllium). 5% by weight or less) is preferable, but the active metal is not essential.
[0033]
The content ratio of the main component is the balance obtained by subtracting the content ratio of the active ingredient and the additive component other than the active ingredient from 100 weight% when the total weight of the brazing filler metal is 100 weight%. However, the main component needs to be contained by 50% by weight or more, and the upper limit is 99.5% by weight. In particular, when a brazing material composed mainly of Al is used, the thermal stress after joining is reduced because joining is performed at a low temperature. Moreover, when using the foil which consists of active metals, a pure metal can be used as a brazing material.
[0034]
When the amount of the active metal is less than 0.3% by weight, the wettability is deteriorated and the joining may not be performed. If it exceeds 50% by weight, the reaction layer at the bonding interface becomes thick and cracks may occur.
[0035]
As an additive component other than the active metal, it is preferable to use at least one of Si, Al, Cu and In from the point of not affecting the main component.
[0036]
Further, if the total amount of additive components other than the active metal exceeds 50 wt%, the amount of intermetallic compounds increases and cracks may be generated at the bonding interface. This additive component may not be contained.
[0037]
An aluminum alloy brazing containing 1 to 2% by weight of magnesium and 9 to 12% by weight of silicon is most preferable from the viewpoint of improving wettability.
[0038]
For joining, a film made of one or more metals selected from the group consisting of copper, aluminum and nickel is sputtered on the bottom surface of the housing hole or on the surface of the brazing material facing the bottom surface of the housing hole, More preferably, it is provided by a method such as vapor deposition, friction welding, plating, or insertion of a metal foil. These films have the effect of improving the wettability with the brazing material. In addition, on bonding, a film made of one or more metals selected from the group consisting of magnesium, titanium, zirconium, and hafnium on the bottom surface of the housing hole or on the surface of the brazing material facing the bottom surface of the housing hole, More preferably, it is provided by a method such as sputtering, vapor deposition, friction welding, plating, or insertion of a metal foil. These films have the effect of improving the reaction with the brazing material. The thickness of each of these metal films is preferably 0.5 to 5 μm.
[0039]
In the embodiment in which the electrode is embedded in the ceramic member, the ceramic heater in which the resistance heating element is embedded in the ceramic member, the ceramic electrostatic chuck in which the electrode for electrostatic chuck is embedded in the ceramic member, and the resistance heating element in the ceramic member And an active device such as a heater with an electrostatic chuck in which an electrode for electrostatic chuck is embedded and a high-frequency generating electrode device in which a plasma generating electrode is embedded in a ceramic member.
[0040]
Further examples include dummy wafers, shadow rings, tubes for generating high-frequency plasma, domes for generating high-frequency plasma, high-frequency transmission windows, infrared transmission windows, lift pins for supporting semiconductor wafers, shower plates, etc. it can.
[0041]
【Example】
FIG. 5 is a sectional view showing an embodiment in which the present invention is applied to an electrostatic chuck. Reference numeral 21 denotes an electrostatic chuck body made of a disk-shaped ceramic member. Such an electrostatic chuck having a high-frequency electrode is often used in a halogen-based corrosive gas atmosphere, and in such a corrosive atmosphere, aluminum nitride or dense alumina may have corrosion resistance. Since it is known, the ceramic member is preferably formed of aluminum nitride or dense alumina.
[0042]
Reference numeral 22 denotes an electrode joint. A mesh electrode or mesh 31 is embedded in the vicinity of the back surface 21 b side inside the main body 1. The mesh 31 can be used as a resistance heating element or an electrostatic chuck electrode. An accommodation hole 26 is formed in the electrostatic chuck main body 1, and the accommodation hole 26 opens in the back surface 21 b. Reference numeral 21 denotes a semiconductor wafer installation surface.
[0043]
A portion of the mesh 31 is exposed on the bottom surface 26a of the accommodation hole 26, forming a metal exposed portion. A cylindrical metal member 25 having a diameter larger than that of other portions of the terminal 24 is formed on the distal end side of the terminal 24 made of a corrosion-resistant metal such as nickel. Although the main body 25f of the metal member 25 is substantially circular, a front end portion 25d having a small diameter when viewed in the width direction of the accommodation hole is formed on the front end side of the main body. A ring-shaped recess 25c is formed on the side of the tip 25d.
[0044]
Metal foil 33 is formed so as to cover bottom surface 26a of the accommodation hole. A disc-shaped brazing material 13 is disposed on the metal foil 33.
[0045]
The metal member 25 is accommodated in the accommodation hole 26, and the bottom surface 25 b of the distal end portion 25 d is opposed to the brazing material 13. Brazing is performed in this state. The gap portion 14 is formed by the main body 25f, the distal end portion 25d, the bottom surface 26a of the accommodation hole, and the side wall surface 26b of the accommodation hole. In the drawing, reference numeral 25 a denotes a side wall surface of the metal member 25.
[0046]
Reference numeral 23 denotes a thermocouple junction. The electrostatic chuck main body 1 is formed with a housing hole 30 having a depth slightly smaller than the housing hole 26, and the housing hole 30 opens in the back surface 21b.
[0047]
A nickel cap 29 (an example of a metal member) for protecting the thermocouple is provided around the distal end portions 28a of the pair of electrodes 28 forming the thermocouple, and the electrode 28 is provided with respect to the female screw 29e of the cap 29. The male screw 28a is inserted. The outer diameter of the cap 29 is designed to be slightly smaller than the inner diameter of the accommodation hole 30. A distal end portion 29 d having a small diameter as viewed in the width direction of the accommodation hole of the cap 29 is formed on the distal end side of the cap 29. A ring-shaped recess 29c is formed on the side of the tip portion 29d.
[0048]
Metal foil 33 is formed so as to cover bottom surface 30a of the accommodation hole. A disc-shaped brazing material 13 is disposed on the metal foil 33.
[0049]
The cap 29 is accommodated in the accommodation hole 30, and the bottom surface 29 b of the distal end portion 29 d is opposed to the brazing material 13. Brazing is performed in this state. The gap portion 14 is formed by the main body 29f, the tip end portion 29d, the bottom surface 30a of the receiving hole, and the side wall surface 30b of the receiving hole. In the drawing, reference numeral 29 a denotes a side wall surface of the cap 29.
[0050]
In particular, in No. 22, since a network structure is adopted as the metal exposed portion, the bonding layer is alternately formed with a portion in contact with the ceramic and a portion in contact with the metal exposed portion in plan view. Therefore, even stronger bonding is achieved.
[0051]
Hereinafter, more specific experimental results will be described.
(Invention Example 1)
A joined body was manufactured according to the procedure described with reference to FIGS. 3 and 4. However, as the ceramic member, an aluminum nitride substrate having a relative density of 99% or more in which a molybdenum mesh was embedded was used. An accommodation hole 6 having a diameter of 5 mm (m in FIG. 3) and a depth of 8 mm was provided on the back side of the aluminum nitride substrate, and the mesh 5 was exposed to the bottom surface of the accommodation hole. The curvature radius R of the radius 6a of the accommodation hole was 0.5 mm.
[0052]
A titanium foil (thickness 5 μm) 33 having a diameter of 5 mm and a silver plate 13 having a diameter (r in FIG. 3) of 4.5 mm and a thickness of 200 μm were used. A terminal (an example of a metal member) 12 having a length of 5 mm was inserted into the accommodation hole. At the center of the terminal 12, an M3 screw hole is machined to a depth of 2 mm so that a torque test can be performed after joining. However, in FIG. 3, u is 0.5 mm, s is 2 mm, t is 0.05 mm, and q is 4.0 mm. A female screw having a diameter of 3 mm and a depth of 3 mm was provided at the center of the terminal 12. While applying a load of 50 g to the terminal 12, heat treatment was performed at 970 ° C. in a vacuum to perform brazing.
[0053]
As a result, a joined structure as shown in FIG. 4 was formed. Here, the height from the bottom surface 6b of the raised portions 16b and 16d was 0.5 mm, and no crack was observed in the aluminum nitride.
[0054]
Two of the joined bodies were used, and each was subjected to a thermal cycle test in a vacuum. The joined body was heated from room temperature to 600 ° C., held at 600 ° C. for 10 minutes, and lowered to room temperature as one cycle, and this was carried out for 10 cycles. Then, a torque of 6 kg / cm was applied to the joined body, and then a cross section of the joined portion was observed with an optical microscope. However, no fracture or crack occurred in the joined portion.
[0055]
Further, two of these joined bodies were used, and a high temperature holding test was performed in vacuum for each. The joined body was heated from room temperature to 600 ° C., held at 600 ° C. for 50 hours, and lowered to room temperature. Then, a torque of 6 kg / cm was applied to the joined body, and then a cross section of the joined portion was observed with an optical microscope. However, no fracture or crack occurred in the joined portion.
[0056]
Moreover, the optical microscope photograph of the cross section of the junction part of the conjugate | zygote of a present Example is shown in FIG. It can be seen that it has the structure described with reference to FIG.
[0057]
(Invention Example 2)
A joined body was produced in the same manner as Example 1 of the present invention. However, the width u of the gap was 0.2 mm. As a result, a joining structure similar to that shown in FIGS. 4 and 6 was formed. Here, the height from the bottom surface 6b of the raised portions 16b and 16d was 0.5 mm, and no crack was observed in the aluminum nitride.
[0058]
Two of the joined bodies were used, and the thermal cycle test was performed on each of them in a vacuum. Although the cross section of the joined part was observed with an optical microscope, no fracture or crack occurred in the joined part. Further, two of the joined bodies were used, and the high temperature holding test was performed on each of them in a vacuum. Although the cross section of the joined part was observed with an optical microscope, no fracture or crack occurred in the joined part.
[0059]
(Invention Example 3)
A joined body was produced in the same manner as Example 1 of the present invention. However, the width u of the gap was 0.8 mm. As a result, a joining structure similar to that shown in FIGS. 4 and 6 was formed. Here, the height from the bottom surface 6b of the raised portions 16b and 16d was 0.5 mm, and no crack was observed in the aluminum nitride.
[0060]
Two of the joined bodies were used, and the thermal cycle test was performed on each of them in a vacuum. Although the cross section of the joined part was observed with an optical microscope, no fracture or crack occurred in the joined part. Further, two of the joined bodies were used, and the high temperature holding test was performed on each of them in a vacuum. Although the cross section of the joined part was observed with an optical microscope, no fracture or crack occurred in the joined part.
[0061]
(Comparative Example 1)
A joined body was manufactured according to the procedure described with reference to FIGS. 1 and 2. However, the ceramic member 1 and the accommodation hole 6 were the same as those of Example 1 of the present invention.
[0062]
A titanium foil (thickness 5 μm) 33 having a diameter of 5 mm and a silver plate 13 having a diameter (p in FIG. 1) of 4.5 mm and a thickness of 200 μm were used. A metal member 2 having a length of 5 mm was inserted into the accommodation hole. In FIG. 1, t was set to 0.05 mm. An internal thread having a diameter of 3 mm and a depth of 3 mm was provided at the center of the member 2. While applying a load of 50 g to the member 2, heat treatment was performed at 970 ° C. in vacuum to perform brazing.
[0063]
As a result, a joined structure as shown in FIG. 2 was formed. Here, the maximum height n (see FIG. 1B) from the bottom surface 6b of the bonding layer was 2 mm. FIG. 7 shows an optical micrograph of the cross section of the bonded portion of the bonded body of Comparative Example 1. It can be seen that it has the structure described with reference to FIG. Further, thin cracks 30 were observed in the aluminum nitride structure.
[0064]
Two of the joined bodies were used, and the above-described thermal cycle test was performed on each of the joined bodies. When the cross section of the joined part was observed with an optical microscope, the joined part was broken. Further, two of these joined bodies were used, and the above-described high temperature holding test was performed on each of them. When the cross section of the joined part was observed with an optical microscope, the joined part was broken.
[0065]
(Comparative Example 2)
A joined body was produced according to the same procedure as in Comparative Example 1. However, as shown to Fig.1 (a), the titanium foil (thickness 5 micrometers) 4 of diameter 9mm was used. As a result, a joint structure similar to that shown in FIGS. 2 and 7 was formed. Here, the maximum height n from the bottom surface 6b of the bonding layer was 4 mm. Further, thin cracks 30 were observed in the aluminum nitride structure.
[0066]
Two of the joined bodies were used, and the above-described thermal cycle test was performed on each of the joined bodies. When the cross section of the joined part was observed with an optical microscope, the joined part was broken. Further, two of these joined bodies were used, and the above-described high temperature holding test was performed on each of them. When the cross section of the joined part was observed with an optical microscope, the joined part was broken.
[0067]
(Comparative Example 3)
A joined body was produced according to the same procedure as in Comparative Example 1. However, a titanium foil (thickness: 5 μm) 33 having a diameter of 5 mm was used, and the size t of the gap between the side wall surface of the terminal 2 and the side wall surface 6c of the accommodation hole 6 was set to 0.1 mm. As a result, a joint structure similar to that shown in FIGS. 2 and 7 was formed. Here, the maximum height n from the bottom surface 6b of the bonding layer was 3 mm. Further, thin cracks 30 were observed in the aluminum nitride structure.
[0068]
Two of the joined bodies were used, and the above-described thermal cycle test was performed on each of the joined bodies. When the cross section of the joined part was observed with an optical microscope, the joined part was broken. Further, two of these joined bodies were used, and the above-described high temperature holding test was performed on each of them. When the cross section of the joined part was observed with an optical microscope, the joined part was broken.
[0069]
【The invention's effect】
As can be seen from the above, according to the present invention, in the joining structure in which at least a part of the metal member is accommodated in the accommodation hole of the ceramic member and the metal member and the ceramic member are joined, the residual stress on the ceramic member is reduced. Even if the bonded body is subjected to a thermal cycle between high and low temperatures, or is kept at a high temperature for a long time, the ceramic member can be prevented from being cracked or broken.
[Brief description of the drawings]
FIG. 1A is a cross-sectional view illustrating a stage immediately before a bonding structure according to a reference example is manufactured, and FIG. 1B is a cross-sectional view illustrating a bonding structure according to a reference example.
FIG. 2 is an enlarged cross-sectional view showing a main part of the joint structure of FIG.
FIG. 3A is a cross-sectional view showing a stage immediately before manufacturing a joint structure according to an example of the present invention, and FIG. 3B is a cross-sectional view showing a joint structure according to an example of the present invention.
4 is an enlarged cross-sectional view showing a main part of the joint structure of FIG.
FIG. 5 is a cross-sectional view showing an embodiment in which the joining structure of the present invention is applied to a ceramic electrostatic chuck holding structure.
6 is an optical micrograph showing a ceramic structure and a metal structure corresponding to the joint structure of FIG. 4;
7 is an optical micrograph showing a ceramic structure and a metal structure corresponding to the joint structure of FIG. 2;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ceramic member 1c Circular recessed part 4 Metal foil 5, 31 Mesh electrode or mesh 6, 26, 30 Housing hole 6b, 26a, 30a Bottom surface of housing hole 6c, 26b, 30b Side wall surface of housing hole 9 Ceramic member and brazing material Bonding portion 10 Metal exposed portion and brazing material bonding portion 12, 25 Metal member 12c, 25c, 29c Ring-shaped recess 12d, 25d, 29d Metal member tip 12e, 25a, 29a Side wall surface 12f of metal member, 25f Metal member main body 33 Metal foil 13 Disc-shaped brazing material 14 Gap portion 16, 16a Bonding layer 16b First raised portion 16c Depressed portion 16d Second raised portion 21 Electrostatic chuck main body 22 made of a disk-shaped ceramic member 22 Electrode joint 23 Thermocouple joint 29 Thermocouple protection nickel cap (metal member Example) 30 Crack t dimension of the gap as viewed in the depth direction of the distance s receiving hole of the side wall surface of the side wall surface and the accommodation hole of the metallic member

Claims (8)

金属部材と、この金属部材の少なくとも一部を収容する収容孔を備えているセラミックス部材との接合構造であって、前記金属部材が前記収容孔内に収容されており、少なくとも前記金属部材の底面側で前記収容孔の側壁面と前記金属部材との間に幅0.2mm以上の間隙部が設けられており、前記金属部材と前記セラミックス部材とを接合する接合層が前記金属部材の底面と前記収容孔の底面との間に形成されており、かつこの接合層の一部分が前記収容孔の底面を被覆するように前記間隙部に露出していることを特徴とする、金属部材とセラミックス部材との接合構造。A joining structure of a metal member and a ceramic member having an accommodation hole for accommodating at least a part of the metal member, wherein the metal member is accommodated in the accommodation hole, and at least a bottom surface of the metal member On the side, a gap portion having a width of 0.2 mm or more is provided between the side wall surface of the housing hole and the metal member, and a bonding layer for bonding the metal member and the ceramic member is formed on the bottom surface of the metal member. A metal member and a ceramic member, which are formed between the bottom surface of the housing hole and a part of the bonding layer is exposed in the gap so as to cover the bottom surface of the housing hole. Bonding structure with. 金属部材と、この金属部材の少なくとも一部を収容する収容孔を備えているセラミックス部材との接合構造であって、前記金属部材が前記収容孔内に収容されており、前記金属部材が、本体とこの本体から前記収容孔の底面側へと突出している前記本体よりも横断面方向の寸法が小さい先端部とを備えており、前記先端部、前記本体、前記収容孔の側壁面および前記収容孔の底面によって包囲された間隙部が形成されており、前記金属部材と前記セラミックス部材とを接合する接合層が前記金属部材の底面と前記収容孔の底面との間に形成されており、かつこの接合層の一部分が前記収容孔の底面を被覆するように前記間隙部に露出していることを特徴とする、金属部材とセラミックス部材との接合構造。It is a joining structure of a metal member and a ceramic member having an accommodation hole for accommodating at least a part of the metal member, wherein the metal member is accommodated in the accommodation hole, and the metal member is a main body. And a distal end portion projecting from the main body to the bottom surface side of the accommodation hole and having a smaller dimension in the cross-sectional direction than the main body, the distal end portion, the main body, the side wall surface of the accommodation hole, and the accommodation A gap surrounded by the bottom surface of the hole is formed, a bonding layer for bonding the metal member and the ceramic member is formed between the bottom surface of the metal member and the bottom surface of the receiving hole, and A joining structure of a metal member and a ceramic member, wherein a part of the joining layer is exposed in the gap so as to cover the bottom surface of the accommodation hole. 前記収容孔の幅方向に見た前記間隙部の寸法が0.2mm以下であることを特徴とする、請求項2記載の金属部材とセラミックス部材との接合構造。The joint structure between a metal member and a ceramic member according to claim 2, wherein the size of the gap portion as viewed in the width direction of the accommodation hole is 0.2 mm or less. 前記間隙部に露出した前記接合層が、前記金属部材の前記先端部の側壁面に対して濡れている第一の隆起部分と、前記セラミックス部材の前記収容孔の側壁面に対して濡れている第二の隆起部分と、前記第一の隆起部分および前記第二の隆起部分の間に形成されている陥没部分を備えていることを特徴とする、請求項2または3記載の金属部材とセラミックス部材との接合構造。The bonding layer exposed in the gap is wetted with respect to the first raised portion wetted with respect to the side wall surface of the tip of the metal member and with respect to the side wall surface of the accommodating hole of the ceramic member. The metal member and ceramics according to claim 2 or 3, comprising a second raised portion, and a depressed portion formed between the first raised portion and the second raised portion. Bonding structure with members. 金属部材と、この金属部材の少なくとも一部を収容する収容孔を備えているセラミックス部材との接合構造を製造する方法であって、前記金属部材を前記収容孔内へと収容し、少なくとも前記金属部材の底面側で前記収容孔の側壁面と前記金属部材との間に幅0.2mm以上の間隙部を設け、前記金属部材と前記収容孔の底面との間に接合用材料を介在させ、前記接合用材料を加熱して前記金属部材の底面と前記収容孔の底面との間に接合層を形成し、この接合層の一部分を前記収容孔の底面を被覆するように前記間隙部に露出させることを特徴とする、金属部材とセラミックス部材との接合構造の製造方法。A method for manufacturing a joint structure between a metal member and a ceramic member having an accommodation hole for accommodating at least a part of the metal member, wherein the metal member is accommodated in the accommodation hole, and at least the metal A gap of 0.2 mm or more width is provided between the side wall surface of the housing hole and the metal member on the bottom surface side of the member, and a bonding material is interposed between the metal member and the bottom surface of the housing hole, The bonding material is heated to form a bonding layer between the bottom surface of the metal member and the bottom surface of the receiving hole, and a part of the bonding layer is exposed to the gap so as to cover the bottom surface of the receiving hole. A method for producing a joint structure of a metal member and a ceramic member, characterized by comprising: 金属部材と、この金属部材の少なくとも一部を収容する収容孔を備えているセラミックス部材との接合構造を製造する方法であって、前記金属部材が、本体と、この本体から前記収容孔の底面側へと突出している前記本体よりも横断面方向の寸法が小さい先端部とを備えており、この金属部材を前記先端部側から前記収容孔内へと収容し、この際前記先端部と前記収容孔の底面との間に接合用材料を介在させ、前記先端部、前記本体、前記収容孔の側壁面および前記収容孔の底面によって間隙部を形成し、少なくとも前記接合用材料を加熱して前記金属部材の底面と前記収容孔の底面との間に接合層を形成し、この接合層の一部分を前記収容孔の底面を被覆するように前記間隙部に露出させることを特徴とする、金属部材とセラミックス部材との接合構造の製造方法。A method for manufacturing a joint structure between a metal member and a ceramic member having an accommodation hole for accommodating at least a part of the metal member, wherein the metal member includes a main body and a bottom surface of the accommodation hole from the main body. A tip portion having a smaller dimension in the cross-sectional direction than the main body projecting to the side, and the metal member is accommodated from the tip portion side into the accommodation hole. A bonding material is interposed between the bottom surface of the housing hole, a gap is formed by the tip portion, the main body, the side wall surface of the housing hole, and the bottom surface of the housing hole, and at least the bonding material is heated. A bonding layer is formed between the bottom surface of the metal member and the bottom surface of the receiving hole, and a part of the bonding layer is exposed to the gap so as to cover the bottom surface of the receiving hole. Member and ceramic member Method for producing a joint structure. 前記収容孔の幅方向に見た前記間隙部の寸法を0.2mm以下とすることを特徴とする、請求項6記載の金属部材とセラミックス部材との接合構造の製造方法。The method for manufacturing a joint structure between a metal member and a ceramic member according to claim 6, wherein a dimension of the gap portion as viewed in the width direction of the accommodation hole is 0.2 mm or less. 前記収容孔の底面から見た前記接合層の最大高さが1.0mm以下であることを特徴とする、請求項7記載の金属部材とセラミックス部材との接合構造の製造方法。The method for manufacturing a joint structure between a metal member and a ceramic member according to claim 7, wherein the maximum height of the joining layer as viewed from the bottom surface of the accommodation hole is 1.0 mm or less.
JP06744496A 1996-02-29 1996-02-29 Bonding structure between metal member and ceramic member and method for manufacturing the same Expired - Lifetime JP3776499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06744496A JP3776499B2 (en) 1996-02-29 1996-02-29 Bonding structure between metal member and ceramic member and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06744496A JP3776499B2 (en) 1996-02-29 1996-02-29 Bonding structure between metal member and ceramic member and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH09235166A JPH09235166A (en) 1997-09-09
JP3776499B2 true JP3776499B2 (en) 2006-05-17

Family

ID=13345114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06744496A Expired - Lifetime JP3776499B2 (en) 1996-02-29 1996-02-29 Bonding structure between metal member and ceramic member and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3776499B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190116092A (en) 2018-04-04 2019-10-14 니뽄 도쿠슈 도교 가부시키가이샤 Ceramic structure
KR20210107085A (en) 2019-03-26 2021-08-31 니뽄 도쿠슈 도교 가부시키가이샤 Electrode buried member and manufacturing method thereof, electrostatic chuck, ceramic heater

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001041508A1 (en) 1999-11-30 2001-06-07 Ibiden Co., Ltd. Ceramic heater
JP4122723B2 (en) * 2001-04-13 2008-07-23 住友電気工業株式会社 Object holder
US20070251938A1 (en) * 2006-04-26 2007-11-01 Watlow Electric Manufacturing Company Ceramic heater and method of securing a thermocouple thereto
KR100776616B1 (en) * 2006-05-04 2007-11-15 한국기계연구원 Flat type Plasma Reactor
TWI450353B (en) * 2008-01-08 2014-08-21 Ngk Insulators Ltd A bonding structure and a semiconductor manufacturing apparatus
JP2011009187A (en) * 2009-05-28 2011-01-13 Kyocera Corp Connector member, piezoelectric actuator, and fuel injection device
KR101465553B1 (en) * 2013-05-27 2014-11-27 재단법인 포항산업과학연구원 Sealing apparatus for connection parts
JP6666717B2 (en) * 2015-12-28 2020-03-18 日本特殊陶業株式会社 Ceramic members

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190116092A (en) 2018-04-04 2019-10-14 니뽄 도쿠슈 도교 가부시키가이샤 Ceramic structure
KR102268690B1 (en) * 2018-04-04 2021-06-23 니뽄 도쿠슈 도교 가부시키가이샤 Ceramic structure
US11081381B2 (en) 2018-04-04 2021-08-03 Ngk Spark Plug Co., Ltd. Ceramic structure
KR20210107085A (en) 2019-03-26 2021-08-31 니뽄 도쿠슈 도교 가부시키가이샤 Electrode buried member and manufacturing method thereof, electrostatic chuck, ceramic heater
US11869796B2 (en) 2019-03-26 2024-01-09 Niterra Co., Ltd. Electrode-embedded member and method for manufacturing same, electrostatic chuck, and ceramic heater

Also Published As

Publication number Publication date
JPH09235166A (en) 1997-09-09

Similar Documents

Publication Publication Date Title
US6057513A (en) Joint structure of metal member and ceramic member and method of producing the same
JP3790000B2 (en) Bonding structure of ceramic member and power supply connector
EP0726239B1 (en) Joined ceramic structures and a process for the production thereof
JP5320082B2 (en) Junction structure and semiconductor manufacturing apparatus
JP3866320B2 (en) Bonded body and manufacturing method of bonded body
US6617514B1 (en) Ceramics joint structure and method of producing the same
EP0753494B1 (en) Method of joining ceramics
JP4005268B2 (en) Bonding structure of ceramics and metal and intermediate insert used for this
JP4136648B2 (en) Dissimilar material joined body and manufacturing method thereof
JP3776499B2 (en) Bonding structure between metal member and ceramic member and method for manufacturing the same
EP0929204A2 (en) Ceramic Heater
JP5143029B2 (en) Junction structure and semiconductor manufacturing apparatus
JP3288922B2 (en) Joint body and method of manufacturing the same
JP2003212670A (en) Joined product of different kinds of materials and its manufacturing process
US5998041A (en) Joined article, a process for producing said joined article, and a brazing agent for use in producing such a joined article
US8414704B2 (en) Bonding structure and semiconductor device manufacturing apparatus
JP2000219578A (en) Ceramic member-metallic member joined body and its production
US7252872B2 (en) Joined structures of ceramics
JP3681824B2 (en) Ceramic bonded body and ceramic bonding method
JP4441080B2 (en) Manufacturing method of composite member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

EXPY Cancellation because of completion of term