JPH0429398Y2 - - Google Patents

Info

Publication number
JPH0429398Y2
JPH0429398Y2 JP1983086891U JP8689183U JPH0429398Y2 JP H0429398 Y2 JPH0429398 Y2 JP H0429398Y2 JP 1983086891 U JP1983086891 U JP 1983086891U JP 8689183 U JP8689183 U JP 8689183U JP H0429398 Y2 JPH0429398 Y2 JP H0429398Y2
Authority
JP
Japan
Prior art keywords
filter
infrared
wavelength
dual
infrared rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983086891U
Other languages
Japanese (ja)
Other versions
JPS59192102U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8689183U priority Critical patent/JPS59192102U/en
Publication of JPS59192102U publication Critical patent/JPS59192102U/en
Application granted granted Critical
Publication of JPH0429398Y2 publication Critical patent/JPH0429398Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、二波長式赤外線ガス分析計に用いら
れる干渉フイルタの改良技術に関する、 〔従来の技術〕 例えばサンプルガス中の特定成分の濃度を赤外
線輻射量から測定する場合、測定対象波長にはサ
ンプルガスからの輻射成分のみでなく、セルやセ
ル窓等からの輻射成分が含まれる。従つて、精密
な濃度測定を行なうには、後者の輻射成分(以
下、これを背景赤外線という。)を除去する必要
がある。ところで、背景赤外線は測定波長域だけ
でなく、その他の波長域にも同程度の輻射量を有
している。従つて、測定波長域以外の近接波長域
で背景赤外線の輻射量を測定し、測定波長域の全
輻射量から減じてやれば、サンプルガス中の特定
成分濃度を背景赤外線の影響を受けることなく精
密に測定することができる。このような測定法を
実行する測定器は赤外線輻射式ガス分析計(二波
長式赤外線ガス分析計の1種)と称され、本出願
人が先に実願昭57−33703号において開示してい
る。
[Detailed description of the invention] [Industrial field of application] The present invention relates to an improved technology for interference filters used in dual-wavelength infrared gas analyzers. When measuring from the amount of infrared radiation, the wavelength to be measured includes not only the radiation component from the sample gas but also the radiation component from the cell, cell window, etc. Therefore, in order to perform precise concentration measurements, it is necessary to remove the latter radiation component (hereinafter referred to as background infrared radiation). By the way, background infrared rays have a similar amount of radiation not only in the measurement wavelength range but also in other wavelength ranges. Therefore, by measuring the amount of background infrared radiation in a nearby wavelength range other than the measurement wavelength range and subtracting it from the total radiation amount in the measurement wavelength range, it is possible to determine the concentration of a specific component in the sample gas without being affected by the background infrared radiation. Can be measured precisely. A measuring instrument that performs such a measurement method is called an infrared radiation gas analyzer (a type of dual-wavelength infrared gas analyzer), and was previously disclosed by the applicant in Utility Model Application No. 57-33703. There is.

ところで、上記分析計においては、特定成分
の測定波長域と、背景赤外線を測定する波長域と
の2つの異なつた波長域で測定を行なう必要があ
る。両波長域の測定エネルギー量の間には、背
景赤外線のエネルギー量が等しいという関係がな
ければならない。そうしなければ背景赤外線の影
響を相殺することができないからである。
By the way, in the above analyzer, it is necessary to perform measurements in two different wavelength ranges: a wavelength range for measuring a specific component and a wavelength range for measuring background infrared rays. There must be a relationship between the amount of energy measured in both wavelength ranges, such that the amount of energy of the background infrared rays is equal. This is because otherwise, the influence of background infrared rays cannot be canceled out.

〔考案が解決しようとする課題〕[The problem that the idea aims to solve]

干渉フイルタは主にの目的のために使用され
るもので、の目的は、現在の段階では各波長を
検出器で検出した後、増幅率の異なつた増幅器で
増幅する等電気的手法に頼らざる得ないものであ
る。このため、余分な電気回路が必要で回路を複
雑にする等といつた支障がある。
Interference filters are mainly used for the purpose of, at present, detecting each wavelength with a detector and then amplifying it with amplifiers with different amplification factors, without relying on electrical methods. It's something you can't get. For this reason, there are problems such as the need for an extra electric circuit, which complicates the circuit.

本考案は、このような点に鑑み、上述したの
目的のみでなく、の目的をも干渉フイルタによ
つて達成できるようにし、余分な電気回路を不要
として、二波長式赤外線ガス分析計の回路の簡素
化に寄与できるに至つた干渉フイルタを提供する
ことを目的としている。
In view of these points, the present invention has been developed to achieve not only the above-mentioned objectives but also the following objectives using an interference filter. The purpose of the present invention is to provide an interference filter that can contribute to the simplification of the system.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するに至つた本考案による二
波長式赤外線ガス分析計の干渉フイルタは、赤外
線の透過波長域が異なる2種の多層膜フイルタを
同一基板上に形成し、各フイルタの赤外線透過側
の面の一部を開口させて残りの全てを光を通さな
い物質で覆うと共に、前記開口の径を各々のフイ
ルタを透過する赤外線の透過エネルギーに反比例
させるように設定した点に特徴を有する。
The interference filter of the dual-wavelength infrared gas analyzer according to the present invention, which has achieved the above object, has two types of multilayer filters with different infrared transmission wavelength ranges formed on the same substrate, and each filter transmits infrared rays. It is characterized in that a part of the side surface is opened and the rest is covered with a material that does not transmit light, and the diameter of the opening is set to be inversely proportional to the transmitted energy of the infrared rays that pass through each filter. .

〔作用〕[Effect]

上記の特徴構成によれば、前記開口の径を赤外
線の透過エネルギーに反比例させたことで、各フ
イルタに対する赤外線の透過エネルギーの比が一
定となる。
According to the characteristic configuration described above, the diameter of the opening is made inversely proportional to the transmitted energy of infrared rays, so that the ratio of transmitted energy of infrared rays to each filter becomes constant.

〔実施例〕〔Example〕

以下、本考案の実施例を図面に基づいて説明す
る。
Hereinafter, embodiments of the present invention will be described based on the drawings.

以下に図面に基づき本考案の一実施例を説明す
る。第1図について、1は基板、2,3は該基板
1の表裏に多数の薄膜を積層して形成した多層膜
フイルタである。双方のフイルタ2,3の透過波
長域は例えば、4.3μと3.9μというように異なつて
いる。
An embodiment of the present invention will be described below based on the drawings. In FIG. 1, 1 is a substrate, and 2 and 3 are multilayer filters formed by laminating a large number of thin films on the front and back surfaces of the substrate 1. In FIG. The transmission wavelength ranges of both filters 2 and 3 are different, for example, 4.3μ and 3.9μ.

4は光を通さない物質で、前記両フイルタ2,
3の上の一部5,6を残してその他全ての表面を
覆つている。従つて、この物質4が覆つていない
部分5,6はフイルタ2,3に光の侵入を許す開
口となる。この開口5,6の形状は第2図に示す
ように円形でもよい。或いは図示しないが四角
形、多角形でもかまわない。しかし、両開口5,
6の径を透過エネルギーに反比例するように設定
する必要がある。即ち、光を通さない物質4で覆
わない場合に各フイルタ2,3を透過するエネル
ギー量をI2,I3とすると、開口5はα・1/I2、開 口6はβ・1/I3という如くフイルタの透過エネル ギーI2,I3に反比例するようその径を設定するの
である。ここにα、βは比例定数である。このよ
うに設定すると、開口5,6付のフイルタ2,3
の透過エネルギーは夫々、 I2×α・1/I2=α I3×β・1/I3=β という如くなつて、両フイルタ2,3の透過エネ
ルギーの比が一定(α/β)となる。その結果
α/βを適当に定めることによつて冒頭に述べた
の目的を干渉フイルタによつて達成できること
になる。
Reference numeral 4 denotes a substance that does not transmit light, and is a substance that does not transmit light.
It covers all the other surfaces except for parts 5 and 6 above 3. Therefore, the portions 5 and 6 that are not covered by the substance 4 become openings that allow light to enter the filters 2 and 3. The shape of the openings 5, 6 may be circular as shown in FIG. Alternatively, although not shown, it may be a rectangle or a polygon. However, both openings 5,
It is necessary to set the diameter of 6 so that it is inversely proportional to the transmitted energy. That is, if the amount of energy that passes through each filter 2, 3 when it is not covered with the substance 4 that does not transmit light is I 2 and I 3 , then the aperture 5 is α・1/I 2 and the aperture 6 is β・1/I 3 , the diameter is set so that it is inversely proportional to the transmitted energies I 2 and I 3 of the filter. Here α and β are proportionality constants. With this setting, the filters 2 and 3 with openings 5 and 6
The transmitted energy of each filter is as follows: I 2 ×α・1/I 2 =α I 3 ×β・1/I 3 =β, and the ratio of the transmitted energy of both filters 2 and 3 is constant (α/β) becomes. As a result, by appropriately determining α/β, the purpose stated at the beginning can be achieved by the interference filter.

また、この場合、干渉フイルタに入る光を第3
図に示すようにチヨツパー7にて断続する場合に
は、各フイルタの開口5,6がチヨツパー7にて
同じ比率で切られるよう、各開口5,6のチヨツ
パー7に対する配置関係及び両開口5,6の距離
を適宜設定する必要がある。
Also, in this case, the light entering the interference filter is
As shown in the figure, when cutting is performed by the chopper 7, the arrangement relationship of each opening 5, 6 with respect to the chopper 7, and both openings 5, 6 are cut at the same ratio by the chopper 7. It is necessary to set the distance of 6 as appropriate.

尚、前記光を通さない物質4は不透明な金属膜
で実施できる。この場合、金属膜は多層膜フイル
タ2,3の中の一層と同一の材料を厚膜に形成し
て使用することもできる。このように厚膜を用い
ると、光を通さない物質4も含めた干渉フイルタ
全体を半導体製造工程によつて製造でき、生産作
業性、量産性等の点で利益が大きい。
Note that the substance 4 that does not transmit light can be an opaque metal film. In this case, the metal film may be made of the same material as one of the layers in the multilayer filters 2 and 3 and formed into a thick film. By using such a thick film, the entire interference filter including the material 4 that does not transmit light can be manufactured by a semiconductor manufacturing process, which is highly advantageous in terms of production efficiency, mass productivity, etc.

〔考案の効果〕[Effect of idea]

以上説明したように、二波長式赤外線ガス分析
計に用いられるところの本考案による干渉フイル
タは、赤外線の透過波長域が異なる2種の多層膜
フイルタを同一基板上に形成し、各フイルタの赤
外線透過側の面の一部を開口させて残りの全てを
光を通さない物質で覆うと共に、前記開口の径を
各々のフイルタを透過する赤外線の透過エネルギ
ーに反比例させるように設定したので、各フイル
タに対する赤外線の透過エネルギーの比が一定と
なり、これによつて二波長式赤外線ガス分析計に
おける検出器の出力を電気的に補正する等の必要
がなくなり、延いては検出器以後の回路を簡素化
できることから、二波長式赤外線ガス分析計のコ
ストダウンを期することができるという効果があ
る。
As explained above, the interference filter according to the present invention used in a dual-wavelength infrared gas analyzer has two types of multilayer filters with different transmission wavelength ranges of infrared rays formed on the same substrate, and the infrared rays of each filter. A part of the transmitting side surface is opened and the rest is covered with a substance that does not transmit light, and the diameter of the opening is set to be inversely proportional to the transmitted energy of the infrared rays that pass through each filter. The ratio of the transmitted energy of infrared rays to This has the effect of reducing the cost of dual-wavelength infrared gas analyzers.

【図面の簡単な説明】[Brief explanation of drawings]

図は本考案の一実施例を示し、第1図は全体断
面図、第2図は全体平面図、第3図はチヨツパー
で光を断続する構成に適用した場合の各開口の配
置を示す図である。 1……基板、2,3……多層膜フイルタ、4…
…光を通さない物質、5,6……開口。
The figures show one embodiment of the present invention, in which Fig. 1 is an overall sectional view, Fig. 2 is an overall plan view, and Fig. 3 is a diagram showing the arrangement of each aperture when applied to a configuration in which light is interrupted by a chopper. It is. 1...Substrate, 2, 3...Multilayer film filter, 4...
...Substance that does not allow light to pass through, 5,6...Aperture.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 二波長式赤外線ガス分析計に用いられる干渉フ
イルタであつて、赤外線の透過波長域が異なる2
種の多層膜フイルタを同一基板上に形成し、各フ
イルタの赤外線透過側の面の一部を開口させて残
りの全てを光を通さない物質で覆うと共に、前記
開口の径を各々のフイルタを透過する赤外線の透
過エネルギーに反比例させるように設定したこと
を特徴とする二波長式赤外線ガス分析計の干渉フ
イルタ。
An interference filter used in a dual-wavelength infrared gas analyzer, with two different infrared transmission wavelength ranges.
Various multilayer film filters are formed on the same substrate, a part of the infrared transmitting side of each filter is opened, and the rest is covered with a material that does not transmit light, and the diameter of the opening is set to the diameter of each filter. An interference filter for a dual-wavelength infrared gas analyzer, characterized in that it is set to be inversely proportional to the transmitted energy of transmitted infrared rays.
JP8689183U 1983-06-04 1983-06-04 Interference filter for dual wavelength infrared gas analyzer Granted JPS59192102U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8689183U JPS59192102U (en) 1983-06-04 1983-06-04 Interference filter for dual wavelength infrared gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8689183U JPS59192102U (en) 1983-06-04 1983-06-04 Interference filter for dual wavelength infrared gas analyzer

Publications (2)

Publication Number Publication Date
JPS59192102U JPS59192102U (en) 1984-12-20
JPH0429398Y2 true JPH0429398Y2 (en) 1992-07-16

Family

ID=30216815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8689183U Granted JPS59192102U (en) 1983-06-04 1983-06-04 Interference filter for dual wavelength infrared gas analyzer

Country Status (1)

Country Link
JP (1) JPS59192102U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5453579A (en) * 1977-10-05 1979-04-26 Fujitsu Ltd Infrared ray multicomponent gas analysis apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5453579A (en) * 1977-10-05 1979-04-26 Fujitsu Ltd Infrared ray multicomponent gas analysis apparatus

Also Published As

Publication number Publication date
JPS59192102U (en) 1984-12-20

Similar Documents

Publication Publication Date Title
CA1084300A (en) Instrument for determining the contents of metabolic products in the blood
JPH0429398Y2 (en)
EP0142481A3 (en) A method for analysis of a sample of a substance by means of photoacoustic or optothermal spectroscopy and a sample carrier for performing of the method
JPH05215685A (en) Infrared gas analyzer
JPH0149894B2 (en)
JP2001324382A (en) Infrared detection device
JP2811563B2 (en) CO analyzer
JPS61173171A (en) Method for measuring resistivity of semiconductor wafer
JPH0519839Y2 (en)
JPS60105947A (en) Infrared gas analyzer
JPS58136756U (en) Infrared radiation gas analyzer
JPS6295849U (en)
JPS6037402B2 (en) How to measure film thickness
JP2780324B2 (en) X-ray thickness gauge
JPH0532787Y2 (en)
AU524858B2 (en) Radiation measurement of web thickness
JPS57198805A (en) Measurement of film thickness
JPH0239243Y2 (en)
JPH0810787Y2 (en) Gas analyzer
JPH0510874A (en) Light absorbing system gas analysis meter
JP2526263Y2 (en) NO gas analyzer
JPS5833643Y2 (en) Ion beam current detection device in mass spectrometer
JPH06307938A (en) Pyroelectric infrared temperature sensor
JPS6239729A (en) Method for measuring photo-physical properties
JPS55152441A (en) Method and device for analyzing correlation