JPH04293970A - Composite particle of ceramic with conductive polymer and its preparation - Google Patents

Composite particle of ceramic with conductive polymer and its preparation

Info

Publication number
JPH04293970A
JPH04293970A JP6000491A JP6000491A JPH04293970A JP H04293970 A JPH04293970 A JP H04293970A JP 6000491 A JP6000491 A JP 6000491A JP 6000491 A JP6000491 A JP 6000491A JP H04293970 A JPH04293970 A JP H04293970A
Authority
JP
Japan
Prior art keywords
ceramic
conductive polymer
fine particles
particles
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6000491A
Other languages
Japanese (ja)
Inventor
Hiroshi Hosokawa
宏 細川
Takemoto Kamata
健資 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP6000491A priority Critical patent/JPH04293970A/en
Publication of JPH04293970A publication Critical patent/JPH04293970A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prepare the title particles which can be stably dispersed in an org. material impart electric conductivity thereto by forming a specific coating layer at least on the surfaces of ceramic particles. CONSTITUTION:A reaction producing a conductive polymer (e.g. polypyrrole) is conducted in the presence of ceramic particles (e.g. silica particles) to form a coating layer consisting of the polymer at least on the surfaces of the particles.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、セラミックス微粒子と
導電性高分子とから成るセラミックス−導電性高分子複
合微粒子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to ceramic-conductive polymer composite fine particles comprising ceramic fine particles and a conductive polymer.

【0002】0002

【従来の技術】セラミックス微粒子は、現在工業のあら
ゆる分野で広範囲に使用され、また応用研究開発が進め
られている重要な原料素材の一つである。その具体的応
用分野としては、包装紙・複写紙・感光紙など紙製品の
コーティング剤、セラミックス・耐火物・断熱材などの
バインダー、触媒原料、プラスチック・ゴム・エラスト
マーなどのフィラー及び補強剤、接着剤の添加剤、ラテ
ックスコーティング・塗料の添加剤、ワックス・光沢剤
の添加剤、繊維・グラスファイバーの添加剤などを挙げ
ることができる。
BACKGROUND OF THE INVENTION Ceramic fine particles are currently widely used in all industrial fields and are one of the important raw materials for which applied research and development is progressing. Specific fields of application include coating agents for paper products such as wrapping paper, copying paper, and photosensitive paper, binders for ceramics, refractories, and heat insulating materials, raw materials for catalysts, fillers and reinforcing agents for plastics, rubber, and elastomers, and adhesives. Examples include additives for latex coatings and paints, additives for waxes and brighteners, and additives for fibers and glass fibers.

【0003】すなわち、セラミックス微粒子は高分子を
代表とする有機材料に配合して使用することにより、そ
の強度・耐衝撃性などの材料特性を向上させたり、耐摩
耗性・摩擦性など有機材料に不足する性質を付与したり
、或いは有機材料に無い光学特性や電磁気特性を付与す
ることにより新しい機能性材料を生み出すことができる
。このような場合には、有機材料中のセラミックス微粒
子の分散状態が材料物性と深く関係する。
That is, by blending ceramic particles with organic materials such as polymers, they can improve the material properties such as strength and impact resistance, and improve the organic materials' properties such as wear resistance and friction properties. New functional materials can be created by imparting missing properties, or by imparting optical or electromagnetic properties that do not exist in organic materials. In such cases, the state of dispersion of ceramic fine particles in the organic material is closely related to the physical properties of the material.

【0004】セラミックス微粒子補強有機材料中のセラ
ミックス微粒子の分散状態をコントロールする方法とし
て、現在まで多くの技術が開発されており、例えば、セ
ラミックス微粒子に含まれる金属元素の種類と量により
コントロールする方法、無機グラフトによる方法、カッ
プリング剤で処理する方法などがあり、カップリング剤
としては、シラン系、チタネート系、アルミニウム系、
ジルコニウム系、ジルコアルミネート系などがある。
[0004] Many techniques have been developed up to now as methods for controlling the dispersion state of ceramic particles in an organic material reinforced with ceramic particles. There are methods using inorganic grafting, methods using coupling agents, etc. Coupling agents include silane-based, titanate-based, aluminum-based,
There are zirconium type, zircoaluminate type, etc.

【0005】一方、工場・研究所・オフィス・店舗・輸
送機関・公共施設・家庭などにおける生活環境のコンピ
ューター化とエレクトロニクス化に伴い、あらゆる材料
分野で制電性・導電性・電磁シールド性などの電磁気的
性質をコントロールする必要性が生じている。高分子に
代表される有機材料は一般に電気絶縁性であり、それ故
、電気的性質をコントロールし得た有機材料を作るとい
う目的を達成する為に従来採られた方法としては、導電
性フィラーの有機材料への充填、成形品への導電性塗料
の塗付、金属・金属酸化物などの導電性材料の蒸着など
である。
On the other hand, with the computerization and electronicization of the living environment in factories, research institutes, offices, stores, transportation systems, public facilities, homes, etc., all materials fields are becoming increasingly susceptible to antistatic properties, conductivity, electromagnetic shielding properties, etc. There is a need to control electromagnetic properties. Organic materials, such as polymers, are generally electrically insulating. Therefore, the conventional methods used to achieve the goal of creating organic materials whose electrical properties can be controlled include the use of conductive fillers. These include filling organic materials, applying conductive paint to molded products, and vapor deposition of conductive materials such as metals and metal oxides.

【0006】[0006]

【発明が解決しようとする課題】セラミックス微粒子を
配合した有機材料に導電性を付与する目的で導電性フィ
ラーを有機材料に充填した場合、マトリックスである有
機材料の量が相対的に少なくなり、本来の有機材料特性
が発現しない場合がある。また、導電性フィラー充填に
伴う材料費の工程費を考慮すると、最終コストが高すぎ
て応用の困難な分野が数多く存在する。このことは、導
電性塗料の塗付、金属・金属酸化物などの導電性材料の
蒸着などについても同様である。
[Problem to be Solved by the Invention] When a conductive filler is filled into an organic material containing ceramic fine particles for the purpose of imparting conductivity to the organic material, the amount of the organic material that is the matrix becomes relatively small. Organic material properties may not be expressed. Furthermore, when considering the material and process costs associated with filling conductive filler, the final cost is too high and there are many fields in which it is difficult to apply. This also applies to the application of conductive paint, the vapor deposition of conductive materials such as metals and metal oxides, and the like.

【0007】従って、本発明は有機材料中へのセラミッ
クス微粒子の分散安定性と導電性を同時に付与する経済
的にも優れた技術を提供することを目的とする。
Therefore, an object of the present invention is to provide an economically superior technique for simultaneously imparting dispersion stability and conductivity to ceramic fine particles in an organic material.

【0008】[0008]

【課題を解決する為の手段】本発明者らは、セラミック
ス微粒子の少なくとも表面を導電性高分子で被覆するこ
とにより、有機材料中におけるセラミックス微粒子の分
散安定性と導電性を同時に付与できることを見い出し、
本発明に至ったものであり、その要旨とするところは、
セラミック微粒子の少なくとも表面に導電性高分子の被
覆層を設けたことを特徴とするセラミックス−導電性高
分子複合微粒子、及び、セラミックス微粒子存在下にそ
の少なくとも表面で導電性高分子の生成反応を行わしめ
ることにより上述した構造を有するセラミックス−導電
性高分子複合微粒子の製造方法にある。
[Means for Solving the Problems] The present inventors have discovered that dispersion stability and conductivity of ceramic fine particles in an organic material can be imparted at the same time by coating at least the surface of the ceramic fine particles with a conductive polymer. ,
This led to the present invention, and its gist is as follows:
A ceramic-conductive polymer composite fine particle characterized in that a coating layer of a conductive polymer is provided on at least the surface of the ceramic fine particle, and a conductive polymer production reaction is carried out on at least the surface in the presence of the ceramic fine particle. The present invention provides a method for producing ceramic-conductive polymer composite fine particles having the above-described structure.

【0009】本発明のセラミックス−導電性高分子複合
微粒子は、セラミックス微粒子の少なくとも表面が導電
性高分子により被覆されたものである。本発明において
用いるセラミックス微粒子としては特に制限は無いが、
例えばSiO2 、TiO2 、ZnO、Al2 O3
 、フェライトなどの金属または半導体の酸化物や窒化
アルミニウムなどの窒化物などの微粒子を挙げることが
できる。
The ceramic-conductive polymer composite fine particles of the present invention are ceramic fine particles whose at least the surface is coated with a conductive polymer. There are no particular restrictions on the ceramic fine particles used in the present invention, but
For example, SiO2, TiO2, ZnO, Al2O3
, metal or semiconductor oxides such as ferrite, and nitrides such as aluminum nitride.

【0010】また、導電性高分子とは、高分子自身の電
子状態により導電性が発現する物質を意味し、代表的な
ものとしては、ポリピロール、ポリフラン、ポリチオフ
ェン、ポリアニリンなどのπ電子共役系ポリマーが挙げ
られる。このような導電性高分子で被覆されたセラミッ
クス微粒子は、導電性を有すると共に有機材料に対して
親和性をも持つことが確認された。
[0010] Also, conductive polymer refers to a substance that exhibits conductivity due to the electronic state of the polymer itself, and typical examples include π-electron conjugated polymers such as polypyrrole, polyfuran, polythiophene, and polyaniline. can be mentioned. It was confirmed that ceramic fine particles coated with such a conductive polymer have not only conductivity but also an affinity for organic materials.

【0011】本発明のセラミックス−導電性高分子複合
微粒子の製造方法は、セラミックス微粒子存在下の条件
で導電性高分子の生成反応を行うものであり、具体的に
は、セラミックス微粒子表面を導電性高分子の重合反応
の場とするものであり、この方法によれば、セラミック
ス微粒子に導電性を付与すると同時に有機材料に対する
親和性をも付与することができる。
[0011] The method for producing ceramic-conductive polymer composite fine particles of the present invention involves performing a reaction for producing a conductive polymer in the presence of ceramic fine particles. Specifically, the surface of the ceramic fine particles is made conductive. This method is used as a site for polymerization reactions of polymers, and according to this method, it is possible to impart conductivity to ceramic fine particles as well as affinity for organic materials.

【0012】本発明のセラミックス−導電性高分子複合
微粒子の製造条件については、特に制限は無いが、導電
性高分子の生成反応を行う際にセラミックス微粒子の反
応系での分散安定性を保持するよう工夫が必要である。 すなわち、セラミックス微粒子の種類と品種などにもよ
るが、一般的にコロイド状のセラミックス微粒子はpH
や塩濃度などにより分散安定性が変化するので、安定領
域で反応を行うことが必要である。
There are no particular limitations on the manufacturing conditions for the ceramic-conductive polymer composite fine particles of the present invention, but the dispersion stability of the ceramic fine particles in the reaction system is maintained during the conductive polymer production reaction. It is necessary to devise ways to do so. In other words, although it depends on the type and variety of ceramic fine particles, in general, colloidal ceramic fine particles have a pH value of
Since the dispersion stability changes depending on the salt concentration, etc., it is necessary to conduct the reaction in a stable region.

【0013】導電性高分子の生成方法としては、一般的
に電気化学的方法と化学的方法があるが、本発明ではど
ちらの方法をも用いることができる。
[0013] Methods for producing conductive polymers generally include electrochemical methods and chemical methods, and either method can be used in the present invention.

【0014】セラミックス微粒子表面に導電性高分子が
生成するメカニズムは、現在のところ定かではないが、
セラミックス微粒子表面に負イオンが存在する場合には
、その負イオンが導電性高分子に対してドーパントとし
て作用し、反対に正イオンが存在する場合にはこれが系
内の負イオンを吸着しこの負イオンが導電性高分子に対
してドーパントとして作用するなどの理由で、重合反応
の安定化とその後の表面被覆状態の安定化が実現してい
るものと推測される。
The mechanism by which conductive polymers are formed on the surface of ceramic fine particles is currently not clear;
When negative ions exist on the surface of the ceramic particles, they act as dopants for the conductive polymer, and on the other hand, when positive ions exist, they adsorb negative ions in the system and remove these negative ions. It is presumed that the stabilization of the polymerization reaction and subsequent stabilization of the surface coating state is achieved because the ions act as dopants on the conductive polymer.

【0015】[0015]

【実施例】以下に、本発明を具体的実施例について説明
する。
[Examples] The present invention will be explained below with reference to specific examples.

【0016】〔実施例1〕触媒化成工業(株)製コロイ
ダルシリカ“商標CATALOID−SI−80P”を
イオン交換水にて5倍希釈したシリカ微粒子分散液12
5mlに、和光純薬工業(株)0.1N硝酸銀水溶液4
0mlを滴下混合した後に、攪はんしながら0.1Mピ
ロール水溶液40mlを滴下混合したところ、黒灰色の
分散液が得られた。この分散液をイオン交換水にて約1
00倍希釈し、透過型電子顕微鏡観察用メッシュ上に滴
下し十分乾燥した後に、日本電子(株)製透過型電子顕
微鏡JEM−100CXIIにて観察したところ、シリ
カ微粒子にポリピロールが複合化された様子が確認でき
た。
[Example 1] Silica fine particle dispersion 12 prepared by diluting colloidal silica “trademark CATALOID-SI-80P” manufactured by Catalysts & Chemicals Co., Ltd. 5 times with ion-exchanged water.
Add 4 mL of Wako Pure Chemical Industries, Ltd. 0.1N silver nitrate aqueous solution to 5 ml.
After dropping and mixing 0 ml, 40 ml of a 0.1 M pyrrole aqueous solution was added dropwise while stirring to obtain a black-gray dispersion. This dispersion was mixed with ion-exchanged water for about 1 hour.
After diluting it 00 times and dropping it onto a mesh for transmission electron microscopy observation and drying it thoroughly, it was observed with a transmission electron microscope JEM-100CXII manufactured by JEOL Ltd., and it appeared that polypyrrole was composited with silica fine particles. was confirmed.

【0017】〔実施例2〕0.1N硝酸銀水溶液に代え
て、0.05M過硫酸アンモニウム水溶液を使用したこ
と以外は、上記実施例1と同様の方法で行ったところ、
実施例1と同様にシリカ微粒子にポリピロールが複合化
された様子が確認できた。
[Example 2] The same method as in Example 1 above was carried out except that a 0.05M ammonium persulfate aqueous solution was used in place of the 0.1N silver nitrate aqueous solution.
As in Example 1, it was confirmed that polypyrrole was composited into silica fine particles.

【0018】〔実施例3〕0.1N硝酸銀水溶液に代え
て、0.1M塩化第二鉄水溶液を使用したこと以外は、
上記実施例1と同様の方法で行ったところ、実施例1と
同様にシリカ微粒子にポリピロールが複合化された様子
が確認できた。
[Example 3] Except that 0.1M ferric chloride aqueous solution was used instead of 0.1N silver nitrate aqueous solution,
When the same method as in Example 1 was carried out, it was confirmed that polypyrrole was composited with silica fine particles in the same manner as in Example 1.

【0019】〔実施例4〕触媒化成工業(株)コロイダ
ルシリカ“商標CATALOID−SI−80P”を0
.01N塩化カリウム水溶液にて5倍希釈したシリカ微
粒子分散液125mlに、0.1Mピロール水溶液40
mlを滴下混合したものを電解液として、白金電極を陰
極と陽極に用い、ポテンショスタットを用いて1mA・
cm−2の定電流条件で液を攪はんしながら4時間電解
した。この電解液をイオン交換水にて約100倍希釈し
、透過型電子顕微鏡観察用メッシュ上に滴下し十分乾燥
した後に、日本電子(株)製透過型電子顕微鏡JEM−
100CMIIにて観察したところ、シリカ微粒子にポ
リピロールが複合化された様子が確認できた。
[Example 4] Colloidal silica “trademark CATALOID-SI-80P” manufactured by Catalysts & Chemicals Co., Ltd.
.. Add 40ml of 0.1M pyrrole aqueous solution to 125ml of silica fine particle dispersion diluted 5 times with 0.1N potassium chloride aqueous solution.
ml dropwise and mixed as an electrolyte, platinum electrodes were used as the cathode and anode, and a potentiostat was used to generate 1 mA.
Electrolysis was carried out for 4 hours while stirring the solution under constant current conditions of cm-2. This electrolyte was diluted approximately 100 times with ion-exchanged water, dropped onto a mesh for transmission electron microscopy, and dried thoroughly.
When observed at 100CMII, it was confirmed that polypyrrole was composited into silica fine particles.

【0020】〔実施例5〕フェライト微粒子の分散液で
ある松本油脂製薬(株)製磁性流体“商標マーポマグナ
FW−40”1mlをイオン交換水にて100倍に希釈
し、これに0.1M塩化第二鉄水溶液40mlを滴下混
合した後に、攪はんしながら0.1Mピロール水溶液4
0mlを滴下混合した。一晩、室温にて攪はん混合した
液を実施例1と同様の方法で電子顕微鏡観察したところ
、フェライト微粒子にポリピロールの複合化された様子
が確認できた。
[Example 5] 1 ml of the magnetic fluid “Marpo Magna FW-40” manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd., which is a dispersion of ferrite particles, was diluted 100 times with ion-exchanged water, and 0.1 M chloride was diluted with ion-exchanged water. After dropping and mixing 40 ml of ferric aqueous solution, 40 ml of 0.1M pyrrole aqueous solution was added while stirring.
0 ml was added dropwise and mixed. When the mixture was stirred and mixed overnight at room temperature and observed under an electron microscope in the same manner as in Example 1, it was confirmed that polypyrrole was composited with ferrite fine particles.

【0021】〔実施例6〕触媒化成工業(株)製アルミ
ナゾル“商標Cataloid−AS−3”10mlを
イオン交換水にて10倍希釈した液に、0.05M過硫
酸アンモニウム水溶液40mlを滴下混合した後に、攪
はんしながら0.1Mピロール水溶液40mlを滴下混
合したところ、黒灰色の分散液が得られた。この分散液
を実施例1と同様の方法で電子顕微鏡観察したところ、
アルミナ微粒子にポリピロールの複合化された様子が確
認できた。
[Example 6] 40 ml of a 0.05M ammonium persulfate aqueous solution was added dropwise to a solution prepared by diluting 10 ml of alumina sol “Cataroid-AS-3” manufactured by Catalysts & Chemicals Co., Ltd. 10 times with ion-exchanged water. When 40 ml of a 0.1 M pyrrole aqueous solution was added dropwise and mixed with stirring, a black-gray dispersion was obtained. When this dispersion was observed using an electron microscope in the same manner as in Example 1,
It was confirmed that polypyrrole was composited with alumina fine particles.

【0022】[0022]

【発明の効果】以上詳細に説明したところから明らかな
ように、本発明のセラミックス−導電性高分子複合微粒
子はセラミックス微粒子表面が導電性高分子で被覆され
ている為、有機材料に安定して分散することができると
同時に導電性をも付与することができる。
[Effects of the Invention] As is clear from the detailed explanation above, the ceramic-conductive polymer composite fine particles of the present invention have a surface coated with a conductive polymer, so they are stable against organic materials. It can be dispersed and at the same time impart conductivity.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  セラミック微粒子の少なくとも表面に
導電性高分子の被覆層を設けたことを特徴とするセラミ
ックス−導電性高分子複合微粒子。
1. Ceramic-conductive polymer composite fine particles, characterized in that a coating layer of a conductive polymer is provided on at least the surface of the ceramic fine particles.
【請求項2】  セラミック微粒子の存在下に、その少
なくとも表面で導電性高分子の形成反応を行わせ、セラ
ミック微粒子の少なくとも表面に導電性高分子の被覆層
を形成せしめることを特徴とするセラミック−導電性高
分子複合微粒子の製法。
2. A ceramic, characterized in that a conductive polymer formation reaction is carried out on at least the surface of the ceramic fine particles in the presence of the ceramic fine particles, thereby forming a coating layer of the conductive polymer on at least the surface of the ceramic fine particles. Method for manufacturing conductive polymer composite particles.
JP6000491A 1991-03-25 1991-03-25 Composite particle of ceramic with conductive polymer and its preparation Pending JPH04293970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6000491A JPH04293970A (en) 1991-03-25 1991-03-25 Composite particle of ceramic with conductive polymer and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6000491A JPH04293970A (en) 1991-03-25 1991-03-25 Composite particle of ceramic with conductive polymer and its preparation

Publications (1)

Publication Number Publication Date
JPH04293970A true JPH04293970A (en) 1992-10-19

Family

ID=13129518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6000491A Pending JPH04293970A (en) 1991-03-25 1991-03-25 Composite particle of ceramic with conductive polymer and its preparation

Country Status (1)

Country Link
JP (1) JPH04293970A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1092719C (en) * 1998-06-03 2002-10-16 南京大学 Laminated composite magnetic conductive polymer film and its preparation method
WO2009153361A1 (en) 2008-06-19 2009-12-23 Fundacion Cidetec Method for electrochemically covering an insulating substrate
WO2014142133A1 (en) * 2013-03-11 2014-09-18 昭和電工株式会社 Method for producing conductive polymer-containing dispersion

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1092719C (en) * 1998-06-03 2002-10-16 南京大学 Laminated composite magnetic conductive polymer film and its preparation method
WO2009153361A1 (en) 2008-06-19 2009-12-23 Fundacion Cidetec Method for electrochemically covering an insulating substrate
WO2014142133A1 (en) * 2013-03-11 2014-09-18 昭和電工株式会社 Method for producing conductive polymer-containing dispersion
WO2014141367A1 (en) * 2013-03-11 2014-09-18 昭和電工株式会社 Method for producing conductive polymer-containing dispersion
JPWO2014142133A1 (en) * 2013-03-11 2017-02-16 昭和電工株式会社 Process for producing conductive polymer-containing dispersion
US10563071B2 (en) 2013-03-11 2020-02-18 Showa Denko K.K. Method for producing conductive polymer-containing dispersion

Similar Documents

Publication Publication Date Title
Folli et al. Engineering photocatalytic cements: understanding TiO2 surface chemistry to control and modulate photocatalytic performances
KR20120050078A (en) Preparation of nano porous polymeric electro conductive nano composite filler and inorganic waterproof silicate water-born coating agent with electro-magnetic silicate shielding properties there in and a manufacturing method
KR20120139959A (en) High density nano coating compositions
Li et al. Surface modification of boron nitride via poly (dopamine) coating and preparation of acrylonitrile‐butadiene‐styrene copolymer/boron nitride composites with enhanced thermal conductivity
TW593545B (en) Conductive silicone rubber composition
TWI414572B (en) Use of nanomaterials in secondary electrical insulation coatings
Tang et al. Imparting cellulosic paper of high conductivity by surface coating of dispersed graphite
US2991257A (en) Electrically conductive compositions and the process of making the same
JPH07103392B2 (en) Electrorheological fluid
Farrokhi‐Rad Effect of dispersants on the electrophoretic deposition of hydroxyapatite‐carbon nanotubes nanocomposite coatings
Joshi et al. Optimization of geopolymer properties by coating of fly-ash microparticles with nanoclays
JPH0688785B2 (en) Conductive barium sulfate and its manufacturing method
JP2009199776A (en) White conductive powder, its manufacturing method, and usage
JPH04293970A (en) Composite particle of ceramic with conductive polymer and its preparation
KR100882095B1 (en) Method of surface treatment of metal particle using self assembly, metal particle thereby, making method of polymer solution containing the metal particle and coating steel panel thereby
JP2018070999A (en) Anticorrosive pigment, and use thereof
Nazarlou et al. Ti3C2 MXene/polyaniline/montmorillonite nanostructures toward solvent-free powder coatings with enhanced corrosion resistance and mechanical properties
CA2138252A1 (en) Coating process for producing electroconductive powders
US20030193037A1 (en) Inorganic compound sol modified by organic compound
JP2009199775A (en) White conductive powder, its manufacturing method, and usage
CN1132885C (en) Process for preparing conducting light colour flaky pigment
CN106398535B (en) A kind of cable erosion shield
JPH03253598A (en) Dispersion plating method
KR101328495B1 (en) Anionic polymer surface-treated ceramic particle and method thereof
JP4046785B2 (en) Non-conductive carbonaceous powder and method for producing the same