JPH07103392B2 - Electrorheological fluid - Google Patents

Electrorheological fluid

Info

Publication number
JPH07103392B2
JPH07103392B2 JP62159809A JP15980987A JPH07103392B2 JP H07103392 B2 JPH07103392 B2 JP H07103392B2 JP 62159809 A JP62159809 A JP 62159809A JP 15980987 A JP15980987 A JP 15980987A JP H07103392 B2 JPH07103392 B2 JP H07103392B2
Authority
JP
Japan
Prior art keywords
particles
electrorheological
electrorheological fluid
water
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62159809A
Other languages
Japanese (ja)
Other versions
JPS646093A (en
Inventor
昭夫 井上
Original Assignee
旭化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成工業株式会社 filed Critical 旭化成工業株式会社
Priority to JP62159809A priority Critical patent/JPH07103392B2/en
Priority to US07/209,807 priority patent/US5607617A/en
Publication of JPS646093A publication Critical patent/JPS646093A/en
Publication of JPH07103392B2 publication Critical patent/JPH07103392B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/001Electrorheological fluids; smart fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/006Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium characterised by the nature of the damping medium, e.g. biodegradable

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電圧制御により粘性を変化可能な電気粘性流
体、特に水分を含有しない固体粒子を電気絶縁性油状媒
体に分散させた流体であり、クラッチ,バルブ,ショッ
クアブゾーバー等のアクチュエータとして利用される。
TECHNICAL FIELD The present invention relates to an electrorheological fluid whose viscosity can be changed by voltage control, particularly a fluid in which solid particles containing no water are dispersed in an electrically insulating oily medium. , Actuators for clutches, valves, shock absorbers, etc.

[従来の技術] トランス油,スピンドル油,塩化パラフィン等の電気絶
縁性油状媒体中に、含水させたシリカ,デンプン,セル
ロース等の含水固体微粒子を分散させた流体に外部電界
をかけると流体の粘度が著しく増大する現象が見られ
る。この現象はウインズロー効果として古くから知られ
ており、クラッチ,バルブ,振動素子等への応用が1940
年代から検討されてきた。
[Prior Art] When an external electric field is applied to a fluid in which water-containing solid fine particles such as silica, starch, and cellulose are dispersed in an electrically insulating oily medium such as transformer oil, spindle oil, or chlorinated paraffin, the viscosity of the fluid is increased. There is a phenomenon in which is significantly increased. This phenomenon has long been known as the Winslow effect, and its application to clutches, valves, vibration elements, etc.
It has been considered since the generation.

ウィンズロー効果を高める方法として、これまで多くの
提案がなされてきた。例えば、含水させた強酸性あるい
は強塩基性のイオン交換樹脂の含水微粒子を芳香族カル
ボン酸の高級アルキルエステル中に分散させたもの(特
開昭50−92278号)、また、ハロゲン化ジアリール化合
物あるいはシリコーン系オイルに含水した親水性固体粒
子を分散させたもの(特開昭58−501178号あるいは特開
昭61−44998号)が優れた電気粘性効果を示すことが知
られている。
Many proposals have been made so far as methods for enhancing the Winslow effect. For example, one obtained by dispersing water-containing fine particles of a water-containing strongly acidic or strongly basic ion exchange resin in a higher alkyl ester of an aromatic carboxylic acid (Japanese Patent Laid-Open No. 50-92278), a halogenated diaryl compound or It is known that a dispersion of hydrophilic solid particles containing water in a silicone oil (JP-A-58-501178 or JP-A-61-44998) exhibits an excellent electrorheological effect.

[発明が解決しようとする問題点] 従来提案されてきた電気粘性流体の殆んどは、親水性の
固体微粒子を含水させ、絶縁性の油状媒体中に分散させ
たものである。水の存在によって粒子表面に形成された
電気二重層が、外部からの高電圧の印加により自由イオ
ンの移動を起し分極を生じる。この分極電荷が静電引力
により粒子間に電界方向の架橋を生じ、これが架橋と直
角方向の剪断力に対して抵抗となり、粘度を増大する。
所謂、電気二重層説に基づくものである。
[Problems to be Solved by the Invention] Most of the electrorheological fluids that have been conventionally proposed are those in which hydrophilic solid fine particles are made to contain water and dispersed in an insulating oily medium. The electric double layer formed on the surface of the particles due to the presence of water causes the movement of free ions by the application of a high voltage from the outside to cause polarization. This polarization charge causes cross-linking between particles in the direction of the electric field due to electrostatic attraction, which resists shearing force in the direction perpendicular to the cross-linking, increasing viscosity.
It is based on the so-called electric double layer theory.

ところで、このような含水微粒子を用いる従来の電気粘
性流体は、粒子内外への水の移行による安定性の不足,
高電圧印加による電極金属の溶解など耐久性の不足,更
には温度上昇するとイオン化が促進され電流が増大し一
層温度が上昇するといった温度特性の低さの問題など、
水の存在に帰因する多くの問題のため、大きな応用が期
待されているにもかかわらず実用化が阻まれている。
By the way, the conventional electrorheological fluid using such water-containing fine particles lacks stability due to migration of water in and out of the particles.
Insufficient durability such as melting of electrode metal due to high voltage application, further problem of low temperature characteristics such as ionization is promoted when temperature rises, current increases and temperature further rises.
Many problems attributed to the presence of water have hampered its commercialization despite its promise of major applications.

一方、このような水の存在に対し、強誘電性物質や半導
体の粒子を含水粒子の代りに使用する試みも僅かではあ
るが提案されている。例えば、強誘電性物質であるチタ
ン酸カルシウム粒子をナフテン系絶縁油中に分散させる
方法[J.Appl.Physics,38(1)67(1967)]、あるい
はポリ(アセン−キノン)等の有機半導体粒子を絶縁油
中に分散させる方法(特開昭61−216202号)などである
が、これらはいずれも電気粘性効果が低かったり、電流
量が高過ぎるなど実用には問題がある。
On the other hand, in response to the presence of such water, there have been few proposals to use particles of a ferroelectric substance or a semiconductor instead of the water-containing particles. For example, a method of dispersing particles of calcium titanate, which is a ferroelectric substance, in naphthenic insulating oil [J.Appl.Physics, 38 (1) 67 (1967)], or organic semiconductors such as poly (acene-quinone) A method of dispersing particles in insulating oil (Japanese Patent Laid-Open No. 61-216202) and the like are all problematic for practical use, such as low electrorheological effect and too high current amount.

ところで、特願昭61−241929号には、水分を含有しない
固体粒子を電気絶縁性油状媒体に分散させた電気熱粘性
流体が開示されている。この電気粘性流体では、誘電体
粒子が有機固体粒子を中心として、その表面に導電性薄
膜層、つぎに電気絶縁性薄膜層が形成された多層構造か
らなる粒子である。したがって、水の存在による長期安
定性不良や電極の溶出、さらには電気粘性特性の温度依
存性の低下等の問題を解決することが可能である。しか
し、有機固体粒子に導電性薄膜層を被覆して導電性粒子
を形成し、さらにその上に電気絶縁性薄膜層を積層させ
るため、少なくとも2つの積層工程を必要とする。ま
た、このような複雑な積層工程を必要とした背景とし
て、導電体である金属粒子の表面を絶縁性の被覆で覆う
ことによって得られる粒子を用いる際に、導電性薄膜層
の均一性確保や劣化防止等の問題がある。
By the way, Japanese Patent Application No. 61-241929 discloses an electrothermoviscous fluid in which solid particles containing no water are dispersed in an electrically insulating oily medium. In this electrorheological fluid, the dielectric particles are particles having a multi-layered structure in which a conductive thin film layer and then an electrically insulating thin film layer are formed on the surface of the organic solid particles as the center. Therefore, it is possible to solve problems such as poor long-term stability due to the presence of water, elution of electrodes, and further decrease in temperature dependency of electrorheological characteristics. However, at least two laminating steps are required in order to coat the organic solid particles with the conductive thin film layer to form the conductive particles, and to further stack the electrically insulating thin film layer thereon. Further, as a background that requires such a complicated laminating step, when using particles obtained by covering the surface of metal particles that are conductors with an insulating coating, it is possible to ensure the uniformity of the conductive thin film layer. There are problems such as deterioration prevention.

本発明は、上記のような問題点を解決した新しい実用的
な電気粘性流体を提供するものである。
The present invention provides a new practical electrorheological fluid that solves the above problems.

[問題点を解決するための手段] ウィンズロー効果が外部電界による微粒子表面水の分極
に基づくものであるとすれば、水の存在なく微粒子表面
に分極を生じさせる別の方法があれば、前述の如き水の
存在に基づく多くの問題を有しない新しい電気粘性流体
の可能性がある。
[Means for Solving Problems] If the Winslow effect is based on polarization of water on the surface of fine particles due to an external electric field, there is another method for causing polarization on the surface of fine particles without the presence of water. There is potential for new electrorheological fluids that do not have many problems due to the presence of water such as.

本発明は、このような発想のもとに、新しい非含水粒子
系の電気粘性流体を探究し多くの実験を重ねた結果、誘
電体微粒子の表面を電気絶縁性の薄膜で被覆したものを
用いることにより、水の存在なく、優れた電気粘性効果
を示すことを見出し、本発明に到達した。すなわち、本
発明は、電気絶縁性に優れた油状媒体に誘電体粒子を分
散せしめた電気粘性流体において、上記誘電体微粒子
は、電気抵抗が104Ω・cm以下の電気抵抗を有する均質
な材料からなる導電性粒子の表面に、厚さが1μm以下
の絶縁薄膜が被覆され、かつ誘電体微粒子が108Ω・cm
以上の電気抵抗値を持ち、さらに該誘電体微粒子の水分
含有率が1重量%以下であることを特徴とする電気粘性
流体にある。ここで、均質な材料とは、少なくとも層構
造を有さないという意味であり、後述するように導電性
物質と非導電性物質との複合体も含まれる。
Based on such an idea, the present invention has explored a new non-hydrous particle type electrorheological fluid and conducted many experiments, and as a result, uses a dielectric fine particle whose surface is coated with an electrically insulating thin film. As a result, they have found that they exhibit an excellent electrorheological effect without the presence of water, and have reached the present invention. That is, the present invention is an electrorheological fluid in which dielectric particles are dispersed in an oily medium having excellent electrical insulation, wherein the dielectric fine particles are homogeneous materials having an electrical resistance of 10 4 Ω · cm or less. The surface of the conductive particles consisting of is coated with an insulating thin film with a thickness of 1 μm or less, and the dielectric particles are 10 8 Ω · cm.
An electrorheological fluid having the above electrical resistance value and having a water content of 1% by weight or less in the dielectric fine particles. Here, the homogeneous material means that it does not have at least a layered structure, and includes a complex of a conductive substance and a non-conductive substance as described later.

本発明に使用される導電体粒子としては、アルミニウ
ム,ニッケル,銅,錫,ケイ素,ジュラルミン,シルミ
ン(アルミニウム−ケイ素合金)などの金属あるいは合
金,導電性カーボンブラック,黒鉛などの炭素同素体,
ポリチオフェン,ポリアセチレン,ポリピロールなどを
ベースとした有機導電性ポリマー,硫化銅,酸化インジ
ウム,酸化第2鉄,ホウ化チタン,ホウ化亜鉛,炭化タ
ングステン,炭化亜鉛などの導電性金属化合物,過塩素
酸リチウム/炭酸エチレン/ポリアクリロニトリル,固
体硫酸などの固体電界質などである。またこれらの物質
の混合体、あるいは非導電性物質、例えば絶縁性合成高
分子,セルロースなどとの複合体からなり導電性を有す
る物質も使用され得る。いずれにしても粒子の電気抵抗
として104以下、好ましくは102以下[単位Ω・cmあるい
はΩ]の電気抵抗を有する物質であれば基本的に使用で
きる。
Examples of the conductor particles used in the present invention include metals or alloys such as aluminum, nickel, copper, tin, silicon, duralumin, and silmine (aluminum-silicon alloy), conductive carbon black, carbon allotropes such as graphite,
Organic conductive polymers based on polythiophene, polyacetylene, polypyrrole, etc., copper sulfide, indium oxide, ferric oxide, titanium boride, zinc boride, tungsten carbide, conductive compounds such as zinc carbide, lithium perchlorate / Ethylene carbonate / polyacrylonitrile, solid electrolyte such as solid sulfuric acid, etc. Also, a mixture of these substances or a non-conductive substance such as a complex with an insulating synthetic polymer or cellulose and having conductivity can be used. In any case, any substance having an electric resistance of 10 4 or less, preferably 10 2 or less [unit: Ω · cm or Ω] can be basically used.

これらの粒子の形状は角のとがったものよりもできるだ
け丸みを帯びた球状や楕円状のものがよく、特に球状が
最も好ましい。粒径は1μmから数十μmが好ましく、
特に粒径の小さい方が粒子の沈降や摺動摩擦の防止の点
から好ましい。しかし1μm未満では粒子間の架橋形成
が弱く好ましくない。粒径分布についてはできるだけ単
分散に近いものが安定な電気粘性特性を示し易い。
The shape of these particles is preferably spherical or elliptical with a rounded shape as much as possible, rather than having sharp corners, and spherical is most preferable. The particle size is preferably 1 μm to several tens of μm,
In particular, a smaller particle size is preferable from the viewpoint of preventing particle settling and sliding friction. However, if it is less than 1 μm, cross-linking between particles is weak, which is not preferable. Regarding the particle size distribution, a monodisperse particle as close as possible tends to exhibit stable electrorheological characteristics.

本発明に金属系物質を導電性粒子として使用する場合、
油状媒体との比重差から粒子が沈降し易くなる。これを
防止する方法として、比重の高い油状媒体を使用する方
法や中空状や多孔状あるいは独立気泡含有の粒子にする
方法が挙げられる。特に中空状は好ましい。また、数μ
m程度の粒径の粒子の使用も沈降防止に有効である。
When using a metal-based material as conductive particles in the present invention,
The particles tend to settle due to the difference in specific gravity from the oil medium. Examples of methods for preventing this include a method of using an oily medium having a high specific gravity and a method of forming hollow, porous or closed cell-containing particles. A hollow shape is particularly preferable. Also, a few μ
The use of particles having a diameter of about m is also effective for preventing sedimentation.

次に電気絶縁性薄膜とは、導電性粒子の表面に形成され
た有機および無機の電気絶縁性物質からなる薄膜であ
り、導電性粒子の表面にこの薄膜を形成することにより
電界下に置かれた導電性粒子の表面に生じた分極電荷
が、粒子間の接触で容易に電荷の中和を起したり、電極
間に導電路を形成しスパークを伴った絶縁破壊を起した
りすることを防止することができる。
Next, the electrically insulating thin film is a thin film made of an organic and inorganic electrically insulating material formed on the surface of the conductive particles, and is placed under an electric field by forming this thin film on the surface of the conductive particles. The polarization charge generated on the surface of conductive particles can easily cause charge neutralization by contact between particles, or can form a conductive path between electrodes to cause dielectric breakdown with sparks. Can be prevented.

このような目的に使用できる有機および無機の絶縁性物
質としては、ポリフッ化ビニリデン,ポリイミド,ポリ
アミド,ポリアクリロニトリルなどの有機合成高分子,
ワックス,アスファルト,ワニスなどの有機天然高分
子,シリカ,アルミナ,水酸化アルミニウム,チタン酸
バリウムなどの無機化合物などが代表例として挙げられ
る。一般に体積あるいは表面電気抵抗が108以上、好ま
しくは1010以上(単位[Ω・cm]あるいは[Ω])で、
できるだけ絶縁破壊強度や誘電率の高いものが好まし
い。絶縁膜の厚さは、絶縁破壊や電荷の中和を生じさせ
ない限り、できるだけ薄い方が好ましく一般に1μm未
満で使用される。粒子間のクーロン力は1μm以上で極
めて小さく、また逆に0.5μm以下では大きくなり易く
0.5μm以下では優れた電気粘性効果を得られる。
Organic and inorganic insulating substances that can be used for such purposes include polyvinylidene fluoride, polyimide, polyamide, polyacrylonitrile and other organic synthetic polymers,
Typical examples are organic natural polymers such as wax, asphalt and varnish, and inorganic compounds such as silica, alumina, aluminum hydroxide and barium titanate. Generally, the volume or surface electric resistance is 10 8 or more, preferably 10 10 or more (unit [Ω · cm] or [Ω]),
It is preferable that the dielectric breakdown strength and the dielectric constant are as high as possible. The thickness of the insulating film is preferably as thin as possible, and is generally less than 1 μm, unless dielectric breakdown or charge neutralization occurs. The Coulomb force between particles is extremely small at 1 μm or more, and conversely tends to become large at 0.5 μm or less.
If it is 0.5 μm or less, an excellent electrorheological effect can be obtained.

絶縁性薄膜の形成には、溶液または粉体コーティング,
表面重合,蒸着,表面反応などの公知の被覆方法が適用
できる。絶縁性薄膜は粒子の表面全体を均一な厚さで被
覆することが好ましい。被覆時は、二次粒子の発生をで
きるだけ防止することも重要である。このような被覆方
法としては、工業ライブラリー25“マイクロカプセル”
(近藤朝士著,日刊工業新聞社)に紹介された各種の方
法あるいは導電性薄膜の表面のみの選択的な酸化,窒化
などの化学的処理が好ましい方法として挙げられる。
For the formation of insulating thin film, solution or powder coating,
Known coating methods such as surface polymerization, vapor deposition and surface reaction can be applied. The insulating thin film preferably coats the entire surface of the particles with a uniform thickness. During coating, it is also important to prevent the generation of secondary particles as much as possible. As an example of such a coating method, industrial library 25 "microcapsules"
(Asahi Kondo, Nikkan Kogyo Shimbun) or various chemical methods such as selective oxidation or nitriding of the surface of the conductive thin film are preferable.

導電性粒子表面にこれらの絶縁性薄膜を形成したものは
実用上、これらの界面にかなりの接着力が必要となる
が、このためには予め導電性粒子表面を酸化,エッチン
グなどの化学的あるいは物理的処理,カップリング剤,
アンカーコート剤などの結合助剤の処理が有効な場合が
多い。金属粒子、例えばアルミニウム粒子やケイ素粒子
を導電性粒子として使用する場合、粒子表面を直接、酸
化,窒化などの化学的処理により絶縁膜を形成させる方
法は、界面の接着性の問題もなく、均一な膜を所望の厚
さに形成させ得ることも比較的容易で好ましい。
In practice, those having these insulating thin films formed on the surface of the conductive particles require a considerable adhesive force at their interfaces. Physical treatment, coupling agent,
In many cases, the treatment of a binding aid such as an anchor coating agent is effective. When metal particles such as aluminum particles or silicon particles are used as conductive particles, the method of directly forming an insulating film on the surface of the particles by a chemical treatment such as oxidation or nitriding does not have a problem of interfacial adhesion and is uniform. It is also relatively easy and preferable to form such a film to a desired thickness.

本発明で言う実質的に水を含有しない粒子とはアセトン
やアルコール等で置換されたり、あるいは、高温真空乾
燥で除去されるような付着水を含有しないということで
あり、具体的には、200℃の加熱でカールフィッシャー
水分測定をした際の水分率が1%以下、一般には0.5%
以下であり従来の含水粒子系電気粘性流体では、この程
度の粒子含水率では、殆ど全く電気粘性効果を示さない
範囲の値である。
The substantially water-free particles referred to in the present invention are those that are substituted with acetone, alcohol, or the like, or do not contain attached water that is removed by high-temperature vacuum drying, specifically, 200 Moisture content is 1% or less when measured by Karl Fischer moisture by heating at ℃, generally 0.5%
In the case of the conventional water-containing particle-based electrorheological fluid, the particle water content of this level is in a range in which almost no electrorheological effect is exhibited.

本発明に使用される油状媒体は従来の電気粘性流体で使
用されてきた。塩化ジフェニル,セバチン酸ブチル,芳
香族ポリカルボン酸高級アルコールエステル,ハロフェ
ニルアルキルエーテル,トランス油,塩化パラフィン,
フッ素系オイル,シリコーン系オイルなどは勿論、電気
絶縁性や電気絶縁破壊強度が高く、化学的に安定で、分
散微粒子との比重差があまり大きくないものであれば、
基本的に使用可能である。
The oily medium used in the present invention has been used in conventional electrorheological fluids. Diphenyl chloride, butyl sebacate, aromatic polycarboxylic acid higher alcohol ester, halophenyl alkyl ether, trans oil, chlorinated paraffin,
Of course, fluorine-based oils, silicone-based oils, etc., as long as they have high electrical insulation properties and electrical breakdown strength, are chemically stable, and have a not so large difference in specific gravity from dispersed fine particles,
Basically usable.

本発明の誘電体微粒子の油状媒体との混合体積比率は1
対99から50対50、好ましくは5対95から40対60の範囲で
選ばれる。混合された電気粘性流体は、電気絶縁性をあ
まり低下しない範囲で分散の安定性や防錆,酸化防止な
どの目的で添加剤を使用することができる。
The mixing volume ratio of the dielectric particles of the present invention with the oil medium is 1
It is selected in the range of 99:50 to 50:50, preferably 5:95 to 40:60. Additives can be used in the mixed electrorheological fluid for the purpose of stabilizing dispersion, preventing rust, and preventing oxidation, as long as the electrical insulating property is not significantly deteriorated.

ところで、本発明の電気粘性流体は従来の含水粒子系電
気粘性流体とは全く異なる次のような特徴を有する。す
なわち、後者は交流および直流の電圧印加に対し電気粘
性効果を示すが、前者は交流では示すが、直流では殆ん
ど示さない。本発明の流体の電気粘性効果の発現機構に
ついては明らかでないが、従来の含水粒子系で提案され
ている粒子表面での電気二重層の形成によるものではな
く、交流下での誘電分散に関連するものと考えられる。
By the way, the electrorheological fluid of the present invention has the following characteristics which are completely different from the conventional water-containing particle-based electrorheological fluid. That is, the latter has an electrorheological effect on the application of AC and DC voltages, while the former shows AC but almost no DC. Although the mechanism of manifestation of the electrorheological effect of the fluid of the present invention is not clear, it is not due to the formation of the electric double layer on the particle surface proposed in the conventional hydrous particle system, but is related to the dielectric dispersion under alternating current. It is considered to be a thing.

[作 用] 本発明の電気粘性流体は従来のものの最大の欠点であっ
た水の存在による長期安定性の不良や電極の腐触、更に
は電気粘性効果の温度による大きな変化などの問題を解
決し、コンパクトで容易に電気制御できるバルプ,クラ
ッチ,ショックアブゾーバーなど種々のエレクトロメカ
ニカルアクチュエーターの実現を可能とするものであ
る。
[Operation] The electrorheological fluid of the present invention solves the problems of long-term stability due to the presence of water, electrode corrosion, and large change in electrorheological effect due to temperature, which are the greatest drawbacks of the conventional ones. However, it makes it possible to realize various electromechanical actuators such as compact, easily electrically controlled valves, clutches, and shock absorbers.

[実施例] 以下、実施例をもって本発明をより詳細に説明する。本
実施例での電気粘性特性は、同一中心軸をもつ内径40mm
のシリンダーと外径38mmのロータの間隙(1.0mm)に封
入された試料流体間に、所定速度の剪断をかけ、電圧を
印加した際の発生剪断応力と電流を測定する方法により
評価したものである。
[Examples] Hereinafter, the present invention will be described in more detail with reference to Examples. The electrorheological characteristics in this example are 40 mm inside diameter with the same central axis.
Is evaluated by the method of measuring the shear stress and current generated when a voltage is applied between the cylinder and the sample fluid enclosed in the gap (1.0 mm) between the outer diameter 38 mm rotor and the sample fluid. is there.

実施例1 平均粒径20μmの球状アルミニウム粒子(米国Valimet
社 H−3)を1%水酸化カルウム水溶液に入れ、室温
で8時間ゆっくり撹拌した。この粒子を充分水洗した後
メタノール中に移し水をほぼ完全に置換し、続いて120
℃で48時間真空乾燥した。この粒子は200℃および600℃
加熱カールフィッシャ水分測定および700℃まで昇温の
熱重量分析の結果から、遊離の水分は持たず、表面に水
酸化アルミニウムの層が約0.25μmの厚さに形成されて
いることがわかった。この粒子を乾燥窒素雰囲気下で吸
湿させることなく直ちに、乾燥したトリ−2−エチルヘ
キシルトリメリテート(花王石鹸(株),トリメックス
T−08)に、20Vol%の粒子濃度に混合分散させ、剪断
速度200sec-1で、交流および直流の電圧印加時の電気粘
性特性を評価した。
Example 1 Spherical aluminum particles having an average particle diameter of 20 μm (US Valimet
Company H-3) was placed in a 1% aqueous solution of calcium hydroxide and stirred slowly at room temperature for 8 hours. After thoroughly washing the particles with water, the particles were transferred to methanol to replace the water almost completely, and then 120
It was vacuum dried at ℃ for 48 hours. This particle is 200 ℃ and 600 ℃
From the results of heating Karl Fischer moisture measurement and thermogravimetric analysis of heating up to 700 ° C., it was found that there was no free moisture and an aluminum hydroxide layer was formed on the surface to a thickness of about 0.25 μm. Immediately without absorbing the particles in a dry nitrogen atmosphere, the particles were immediately mixed and dispersed in dry tri-2-ethylhexyl trimellitate (Kao Soap Co., Ltd., Trimex T-08) at a particle concentration of 20 Vol% and sheared. At a speed of 200 sec -1 , the electro-viscous characteristics were evaluated when AC and DC voltages were applied.

第1図に印加電圧,発生剪断応力および電流の測定結果
を示す。図中、曲線Aおよびaは、周波数60Hzの交流を
印加した時、印加電圧に対応して発生した剪断応力およ
び電流をそれぞれプロットしたものである。曲線Bおよ
びbは、直流を印加した時、印加電圧に対応して発生し
た剪断応力および電流をそれぞれプロットしたものであ
る。なお、本実施例の粒子の電気抵抗は8×1011Ω・cm
であった。
Figure 1 shows the measurement results of applied voltage, generated shear stress and current. In the figure, curves A and a are plots of shear stress and current generated corresponding to the applied voltage when an alternating current having a frequency of 60 Hz is applied. Curves B and b are plots of shear stress and current generated corresponding to the applied voltage when a direct current is applied. The electric resistance of the particles of this example is 8 × 10 11 Ω · cm.
Met.

第1図の結果より、本発明の電気粘性流体は直流では剪
断応力および電流の発生が少ないが、交流では、充分な
電気粘性効果を示すことがわかる。
From the results shown in FIG. 1, it can be seen that the electrorheological fluid of the present invention produces little shear stress and current at DC, but exhibits sufficient electrorheological effect at AC.

実施例2 実施例1と同様の方法で表面処理し乾燥したアルミニウ
ム粒子を更に窒素ガス中650℃に加熱し表面の水酸化ア
ルミニウム層を酸化アルミニウム層に変化させた粒子を
実施例1と同様に絶縁油(トリメックスT−08)に混合
し、電気粘性特性を評価した。
Example 2 Aluminum particles surface-treated and dried in the same manner as in Example 1 were further heated to 650 ° C. in nitrogen gas to change the surface aluminum hydroxide layer to an aluminum oxide layer. It was mixed with insulating oil (Trimex T-08) and the electroviscous properties were evaluated.

比較のための従来の電気粘性流体として、含水させたセ
ルロース粒子(旭化成工業(株)アビセル,含水率6.2w
t%)につき同様の混合流体を調合して、電気粘性効果
を評価した。
As a conventional electrorheological fluid for comparison, hydrated cellulose particles (Avicel Asahi Kasei Corporation, water content 6.2w)
A similar mixed fluid was prepared per t%) to evaluate the electrorheological effect.

第2図に、本実施例の電気粘性流体およびセルロース粒
子を使用した従来例の電気粘性流体について、剪断速度
200sec-1での、交流電圧印加時の電気粘性特性を示す。
図中、曲線Cおよびcは、本実施例の電気粘性流体につ
いて、印加電圧に対応した剪断応力および電流をそれぞ
れプロットしたものである。曲線Dおよびdは、従来例
の電気粘性流体について、印加電圧に対応した剪断応力
および電流をそれぞれプロットしたものである。なお、
本実施例の粒子の電気抵抗は3×1012Ω・cmである。
FIG. 2 shows the shear rates of the electrorheological fluid of this example and the conventional electrorheological fluid using cellulose particles.
The electrorheological characteristics at 200 sec -1 when an AC voltage is applied are shown.
In the figure, curves C and c are plots of shear stress and current corresponding to the applied voltage for the electrorheological fluid of this example, respectively. Curves D and d are plots of shear stress and current corresponding to the applied voltage for the electrorheological fluid of the conventional example, respectively. In addition,
The electric resistance of the particles of this example is 3 × 10 12 Ω · cm.

第2図の結果により、第1図と同様に、本実施例の電気
粘性流体は交流では剪断応力が大きく、充分な電気粘性
効果を示すことがわかる。従来例においては、剪断応力
は殆んど発生せず、充分な電気粘性効果を示してはいな
い。本実施例においても直流では実施例1と同様、殆ん
ど剪断応力および電流の発生が見られなかった。
From the results of FIG. 2, it can be seen that, as in the case of FIG. 1, the electrorheological fluid of this example has a large shear stress in the alternating current and exhibits a sufficient electrorheological effect. In the conventional example, almost no shear stress is generated and the electrorheological effect is not sufficiently exhibited. In this example as well, almost no generation of shear stress and current was observed with DC as in Example 1.

実施例3 実施例2の電気粘性流体およびその従来例(セルロー
ス)の電気粘性流体につき、室温から100℃まで変化さ
せた電気粘性特性の温度依存性を測定し、第3図に示し
た。図中、曲線Eおよびeは、本実施例の電気粘性流体
における剪断応力および電流の温度変化、曲線Fおよび
fは、従来例における剪断応力および電流の温度変化を
示す。なお測定は、剪断速度200sec-1で、3.0KV/mmの交
流電圧(60Hz)を印加し、2℃/minの速度で昇温しなが
ら行なった。
Example 3 With respect to the electrorheological fluid of Example 2 and the electrorheological fluid of the conventional example (cellulose), the temperature dependence of the electrorheological characteristics was measured from room temperature to 100 ° C., and the results are shown in FIG. In the figure, curves E and e show changes in shear stress and current with temperature in the electrorheological fluid of this example, and curves F and f show changes in shear stress and current with temperature in the conventional example. The measurement was carried out at a shear rate of 200 sec -1 , while applying an AC voltage (60 Hz) of 3.0 KV / mm while raising the temperature at a rate of 2 ° C / min.

第3図により、実施例2の電気粘性流体は、温度変化に
対しても極めて安定な特性を示すことがわかる。
It can be seen from FIG. 3 that the electrorheological fluid of Example 2 exhibits extremely stable characteristics even with temperature changes.

実施例4 平均粒径3μmの粒状アルミニウム粒子の表面をシラン
カップリング剤で処理した後、65℃のヘプタン中に入れ
高速撹拌しながら、過酸化ジベンゾイル1wt%を含むア
クリロニトリルを徐々に滴下し、アルミニウム粒子表面
にポリアクリロニトリルの被膜を形成させた。顕微鏡観
察および熱重量分析の結果から、アルミニウム粒子はほ
ぼ均一にポリアクリロニトリルの層により被覆され、そ
の被覆厚は約0.12μmと推算された。
Example 4 After the surface of granular aluminum particles having an average particle size of 3 μm was treated with a silane coupling agent, the mixture was placed in heptane at 65 ° C. and stirred at high speed, acrylonitrile containing 1 wt% of dibenzoyl peroxide was gradually added dropwise to the aluminum. A film of polyacrylonitrile was formed on the surface of the particles. From the results of microscopic observation and thermogravimetric analysis, it was estimated that the aluminum particles were almost uniformly coated with the polyacrylonitrile layer, and the coating thickness was about 0.12 μm.

この粒子をフッ素系オイル(Dupont社 KRYTOX 143AY)
に粒子濃度20Vol%となるように分散させ、電気粘性特
性を評価し、得られた結果を第4図に示す。図中、曲線
Gおよびgは、本実施例の電気粘性流体について、印加
電圧に対応した剪断応力および電流をそれぞれプロット
したものである。なお、粒子の電気抵抗は2×1012Ω・
cmであった。
Fluorine-based oil (KRYTOX 143AY from Dupont)
The particles were dispersed so as to have a particle concentration of 20 Vol%, the electrorheological characteristics were evaluated, and the obtained results are shown in FIG. In the figure, curves G and g are plots of shear stress and current corresponding to the applied voltage for the electrorheological fluid of this example, respectively. The electrical resistance of the particles is 2 × 10 12 Ω ・
It was cm.

本実施例の電気粘性流体は、長時間粒子の沈降もなく、
また摺動摩耗に対しても優れた安定性を示した。
The electrorheological fluid of this example has no particles settling for a long time,
It also showed excellent stability against sliding wear.

実施例5 スチレン84wt%,ジビニルベンゼン5wt%,カーボンブ
ラック10wt%および過酸化ジベンゾイル1wt%の均一混
合液を、5wd%ポリビニルアルコール水溶液中で激しく
撹拌しつつ80℃で重合し、平均粒径16μm,電気抵抗1×
102Ω・cmのポリマーマイクロビーズを得た。
Example 5 A homogenous mixture of 84 wt% styrene, 5 wt% divinylbenzene, 10 wt% carbon black and 1 wt% dibenzoyl peroxide was polymerized at 80 ° C. in a 5 wd% polyvinyl alcohol aqueous solution with vigorous stirring to give an average particle size of 16 μm, Electric resistance 1 ×
Polymer microbeads of 10 2 Ω · cm were obtained.

このポリマービーズ表面に、ジメチルアセトアミドに溶
解したポリフッ化ビニリデンを流動気床法で平均膜厚0.
15μmの厚さに被覆した。使用したポリフッ化ビニリデ
ンおよび得られた被覆ビーズの電気抵抗は、それぞれ、
4×1013および6×1012Ω・cmであった。このビーズを
実施例4で用いたフッ素系オイルにビーズ濃度30Vol%
となるように分散させ、電気粘性特性を評価した。その
結果、交流電圧印加3KV/mmで剪断応力5.3g/cm2、電流2m
Aを得た。従って、優れた電気粘性効果を示すことがわ
かる。なおポリフッ化ビニリデンの被覆膜厚を0.6μm
および1.1μmにしたものの剪断応力はそれぞれ、4.1g/
cm2および0.4g/cm2であった。なお、被覆膜厚が1.1μm
の試料は比較例である。
On the surface of this polymer bead, polyvinylidene fluoride dissolved in dimethylacetamide was measured by a fluidized bed method to give an average film thickness of 0.
Coated to a thickness of 15 μm. The electrical resistance of the polyvinylidene fluoride used and the resulting coated beads are, respectively,
It was 4 × 10 13 and 6 × 10 12 Ω · cm. The beads were added to the fluorine-based oil used in Example 4 at a bead concentration of 30 Vol%.
And dispersed so that the electrorheological characteristics were evaluated. As a result, the shear stress was 5.3g / cm 2 and the current was 2m at the applied AC voltage of 3KV / mm.
Got A. Therefore, it can be seen that the excellent electrorheological effect is exhibited. The coating thickness of polyvinylidene fluoride is 0.6 μm.
And the shear stress of 1.1 μm was 4.1 g /
It was cm 2 and 0.4 g / cm 2 . The coating thickness is 1.1 μm
Is a comparative example.

実施例6 実施例1で用いた水酸化カリウム処理時間をかえ、それ
ぞれ試料を合成し、それらの電気粘性特性を3.0KV/mmの
交流電圧(60Hz)を印加し、得られた結果を第1表に示
す。
Example 6 The potassium hydroxide treatment time used in Example 1 was changed, samples were respectively synthesized, and the electrorheological characteristics thereof were applied with an alternating voltage (60 Hz) of 3.0 KV / mm. Shown in the table.

第1表に示した結果より処理時間、すなわち、絶縁膜厚
が剪断応力の発生に大きく関係し1μm以上になると得
られる剪断応力は著しく低くなることがわかる。なお処
理時間が72hrの試料は比較例であり、これも数wt%の含
水状態では直流電圧印加に対しては、剪断応力の発生が
見られた。
From the results shown in Table 1, it can be seen that the treatment time, that is, the insulating film thickness is largely related to the generation of the shear stress, and that the shear stress obtained becomes remarkably low when it becomes 1 μm or more. The sample having a treatment time of 72 hr is a comparative example, and in the water containing state of several wt%, shear stress was observed when a DC voltage was applied.

[発明の効果] 以上説明したように、電気絶縁性に優れた油状媒体に誘
電体微粒子を分散せしめた電気粘性流体において、上記
誘電体微粒子は、電気抵抗が104Ω・cm以下の電気抵抗
を有する均質な材料からなる導電性粒子の表面に、厚さ
が1μm以下の絶縁薄膜が被覆され、かつ誘電体微粒子
が108Ω・cm以上の電気抵抗値を持ち、さらに誘電体微
粒子の水分含有率が1重量%以下となるように構成され
ている。そのため、複数の層を有機固体粒子に積層した
先願のものと比べ、製造が容易であり、かつ水の存在に
よる長期安定性不良や電極の溶出、さらには電気粘性特
性の温度依存性の低下等の問題を解決し、さらにまた、
導電性薄膜層の均一性不良や劣化に基づく流体性能の不
安定性等の問題も解決することが可能となる。したがっ
て、バルブ,クラッチ,振動素子,振動吸収素子等のア
クチュエーターにおいて、実用性の極めて高いものであ
る。
[Effects of the Invention] As described above, in an electrorheological fluid in which dielectric particles are dispersed in an oil medium having excellent electrical insulation, the dielectric particles have an electrical resistance of 10 4 Ω · cm or less. The surface of the conductive particles made of a homogeneous material having a thickness of 1 μm or less is covered with an insulating thin film, and the dielectric fine particles have an electric resistance value of 10 8 Ω · cm or more. The content is configured to be 1% by weight or less. Therefore, compared to the previous application in which a plurality of layers are laminated on organic solid particles, it is easier to manufacture, and poor long-term stability due to the presence of water, electrode elution, and further decrease in temperature dependence of electrorheological characteristics. To solve the problems such as
Problems such as instability of fluid performance due to poor uniformity and deterioration of the conductive thin film layer can be solved. Therefore, it is extremely practical in actuators such as valves, clutches, vibration elements, and vibration absorption elements.

【図面の簡単な説明】[Brief description of drawings]

第1図,第2図および第4図は印加電圧と剪断応力およ
び電流の関係を示す図、 第3図は測定温度と剪断応力および電流の関係を示す図
である。
1, 2 and 4 are diagrams showing the relationship between applied voltage and shear stress and current, and FIG. 3 is a diagram showing the relationship between measured temperature and shear stress and current.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C10M 103:04 103:06) A (C10M 107/00 107:24 107:38) (C10M 111/04 103:04 107:42) C10N 10:06 20:00 Z 20:06 A 40:14 Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C10M 103: 04 103: 06) A (C10M 107/00 107: 24 107: 38) (C10M 111/04 103: 04 107: 42) C10N 10:06 20:00 Z 20:06 A 40:14

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電気絶縁性に優れた油状媒体に誘電体微粒
子を分散せしめた電気粘性流体において、 前記誘電体微粒子は、 電気抵抗が104Ω・cm以下の電気抵抗を有する均質な材
料からなる導電性粒子の表面に厚さが1μm以下の絶縁
薄膜が被覆され、かつ前記誘電体微粒子が108Ω・cm以
上の電気抵抗値を持ち、さらに前記誘電体微粒子の水分
含有率が1重量%以下であることを特徴とする電気粘性
流体。
1. An electrorheological fluid in which dielectric particles are dispersed in an oil medium having excellent electrical insulation, wherein the dielectric particles are made of a homogeneous material having an electric resistance of 10 4 Ω · cm or less. The surface of the conductive particles is coated with an insulating thin film having a thickness of 1 μm or less, the dielectric particles have an electric resistance value of 10 8 Ω · cm or more, and the water content of the dielectric particles is 1% by weight. % Or less, an electrorheological fluid.
JP62159809A 1987-06-29 1987-06-29 Electrorheological fluid Expired - Fee Related JPH07103392B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62159809A JPH07103392B2 (en) 1987-06-29 1987-06-29 Electrorheological fluid
US07/209,807 US5607617A (en) 1987-06-29 1988-06-22 Electroviscous fluids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62159809A JPH07103392B2 (en) 1987-06-29 1987-06-29 Electrorheological fluid

Publications (2)

Publication Number Publication Date
JPS646093A JPS646093A (en) 1989-01-10
JPH07103392B2 true JPH07103392B2 (en) 1995-11-08

Family

ID=15701730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62159809A Expired - Fee Related JPH07103392B2 (en) 1987-06-29 1987-06-29 Electrorheological fluid

Country Status (1)

Country Link
JP (1) JPH07103392B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01236291A (en) * 1988-03-16 1989-09-21 Nippon Mektron Ltd Electroviscous fluid
JP2573994B2 (en) * 1988-04-30 1997-01-22 日本メクトロン株式会社 Electrorheological fluid
US4949668A (en) * 1988-06-16 1990-08-21 Kimberly-Clark Corporation Apparatus for sprayed adhesive diaper construction
JPH0742473B2 (en) * 1988-08-29 1995-05-10 株式会社ブリヂストン Electrorheological liquid
EP0361106B1 (en) * 1988-08-29 1992-12-23 Bridgestone Corporation Electroviscous fluid
AU628863B2 (en) * 1988-12-23 1992-09-24 Bridgestone Corporation Electroviscous fluid
DE69101116T2 (en) * 1990-02-21 1994-08-25 Bridgestone Corp Electrorheological fluid.
JP2534169B2 (en) * 1991-07-11 1996-09-11 株式会社コロイドリサーチ Electrorheology-fluid composition
JP3511628B2 (en) * 1992-03-23 2004-03-29 藤倉化成株式会社 Electrorheological fluid composition
JP3413879B2 (en) * 1993-07-15 2003-06-09 藤倉化成株式会社 Electrorheological fluid composition
US5429761A (en) * 1994-04-14 1995-07-04 The Lubrizol Corporation Carbonated electrorheological particles
US5445760A (en) * 1994-04-14 1995-08-29 The Lubrizol Corporation Polysaccharide coated electrorheological particles
JPH0867893A (en) * 1994-08-19 1996-03-12 Lubrizol Corp:The Electrorheological fluid of polar solid and an organic semiconductor
US5501809A (en) * 1994-08-19 1996-03-26 The Lubrizol Corporation Electrorheological fluids containing particles of a polar solid material and an inactive polymeric material
US5607996A (en) * 1994-10-05 1997-03-04 Ford Motor Company Electrorheological elastomers useful as variable stiffness articles
JPH08253788A (en) * 1996-04-19 1996-10-01 Bridgestone Corp Electroviscous liquid
ATE526372T1 (en) 1996-06-10 2011-10-15 Nittetsu Mining Co Ltd MULTI-LAYER COATED POWDER
US8267922B2 (en) 2006-04-17 2012-09-18 General Electric Company Phototherapy light with dual spring support neck
JP5814688B2 (en) * 2010-08-31 2015-11-17 三木ポリマー株式会社 Thermally conductive resin composition and heat dissipation material containing the same
WO2013021669A1 (en) * 2011-08-09 2013-02-14 東洋アルミニウム株式会社 Thermally conductive resin composition and heat dissipating material containing same
EP3810737B1 (en) * 2018-07-19 2023-08-23 Sun Yat-Sen University Electrorheological fluid

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61241929A (en) * 1985-04-19 1986-10-28 Toshiba Corp Of semiconductor manufacturing equipment

Also Published As

Publication number Publication date
JPS646093A (en) 1989-01-10

Similar Documents

Publication Publication Date Title
JPH07103392B2 (en) Electrorheological fluid
JPS6397694A (en) Electroviscous fluid
JP2617959B2 (en) Electrorheological fluid
JPH0726284A (en) Electrorheological fluid composition
JPH02240197A (en) Electroviscous fluid
JPH01260710A (en) Operating method for electrical viscous fluid
JPH04348192A (en) Electro-viscous fluid
US20050285085A1 (en) Fluid suspensions with electrorheological effect
JP5487806B2 (en) Electrorheological particles and electrorheological gels
JPH01172496A (en) Improved electroviscous fluid
Hao et al. The conductivity confined temperature dependence of water-free electrorheological fluids
JP4495392B2 (en) Electrorheological element and electrorheological device provided with the same
JP2001026793A (en) Complex particle for electric rheology fluid and electric rheology fluid
JPH03181597A (en) Electric viscous fluid
JPH03119098A (en) Electroviscous fluid
JPH03139598A (en) Electroviscous fluid
JP3467839B2 (en) Method for producing electrorheological fluid composition
JP2534169B2 (en) Electrorheology-fluid composition
US5607617A (en) Electroviscous fluids
JP3095868B2 (en) Electrorheological fluid composition
JPH02284991A (en) Electrorheological fluid composition, granular material used therein and its manufacture
JPH07190098A (en) Electrode
JP2855354B2 (en) Electrorheological fluid
JPH02235994A (en) Electroviscous fluid
JPH0764649A (en) Electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees