JP2617959B2 - Electrorheological fluid - Google Patents

Electrorheological fluid

Info

Publication number
JP2617959B2
JP2617959B2 JP32273787A JP32273787A JP2617959B2 JP 2617959 B2 JP2617959 B2 JP 2617959B2 JP 32273787 A JP32273787 A JP 32273787A JP 32273787 A JP32273787 A JP 32273787A JP 2617959 B2 JP2617959 B2 JP 2617959B2
Authority
JP
Japan
Prior art keywords
particles
thin film
electrorheological fluid
electrorheological
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32273787A
Other languages
Japanese (ja)
Other versions
JPH01164823A (en
Inventor
昭夫 井上
Original Assignee
旭化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成工業株式会社 filed Critical 旭化成工業株式会社
Priority to JP32273787A priority Critical patent/JP2617959B2/en
Priority to US07/209,807 priority patent/US5607617A/en
Publication of JPH01164823A publication Critical patent/JPH01164823A/en
Application granted granted Critical
Publication of JP2617959B2 publication Critical patent/JP2617959B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D37/00Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive
    • F16D37/008Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive the particles being carried by a fluid, to vary viscosity when subjected to electric change, i.e. electro-rheological or smart fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/001Electrorheological fluids; smart fluids

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電圧により粘性制御が可能な電気粘性流
体、特に水を含有しない微粒子を成分とする電気粘性流
体に関するものであり、クラッチ、バルブ、ショックア
ブソーバー等のアクチュエーターとして利用される。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrorheological fluid whose viscosity can be controlled by a voltage, and more particularly to an electrorheological fluid containing water-free fine particles as components. And actuators such as shock absorbers.

[従来の技術] シリカ、デンプン、イオン交換樹脂等の含水微粒子
を、トランス油、塩化パラフィン、シリコーン油等の電
気絶縁性油状媒体に分散させた流体は電圧印加により瞬
間かつ可逆的に大きく粘度変化する。この現象はウイン
ズロー効果として古くから知られ、クラッチ、バルブ、
振動子等への応用が検討されてきた。
[Prior art] Fluid in which water-containing fine particles such as silica, starch and ion exchange resin are dispersed in an electrically insulating oily medium such as trans oil, chlorinated paraffin, silicone oil, etc., has a large and instantaneous and reversible viscosity change upon application of a voltage. I do. This phenomenon has been known for a long time as the Winslow effect.
Applications to oscillators and the like have been studied.

ウィンズロー効果は、粒子表面水により形成された電
気二重層が外部電界により分極し、粒子間に、静電引力
による電界方向に沿った架橋を生じるために発生すると
考えられている。従来このウィンズロー効果を高める方
法として、例えば強酸性あるいは強塩基性のイオン交換
樹脂の微粒子を芳香族カルボン酸の高級エステル中に分
散させたもの(特開昭50−92278号参照)、また、ハロ
ゲン化ジアリール化合物に親水性固体粒子を分散させた
もの(特開昭58−501178号参照)、珪酸アルミニウム粒
子をアミノ基含有ポリシロキサンを分散剤としてシリコ
ーン油に分散させたもの(特開昭62−95397)等が提案
されている。
It is believed that the Winslow effect occurs because the electric double layer formed by the water on the surface of the particles is polarized by an external electric field and cross-links are generated between the particles along the direction of the electric field due to electrostatic attraction. Conventionally, as a method for enhancing the Winslow effect, for example, a method in which fine particles of a strongly acidic or strongly basic ion exchange resin are dispersed in a higher ester of an aromatic carboxylic acid (see JP-A-50-92278), A dispersion in which hydrophilic solid particles are dispersed in a halogenated diaryl compound (see JP-A-58-501178), and a dispersion in which aluminum silicate particles are dispersed in silicone oil using an amino group-containing polysiloxane as a dispersant (Japanese Patent Laid-Open No. Sho 62) −95397) has been proposed.

[発明が解決しようとする問題点] 従来提案されてきた電気粘性流体はいずれも吸水性の
固体微粒子を絶縁性の油状媒体に分散させるものであ
り、粒子表面水が形成する電気2重層の分極現象を利用
するものである。
[Problems to be Solved by the Invention] All of the electrorheological fluids proposed so far disperse water-absorbing solid fine particles in an insulating oily medium, and the polarization of an electric double layer formed by water on the surface of the particles. It utilizes the phenomenon.

ところで、このような吸水した固体微粒子を用いる従
来の電気粘性流体は、水の移行による安定性不足、高電
圧の印加による電極金属の溶解や水の電気分解によるガ
ス発生、温度上昇による電流量の増大など水の存在に帰
因する多くの問題点があり、大きな応用が期待されてい
るにもかかわらず、実用化に到っていない。
By the way, conventional electrorheological fluids using solid fine particles that have absorbed water have insufficient stability due to water migration, dissolution of electrode metal due to application of high voltage, gas generation due to electrolysis of water, and the amount of current due to temperature rise. There are a number of problems attributable to the presence of water, such as an increase.

本発明者らは、上記の問題に対し、水の存在以外に粒
子表面に容易に分極電荷を発生し得る他の方法があれば
新しい電気粘性流体が得られる可能性があると考え、非
含水系粒子の分極に関し耐熱性に優れる無機質固体粒子
を母材に多くの実験を重ねた結果到達したものである。
The present inventors have considered that there is a possibility that a new electrorheological fluid may be obtained if there is another method that can easily generate a polarization charge on the particle surface other than the presence of water in order to solve the above problem. It has been achieved by repeating many experiments with inorganic solid particles having excellent heat resistance with respect to the polarization of the system particles.

[問題点を解決するための手段] 本発明は金属のもつ優れた誘電分極性を活かし、かつ
金属のもつ問題点、例えば絶縁破壊性や沈降し易いとい
う問題を解決し、温度特性、耐熱性、耐久性等に優れた
性能をもつ新しい電気粘性流体に関するものである。す
なわち無機質固体粒子を中心にその表面に導電性薄膜
層、更にその表面に絶縁性薄膜層を形成した3層構造か
らなる微粒子が、電気絶縁性に優れた油状媒体中に分散
している電気粘性流体である。
[Means for Solving the Problems] The present invention makes use of the excellent dielectric polarizability of metals and solves the problems of metals, for example, the problems of dielectric breakdown and easy sedimentation. The present invention relates to a new electrorheological fluid having excellent performance and durability. That is, fine particles having a three-layer structure in which a conductive thin film layer is formed on the surface of an inorganic solid particle and an insulating thin film layer is further formed on the surface thereof are dispersed in an oil medium having excellent electrical insulation properties. Fluid.

本発明に用いられる無機質固体粒子としては比重の小
さなものが好ましく、ケイ素、ホウ素、アルミニウム、
マグネシウム、ベリリウム等の周期表第2、第3および
第4族Aの軽量元素そのものあるいはその酸化物、窒化
物、炭化物等の化合物を中心成分とする粒子あるいは複
合化合物粒子が好ましい例として挙げられる(但し、ア
ルミニウム及びマグネシウム単体は、それ自体導電体で
あるために除く)。特にケイ素、ホウ素、シリカ、窒化
ホウ素等は比重が小さく好ましい粒子である。
As the inorganic solid particles used in the present invention, those having a small specific gravity are preferable, and silicon, boron, aluminum,
Preferred examples include particles or composite compound particles mainly composed of a lightweight element itself of Group II, III and IV of the periodic table such as magnesium and beryllium, or a compound such as an oxide, nitride or carbide thereof ( However, aluminum and magnesium alone are excluded because they are conductors themselves). Particularly, silicon, boron, silica, boron nitride and the like are preferable particles having a small specific gravity.

これらの粒子の形状はできるだけ丸みを帯びた、球状
や楕円状のものがよく、特に球状が最も好ましい。
The shape of these particles is preferably as round as possible, spherical or elliptical, and spherical is most preferable.

粒径は数μmから数十μmが好ましく、特に粒径の小
さい方が粒子の沈降や摺動摩耗の防止の面から好まし
い。しかし1μm未満では粒子間の架橋形成が弱く好ま
しくない。また粒径分布についてはできるだけ単分散に
近いものが安定な電気粘性特性を示し易い。
The particle size is preferably from several μm to several tens μm, and a smaller particle size is particularly preferable from the viewpoint of preventing settling of particles and sliding wear. However, if it is less than 1 μm, the formation of crosslinks between particles is weak, which is not preferable. As for the particle size distribution, those which are as close to monodisperse as possible tend to exhibit stable electrorheological properties.

本発明の導電性薄膜層は、該層を表面に有する粒子が
電界下に置かれた際、粒子表面に大きな誘電分極が生じ
るように形成されたものであり、導電性が高いものが好
ましく、電気抵抗は高くても105Ω・cm以下であること
が必要である。
The conductive thin film layer of the present invention is formed such that when a particle having the layer on the surface is placed under an electric field, a large dielectric polarization occurs on the particle surface, and a highly conductive one is preferable. The electrical resistance must be at most 10 5 Ω · cm.

このような導電性薄膜物質としては金属、金属化合
物、有機導電体、カーボン等があげられる。薄膜形成に
は化学メッキ、蒸着、溶液または粉体コーティング、表
面反応、表面重合等の方法が用いられ、導電層の厚さ
は、一般には数μmもあれば充分である。特に、金属メ
ッキや蒸着、硫化銅などの金属化合物の表面反応、ポリ
ピロールやポリアセチレンなど表面重合反応等で得られ
る高導電性物質の場合には、0.1μm程度の厚さでも、
本発明の目的に充分な誘電分極効果を示す。
Examples of such a conductive thin film material include a metal, a metal compound, an organic conductor, and carbon. Methods such as chemical plating, vapor deposition, solution or powder coating, surface reaction, and surface polymerization are used for forming a thin film. The thickness of the conductive layer is generally sufficient if it is several μm. In particular, metal plating and evaporation, surface reaction of metal compounds such as copper sulfide, a highly conductive substance obtained by a surface polymerization reaction such as polypyrrole and polyacetylene, even with a thickness of about 0.1 μm,
It shows a sufficient dielectric polarization effect for the purposes of the present invention.

導電層は粒子表面をできるだけ均一の厚さで、かつ粒
子全面を被覆することが好ましい。導電性物質のコーテ
ィングや表面重合により導電層を形成する場合、一般に
二次粒子を発生し易いが、条件調整によりできるだけ抑
えることが好ましい。
It is preferable that the conductive layer covers the particle surface as uniformly as possible and covers the entire surface of the particle. When a conductive layer is formed by coating with a conductive substance or by surface polymerization, secondary particles are generally easily generated, but it is preferable to suppress as much as possible by adjusting conditions.

次に、電気絶縁性薄膜層とは、導電性薄膜上に形成さ
れた有機および無機の電気絶縁性物質からなる薄膜層で
ある。この電気絶縁性薄膜層を設けることによって、電
界下に置かれた上記粒子表面の導電性薄膜に生じた分極
電荷が、粒子間の接触で容易に電荷の中和を起したり、
電極間に導電路を形成し、度々スパークをともなった絶
縁破壊の原因になるのを防止することができる。
Next, the electrically insulating thin film layer is a thin film layer formed of an organic and inorganic electrically insulating substance formed on the conductive thin film. By providing this electrically insulating thin film layer, the polarization charge generated in the conductive thin film on the surface of the particles placed under an electric field easily causes charge neutralization by contact between the particles,
By forming a conductive path between the electrodes, it is possible to prevent a dielectric breakdown accompanying sparks from occurring.

このような目的に使用できる有機および無機の絶縁性
物質としては、ポリ塩化ビニル、ポリアミド、ポリアク
リロニトリル、ポリフッ化ビニリデン等の有機合成高分
子物質、ワックス、アスファルト、ワニス等の有機天然
高分子物質、シリカ、アルミナ、酸化チタン、チタン酸
バリウム等の無機化合物等が代表例として挙げられる。
Organic and inorganic insulating materials that can be used for such purposes include polyvinyl chloride, polyamide, polyacrylonitrile, organic synthetic polymer materials such as polyvinylidene fluoride, wax, asphalt, organic natural polymer materials such as varnish, Representative examples include inorganic compounds such as silica, alumina, titanium oxide, and barium titanate.

一般に体積あるいは表面電気抵抗が108Ωあるいは108
Ωcm以上で、できるだけ絶縁破壊強度や誘電率の大きな
物質が好ましい。
Generally, the volume or surface electrical resistance is 10 8 Ω or 10 8
It is preferable to use a substance having a dielectric breakdown strength and a dielectric constant as large as possible that are Ωcm or more.

絶縁薄膜層の厚さは絶縁破壊させない限り、できるだ
け薄い方が好ましいが、耐摩耗性や均一性との関連か
ら、1μm以下、好ましくは0.5μm以下で使用され
る。
The thickness of the insulating thin film layer is preferably as thin as possible unless dielectric breakdown occurs, but is preferably 1 μm or less, more preferably 0.5 μm or less from the viewpoint of abrasion resistance and uniformity.

絶縁性薄膜層の形成には、溶液または粉体コーティン
グ、表面重合、蒸着、表面反応等、公知の被覆方法が適
用できる。この場合も導電性薄膜層形成時と同様に、厚
さが均一な全面被覆が好ましいが、被覆時の二次粒子の
発生をできるだけ防止することが必要である。このよう
な被覆方法としては、工業技術ライブラリー25“マイク
ロカプセル”(近藤朝士著、日刊工業新聞社)に紹介さ
れた各種の方法、あるいは導電性薄膜層表面の酸化、窒
化等により絶縁化する方法、金属アルコキシドを表面吸
着させた後、加水あるいは加熱分解し金属酸化膜を形成
する方法などが、好ましい方法として使用できる。
For forming the insulating thin film layer, a known coating method such as solution or powder coating, surface polymerization, vapor deposition, and surface reaction can be applied. In this case, as in the case of forming the conductive thin film layer, it is preferable to coat the entire surface with a uniform thickness, but it is necessary to prevent generation of secondary particles during the coating as much as possible. Examples of such a coating method include various methods introduced in Industrial Technology Library 25 "Microcapsule" (by Asashi Kondo, Nikkan Kogyo Shimbun), or insulation by oxidizing or nitriding the surface of the conductive thin film layer. A method of forming a metal oxide film by adsorbing a metal alkoxide on the surface and then hydrolyzing or thermally decomposing the metal alkoxide to form a metal oxide film can be used as a preferable method.

無機質固体粒子の表面にこれらの導電性層および絶縁
性層の2層を積層させた3層構造粒子は実用上、これら
の層間にかなりの接着力が必要となるが、このためには
粒子表面の酸化、エッチングなどの物理的又は化学的処
理、カップリング剤、アンカーコート剤などの結合助剤
の使用が有効な場合が多い。
A three-layer structure particle in which two layers of the conductive layer and the insulating layer are laminated on the surface of an inorganic solid particle requires a considerable adhesive force between these layers in practical use. In many cases, physical or chemical treatments such as oxidation and etching of the resin, and the use of binding aids such as coupling agents and anchor coating agents are effective.

本発明に使用される油状媒体は従来の電気粘性流体で
使用されてきた塩化ジフェニル、セバチン酸ブチル、芳
香族ポリカルボン酸高級アルコールエステル、ハロフェ
ニルアルキルエーテル、トランス油、塩化パラフィン、
フッ素系オイル、シリコーン系オイル等は勿論、電気絶
縁性や絶縁破壊強度が高く、化学的に安定で、分散微粒
子と比重が近いものであれば何でも使用可能である。
The oily medium used in the present invention is diphenyl chloride, butyl sebacate, aromatic polycarboxylic acid higher alcohol ester, halophenyl alkyl ether, trans oil, paraffin chloride, which has been used in conventional electrorheological fluids.
As long as it has high electrical insulation and dielectric breakdown strength, is chemically stable, and has a specific gravity close to that of the dispersed fine particles, of course, any of fluorine-based oil and silicone-based oil can be used.

本発明の誘導体微粒子の油状媒体との混合重量比率は
5対95から60対40、好ましくは10対90から50対50の範囲
で選ばれる。混合された電気粘性流体は、電気絶縁特性
をあまり低下させない範囲で分散の安定性や防錆、酸化
防止等の目的で添加剤を使用することができる。
The mixing weight ratio of the derivative fine particles of the present invention to the oil medium is selected in the range of 5:95 to 60:40, preferably 10:90 to 50:50. Additives can be used in the mixed electrorheological fluid for the purpose of dispersion stability, rust prevention, oxidation prevention and the like as long as the electric insulation properties are not significantly reduced.

[作用] 本発明の電気粘性流体は従来のものの最大の欠点であ
った、水の存在による長期安定性不良や電極の溶出、更
には電気粘性特性の温度依存性の低下等の問題を解決
し、高温使用にも耐久性を有するものであり、コンパク
トで容易に電気制御できるバルブ、クラッチ、ショック
アブソーバー等、種々のエレクトロ・メカニカル・アク
チュエーターの実現を可能とするものである。
[Effects] The electrorheological fluid of the present invention solves the biggest drawbacks of the conventional ones: problems such as poor long-term stability due to the presence of water, elution of electrodes, and a decrease in temperature dependence of electrorheological characteristics. It is durable even at high temperatures, and enables the realization of various electromechanical actuators such as valves, clutches, and shock absorbers that are compact and can be easily electrically controlled.

[実施例] 以下、実施例をもって本発明をより詳細に示すが本実
施例での電気粘性特性は同一中心軸をもつ内径40mmのシ
リンダーと外径38mmのロータの間隙(1.0mm)に封入さ
れた試料流体間に、所定速度の剪断をかけ、一定の交流
(50サイクル)電圧を印加した際の発生剪断応力と電流
を測定する方法により評価した。
[Example] Hereinafter, the present invention will be described in more detail with reference to an example. The electrorheological characteristics in this example are sealed in a gap (1.0 mm) between a cylinder having an inner diameter of 40 mm having the same central axis and a rotor having an outer diameter of 38 mm. The sample fluid was subjected to shearing at a predetermined speed, and the shearing stress and current generated when a constant alternating current (50 cycles) voltage was applied were evaluated.

なお実施例中で示す各成分の量は重量基準である。 The amounts of the components shown in the examples are on a weight basis.

実施例1 球状シリカ粒子(平均粒径5μm)を感応化剤[奥野
製薬(株)、TMPセンシタイザー]処理、水洗、活性化
剤(同上、TMPアクチベーター)処理、水洗の工程を順
次とった後、ニッケル無電解メッキ液(同上、トップニ
コロン)を用い撹拌をしながら90℃で30分間、無電解メ
ッキ処理を行い、ニッケル層平均厚さ0.2μmのメッキ
を粒子表面に施した。
Example 1 A spherical silica particle (average particle size: 5 μm) was subjected to a sensitizing agent [Okuno Pharmaceutical Co., Ltd., TMP Sensitizer] treatment, water washing, an activator (the same as above, TMP activator) treatment, and a water washing process. Thereafter, an electroless plating treatment was performed at 90 ° C. for 30 minutes with stirring using a nickel electroless plating solution (same as above, Top Nicolon), and a nickel layer having an average thickness of 0.2 μm was applied to the particle surface.

次にこの粒子をイソプロポキシアルミニウム1wt%の
トルエン溶液に浸漬し濾過により過剰の溶液を取り除い
た後、0.5wt%の水を含む多量のエタノール中に入れ軽
く撹拌し、粒子表面にイソプロポキシアルミニウムの加
水分解物であるアルミニウム酸化物の被膜を形成した。
Next, the particles were immersed in a toluene solution of 1% by weight of isopropoxyaluminum, and the excess solution was removed by filtration. Then, the particles were gently stirred in a large amount of ethanol containing 0.5% by weight of water, and the surface of the particles was treated with isopropoxyaluminum. An aluminum oxide film as a hydrolyzate was formed.

この粒子を濾別後、窒素雰囲気下300℃で30分熱処理
し、被膜強度を向上させた。
After the particles were separated by filtration, the particles were heat-treated at 300 ° C. for 30 minutes in a nitrogen atmosphere to improve the film strength.

一連のアルミニウム酸化膜形成の工程を3回繰り返す
ことによりこの絶縁膜の平均厚みは0.3μmとなり、高
い絶縁破壊強度をもつ表面絶縁薄膜層を形成することが
できた。
By repeating a series of steps of forming an aluminum oxide film three times, the average thickness of this insulating film was 0.3 μm, and a surface insulating thin film layer having high dielectric breakdown strength could be formed.

このようにして得られた3層構造をもつシリカ粒子を
ジメチルシリコーンオイルに粒子濃度30wt%で分散させ
電気粘性流体を得た。
The silica particles having a three-layer structure thus obtained were dispersed in dimethyl silicone oil at a particle concentration of 30% by weight to obtain an electrorheological fluid.

印加電圧と剪断応力(増分)及び電流密度の関係を表
1に示す。
Table 1 shows the relationship between the applied voltage, the shear stress (increment), and the current density.

実施例2 実施例1の電気粘性流体を2.0KVの電圧を印加しなが
ら120℃で24時間、剪断速度200sec-1で剪断し続けた。2
4時間加熱前後の室温での剪断応力及び120℃加熱時の剪
断応力は下記の如くほぼ一定であり、この電気粘性流体
が極めて安定した電気粘性効果を発揮することがわか
る。
Example 2 The electrorheological fluid of Example 1 was continuously sheared at 120 ° C. for 24 hours at a shear rate of 200 sec −1 while applying a voltage of 2.0 KV. Two
The shear stress at room temperature before and after heating for 4 hours and the shear stress during heating at 120 ° C. are almost constant as described below, and it can be seen that this electrorheological fluid exhibits an extremely stable electrorheological effect.

発生剪断応力[g/cm2] 加熱前(室温) : 1.8 加熱後(〃 ) : 1.8 加熱中(120℃): 2.0 なお比較のため実施例1に用いたシリカを湿潤下に放
置して吸水率9wt%に調湿した後、同様にジメチルシリ
コーンオイルに粒子濃度30wt%で分散させた従来型の電
気粘性流体は70℃、3時間の加熱で殆ど剪断応力を示さ
なくなった。
Generated shear stress [g / cm 2 ] Before heating (room temperature): 1.8 After heating (〃): 1.8 During heating (120 ° C.): 2.0 For comparison, the silica used in Example 1 was left in a wet state to absorb water. After humidity control at a rate of 9% by weight, the conventional electrorheological fluid similarly dispersed at a particle concentration of 30% by weight in dimethyl silicone oil showed almost no shear stress when heated at 70 ° C. for 3 hours.

実施例3 平均粒径5μmの球状アルミナ (δAl2O3)表面に実施例1と同様にしてニッケルを無
電解メッキして約0.2μmのニッケル導電薄膜層を形成
した。
Example 3 Nickel was electrolessly plated on a spherical alumina (δAl 2 O 3 ) surface having an average particle diameter of 5 μm in the same manner as in Example 1 to form a nickel conductive thin film layer of about 0.2 μm.

この粒子をシランカップリング剤(東芝シリコーン
(株)、RSL8370)で処理した後、この粒子100部にスチ
レン24部、ジビニルスチレン16部、過酸化ジベンゾイル
1部を混ぜ、アラビアゴム5部を溶解した水500部中に
高速撹拌しながら注ぎ、粒子を激しく分散させ80℃で4
時間重合を行った。得られた粒子はほぼ均一に厚さ約0.
3μmのポリマー薄膜で被覆されており、4×1013Ω・c
mの電気抵抗を示した。
After treating the particles with a silane coupling agent (Toshiba Silicone Co., Ltd., RSL8370), 24 parts of styrene, 16 parts of divinylstyrene and 1 part of dibenzoyl peroxide were mixed with 100 parts of the particles, and 5 parts of gum arabic were dissolved. Pour into 500 parts of water while stirring at high speed.
Polymerization was carried out for hours. The obtained particles have a thickness of about 0, almost uniformly.
Coated with 3μm polymer thin film, 4 × 10 13 Ω ・ c
m electrical resistance.

この粒子25部をフッ素系オイル(Dupont社、KRYTOX 1
43A Y)75部に分散し、電気粘性特性を評価した。結果
を表2に示す。
25 parts of these particles are made of fluorinated oil (Dupont, KRYTOX 1
43A Y) Dispersed in 75 parts and evaluated for electrorheological properties. Table 2 shows the results.

なお本流体も120℃で24時間の電圧印加加熱試験に対
して安定した電気粘性効果を示した。
In addition, this fluid also showed a stable electrorheological effect in a voltage application heating test at 120 ° C. for 24 hours.

[発明の効果] 以上説明したように、本発明の電気粘性流体は本質的
に水を含有しないものであることから、高温の使用にも
耐え、また長期安定性もよく、バルブ、クラッチ、振動
素子、振動吸収素子等のアクチュエーターにおいて、実
用性の高いものである。
[Effects of the Invention] As described above, since the electrorheological fluid of the present invention essentially does not contain water, it can withstand high-temperature use, has good long-term stability, and has a valve, clutch, and vibration. It is highly practical in actuators such as elements and vibration absorbing elements.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C10N 40:16 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location C10N 40:16

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】無機質固体粒子を中心にその表面に導電性
薄膜層、更にその表面に絶縁性薄膜層を形成した3層構
造からなる微粒子が、電気絶縁性に優れた油状媒体中に
分散していることを特徴とする電気粘性流体。
A fine particle having a three-layer structure comprising a conductive thin film layer formed on the surface of an inorganic solid particle and an insulating thin film layer formed on the surface thereof is dispersed in an oil medium having excellent electrical insulation. An electrorheological fluid comprising:
JP32273787A 1987-06-29 1987-12-22 Electrorheological fluid Expired - Fee Related JP2617959B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP32273787A JP2617959B2 (en) 1987-12-22 1987-12-22 Electrorheological fluid
US07/209,807 US5607617A (en) 1987-06-29 1988-06-22 Electroviscous fluids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32273787A JP2617959B2 (en) 1987-12-22 1987-12-22 Electrorheological fluid

Publications (2)

Publication Number Publication Date
JPH01164823A JPH01164823A (en) 1989-06-28
JP2617959B2 true JP2617959B2 (en) 1997-06-11

Family

ID=18147065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32273787A Expired - Fee Related JP2617959B2 (en) 1987-06-29 1987-12-22 Electrorheological fluid

Country Status (1)

Country Link
JP (1) JP2617959B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252249A (en) 1990-04-26 1993-10-12 Bridgestone Corporation Powder and electrorheological fluid
JP2534169B2 (en) * 1991-07-11 1996-09-11 株式会社コロイドリサーチ Electrorheology-fluid composition
JPH07150187A (en) * 1993-12-01 1995-06-13 Bridgestone Corp Carbonaceous powder for electroviscous fluid disperse phase and electroviscous fluid
US5693367A (en) * 1995-03-24 1997-12-02 Bridgestone Corporation Process for producing a powder material for an electro-rheological fluid
JPH1081889A (en) 1996-09-06 1998-03-31 Bridgestone Corp Powder for electroviscous fluid
US6352651B1 (en) 1998-06-08 2002-03-05 Bridgestone Corporation Electrorheological fluid

Also Published As

Publication number Publication date
JPH01164823A (en) 1989-06-28

Similar Documents

Publication Publication Date Title
JPS6397694A (en) Electroviscous fluid
JPH07103392B2 (en) Electrorheological fluid
US5252249A (en) Powder and electrorheological fluid
JP2617959B2 (en) Electrorheological fluid
EP0394049A1 (en) Electrorheological fluids and preparation of particles useful therein
JPH0790290A (en) Dispersing particle having effects of both magnetic and electric viscosity and fluid by using the same
JPH02240197A (en) Electroviscous fluid
JPH01260710A (en) Operating method for electrical viscous fluid
EP0516394A1 (en) Electrorheological fluid
JPH01172496A (en) Improved electroviscous fluid
US5122293A (en) Method of activating and deactivating an electrorheological response at constant alternating current
JPH03139598A (en) Electroviscous fluid
US5607617A (en) Electroviscous fluids
US5252239A (en) ER fluids having chemically defoliated vermiculite treated with an alkyl ammonium halide and methods of making and using the same
JP3915026B2 (en) Control method of electrorheological fluid
JP2001026793A (en) Complex particle for electric rheology fluid and electric rheology fluid
JPH03119098A (en) Electroviscous fluid
JP2855354B2 (en) Electrorheological fluid
JP3467839B2 (en) Method for producing electrorheological fluid composition
JP3102054B2 (en) Powder and electrorheological fluid
JP2944670B2 (en) Electrorheological liquid
JP3572111B2 (en) Oily medium for electrorheological fluid and electrorheological fluid using the same
JPH02235994A (en) Electroviscous fluid
JPH04227996A (en) Powder and electroviscous fluid
JPH0764649A (en) Electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees