JP2944670B2 - Electrorheological liquid - Google Patents

Electrorheological liquid

Info

Publication number
JP2944670B2
JP2944670B2 JP63323569A JP32356988A JP2944670B2 JP 2944670 B2 JP2944670 B2 JP 2944670B2 JP 63323569 A JP63323569 A JP 63323569A JP 32356988 A JP32356988 A JP 32356988A JP 2944670 B2 JP2944670 B2 JP 2944670B2
Authority
JP
Japan
Prior art keywords
electrorheological
liquid
weight
viscosity
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63323569A
Other languages
Japanese (ja)
Other versions
JPH02169025A (en
Inventor
裕一 石野
隆之 丸山
俊行 大崎
良樹 福山
翼 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP63323569A priority Critical patent/JP2944670B2/en
Priority to DE8989115820T priority patent/DE68904031T2/en
Priority to EP89115820A priority patent/EP0361106B1/en
Priority to AT89115820T priority patent/ATE83795T1/en
Priority to US07/400,134 priority patent/US5087382A/en
Priority to AU42552/89A priority patent/AU628863B2/en
Priority to CA 2000322 priority patent/CA2000322C/en
Publication of JPH02169025A publication Critical patent/JPH02169025A/en
Application granted granted Critical
Publication of JP2944670B2 publication Critical patent/JP2944670B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電圧の印加によって粘性を増大する電気粘性
液体に関するものである。
Description: TECHNICAL FIELD The present invention relates to an electrorheological liquid whose viscosity is increased by applying a voltage.

[従来の技術] 電気粘性液体は、親水性で非導電性の油の中に微細に
分割した親水性の固体が分散している懸濁液で、十分に
強い電場の作用の下で極めて速やかに、しかも可逆的に
液体の粘度が増加する機能性材料である。
[Prior art] An electrorheological liquid is a suspension in which a finely divided hydrophilic solid is dispersed in a hydrophilic, non-conductive oil, and is extremely quickly under the action of a sufficiently strong electric field. In addition, it is a functional material that reversibly increases the viscosity of the liquid.

粘度を変化させるためには直流の電場だけではなく交
流の電場も使用することができ、必要な電流は非常に小
さく、少ない電力によって大きな粘度変化を与えるの
で、例えばクラッチ、水圧弁、ショックアブソーバー、
バイブレーター、防振ゴム、或はワークピースを正常な
位置に保持するシステムを制御するための電気−機械の
インターフェイス等における構成要素として使用するこ
とができる。
In order to change the viscosity, not only a DC electric field but also an AC electric field can be used, and the required current is very small, and a small amount of power gives a large viscosity change, so that, for example, a clutch, a hydraulic valve, a shock absorber,
It can be used as a component in a vibrator, anti-vibration rubber, or an electro-mechanical interface to control a system that holds the workpiece in place.

[発明が解決しようとする課題] 従来、電気粘性液体の構成要素の一つである固体粒子
としては、表面から水を吸収させ微細化させたセルロー
ス、デンプン、シリカゲル、イオン交換樹脂、ポリアク
リル酸リチウム等を、また他の構成要素である液相とし
てはPCB、セバシン酸ブチル、トランス油、塩化パラフ
ィン、シリコーン油等を使用したものが知られている
が、実用性に乏しく、実用価値のある極めて性能且つ安
定度の高い電気粘性液体はいまだ存在しない。
[Problems to be Solved by the Invention] Conventionally, solid particles which are one of the components of the electrorheological liquid include cellulose, starch, silica gel, ion exchange resin, polyacrylic acid, which are made fine by absorbing water from the surface. Lithium, etc., and those using PCB, butyl sebacate, trans oil, chlorinated paraffin, silicone oil, etc. as the other liquid phase are known, but they have poor practicality and have practical value An extremely viscous and highly stable electrorheological liquid does not yet exist.

実用的な電気粘性液体に要求される特性としては、大
きな電気粘性効果を示し、電場がかかった時の電力消費
が少なく、かつ電場が取り除かれた時には小さい粘性を
持つことである。
The properties required for a practical electrorheological liquid include a large electrorheological effect, low power consumption when an electric field is applied, and low viscosity when the electric field is removed.

しかしながら上記のように電気粘性効果の発現を促進
するために水を吸収させた分散相では粒子間を流れる電
流も同時に増えてしまうため、電力消費に大きな問題が
あった。特にこの傾向は高温になるにつれて強まり、従
来の分散相を用いた電気粘性液体の使用温度の上限は70
〜80℃くらいで、それ以上の高温で使用すると電流が過
剰に流れてしまい消費電力が非常に高くなるとともに水
分蒸発による電気粘性効果の発現力や応答性の低下など
が時間とともに起こるため、高温の雰囲気で使用される
場合はもちろん室温付近で使用される場合においても、
過剰の電流が流れることと水分の蒸発による性能変化が
起こることは、従来の水分を吸収させた分散相を含む電
気粘性液体の実用化への障害であった。
However, as described above, in the dispersed phase in which water is absorbed in order to promote the manifestation of the electrorheological effect, the current flowing between the particles increases at the same time, and thus there is a large problem in power consumption. In particular, this tendency becomes stronger as the temperature increases, and the upper limit of the operating temperature of a conventional electrorheological liquid using a dispersed phase is 70.
When used at temperatures higher than about 80 ° C, current flows excessively, resulting in extremely high power consumption and the reduction of the electrorheological effect and responsiveness due to water evaporation over time. Even when used in an atmosphere of room temperature or near room temperature,
The flow of excess current and the change in performance due to the evaporation of moisture have been obstacles to the practical use of conventional electrorheological liquids containing a dispersed phase that has absorbed moisture.

そのため、水分を含むことによる性能低下がなく、電
気消費量が少なく、かつ高い電気粘性効果を示す電気粘
性液体の開発が望まれていた。
Therefore, there has been a demand for the development of an electrorheological liquid which does not cause performance degradation due to containing water, consumes less electricity, and exhibits a high electrorheological effect.

[課題を解決するための手段] したがって本発明は水分をほとんど含まず、高い電気
粘性効果を示すが、電力消費量は少ない電気粘性液体の
提供を目的としたもので、電気絶縁性薄膜で被覆された
平均粒径0.01〜100ミクロンの炭素微粒子を分散相と
し、室温における粘度1〜500センチストークス(cSt)
の電気絶縁油を液相とする電気粘性液体であって、上記
炭素微粒子がメソフェーズカーボンマイクロビーズ、石
炭又は熱硬化性樹脂マイクロビーズの炭化物であること
を特徴とする電気粘性液体によってこの目的を達成し
た。
[Means for Solving the Problems] Accordingly, the present invention aims at providing an electrorheological liquid which contains little water and exhibits a high electrorheological effect but consumes less power, and is coated with an electrically insulating thin film. The dispersed carbon fine particles having an average particle size of 0.01 to 100 microns have a viscosity at room temperature of 1 to 500 centistokes (cSt).
This object is achieved by an electrorheological liquid having an electrically insulating oil as a liquid phase, wherein the carbon fine particles are carbides of mesophase carbon microbeads, coal or thermosetting resin microbeads. did.

これらの炭素微粒子は炭素含有量が85重量%以上のも
のである。
These carbon fine particles have a carbon content of 85% by weight or more.

ここで電気絶縁性薄膜としては、有機、無機にかかわ
らず薄膜を炭素微粒子表面に形成できれば良いが、薄膜
の最適な厚さは該炭素微粒子の導電率に左右される。す
なわち炭素微粒子の導電率が高い場合は絶縁性薄膜は相
対的に厚いほうが良好で、逆に該微粒子の導電率が低い
場合は絶縁性薄膜は相対的に薄いことが、高い電気粘性
効果を保ち、電圧印加時の電流を低くするために必要で
ある。また炭素含有量が85重量%以下の炭素微粒子は導
電率が低く電気粘性効果をほとんど示さない。
Here, as the electrically insulating thin film, regardless of whether it is organic or inorganic, any thin film may be formed on the surface of the carbon fine particles, but the optimum thickness of the thin film depends on the conductivity of the carbon fine particles. That is, when the conductivity of the carbon fine particles is high, it is better that the insulating thin film is relatively thick. On the contrary, when the conductivity of the fine particles is low, the insulating thin film is relatively thin. It is necessary to lower the current when applying a voltage. Further, carbon fine particles having a carbon content of 85% by weight or less have low electric conductivity and hardly exhibit an electrorheological effect.

このような電気絶縁性薄膜は高分子溶液からの粉体へ
のコーティング、小径粒子を乾式で混合し粉体の表面で
溶融するハイブリダイゼーション、シラン処理等の表面
処理、スパッタリング真空蒸着、モノマーからの重合な
どによって形成され、使用される電気絶縁性物質として
はポリメチルメタクリレート、ポリスチレン、ポリ酢酸
ビニル、ポリ塩化ビニル、エポキシ樹脂、フェノール樹
脂などの合成高分子物質、メチルトリメトキシシラン、
フェニルトリメトキシシラン、ヘキサメチルジシラザ
ン、トリメチルクロルシランなどのシラン処理剤、カル
ボキシル基や水酸基を持ちジメチルポリシロキサンやフ
ェニルメチルポリシロキサン構造を主鎖とする変性シリ
コーンオイル、シリカ、アルミナ、ルチルなどの無機化
合物が代表例として挙げられる。
Such an electrically insulating thin film is coated on a powder from a polymer solution, hybridized to mix small-sized particles in a dry manner and melted on the powder surface, surface treatment such as silane treatment, sputtering vacuum deposition, Formed by polymerization or the like, and used as the electrically insulating material are synthetic polymers such as polymethyl methacrylate, polystyrene, polyvinyl acetate, polyvinyl chloride, epoxy resin, and phenol resin, methyltrimethoxysilane,
Silane treating agents such as phenyltrimethoxysilane, hexamethyldisilazane, and trimethylchlorosilane; modified silicone oils having a carboxyl group or a hydroxyl group and having a dimethylpolysiloxane or phenylmethylpolysiloxane structure as a main chain; silica, alumina, rutile, etc. Inorganic compounds are typical examples.

このようにして作成された電気絶縁性薄膜で被覆した
炭素微粒子を電気粘性液体の分散相として用いることに
より、水分をほとんど含まず、粒子内の炭素質の導電性
による分極作用によって高い電気粘性効果を示すが、電
気消費量の少ない電気粘性液体を得ることができる。
By using the carbon fine particles coated with the electrically insulating thin film thus formed as the dispersed phase of the electrorheological liquid, it contains almost no water and has a high electrorheological effect due to the polarization action due to the conductivity of the carbonaceous material in the particles. However, it is possible to obtain an electrorheological liquid which consumes less electricity.

電気粘性液体の分散相として好ましい粒子径は0.01〜
100ミクロンの範囲である。0.05ミクロン未満では電場
のない状態で初期粘度が著しく大きくなって電気粘性効
果による粘度変化が小さく、また100ミクロンを越える
と液体の分散相としての十分な安定性が得られない。
The preferred particle size as the dispersed phase of the electrorheological liquid is 0.01 to
It is in the range of 100 microns. If it is less than 0.05 μm, the initial viscosity becomes remarkably large in the absence of an electric field, and the change in viscosity due to the electrorheological effect is small. If it exceeds 100 μm, sufficient stability as a liquid dispersed phase cannot be obtained.

液相を構成する電気絶縁油としては、炭化水素油、エ
ステル系油、芳香族系油やシリコーン油などを例示する
ことが出来る。これらは単独で用いることができ、また
2種以上を併用することもできるが、電気絶縁油が該電
気絶縁層を溶解しないように電気絶縁油と電気絶縁層の
組合せを選択する必要がある。
Examples of the electric insulating oil constituting the liquid phase include hydrocarbon oils, ester oils, aromatic oils, and silicone oils. These can be used alone or in combination of two or more, but it is necessary to select a combination of the electric insulating oil and the electric insulating layer so that the electric insulating oil does not dissolve the electric insulating layer.

電気絶縁油の粘度は25℃において1〜500センチスト
ークス(cSt)であり、好ましくは10〜50cStの粘度を有
するものを用いる。液相の粘度が低すぎると揮発分が多
くなり液相の安定性が悪くなる。液相の粘度が高すぎる
と電場のない時の初期粘度が高くなり、電気粘性効果に
よる粘度変化が小さくなる。また適度に低粘度の電気絶
縁油を液相とすることによって分散相を効率良く懸濁さ
せることができる。
The viscosity of the electric insulating oil is 1 to 500 centistokes (cSt) at 25 ° C., and preferably has a viscosity of 10 to 50 cSt. If the viscosity of the liquid phase is too low, the volatile content increases and the stability of the liquid phase deteriorates. If the viscosity of the liquid phase is too high, the initial viscosity in the absence of an electric field increases, and the change in viscosity due to the electrorheological effect decreases. In addition, by using a moderately low-viscosity electric insulating oil as a liquid phase, the dispersed phase can be efficiently suspended.

本発明の電気粘性液体を構成する分散相と液相の割合
は、該炭素微粒子からなる分散相の含有量が1〜60重量
%、好ましくは20〜50重量%であり、前記電気絶縁油か
らなる液相の含有量が99〜40重量%、好ましくは80〜50
重量%である。分散相の量が1重量%未満では電気粘性
効果が小さく、60重量%を越えると電場がない時の初期
粘度が著しく大きくなる。
The proportion of the dispersed phase and the liquid phase constituting the electrorheological liquid of the present invention is such that the content of the dispersed phase composed of the carbon fine particles is 1 to 60% by weight, preferably 20 to 50% by weight, Liquid phase content of 99 to 40% by weight, preferably 80 to 50%
% By weight. If the amount of the dispersed phase is less than 1% by weight, the electrorheological effect is small, and if it exceeds 60% by weight, the initial viscosity in the absence of an electric field is significantly increased.

本発明の電気粘性液体には、本発明の効果を損なわな
い範囲内で、他の分散相や界面活性剤、分散剤、無機塩
などの添加剤を配合することができる。
In the electrorheological liquid of the present invention, other additives such as a dispersed phase, a surfactant, a dispersant, and an inorganic salt can be blended within a range that does not impair the effects of the present invention.

以下実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be described specifically with reference to examples.

実施例1 コールタールピッチを原料としたメソフェーズカーボ
ンマイクロビーズ(平均粒子径16.5μm)を窒素気流中
450℃で熱処理し、炭素含有量93.4重量%とした炭素微
粒子をフェニルトリメトキシシランのキシレン溶液中で
80℃、6時間加熱還流後濾別し、表面をシラン処理した
微粉末を得た。この微粉末40重量%を液相成分である25
℃における粘度10cStのシリコーン油(東芝シリコーン
(株)製:TSF451−10)60重量%に良く分散し懸濁液と
して電気粘性液体を得た。
Example 1 Mesophase carbon microbeads (average particle diameter 16.5 μm) using coal tar pitch as a raw material in a nitrogen stream
Heat-treated at 450 ° C, carbon fine particles with a carbon content of 93.4% by weight were dissolved in xylene solution of phenyltrimethoxysilane.
After heating and refluxing at 80 ° C. for 6 hours, the mixture was filtered to obtain a fine powder whose surface was treated with silane. 40% by weight of this fine powder is 25
It was well dispersed in 60% by weight of a silicone oil (TSF451-10, manufactured by Toshiba Silicone Co., Ltd.) having a viscosity of 10 cSt at 10 ° C. to obtain an electrorheological liquid as a suspension.

実施例2 コールタールピッチを原料としたメソフェーズカーボ
ンマイクロビーズ(平均粒子径19.3μm)を窒素気流中
600℃で熱処理し、炭素含有量94.4重量%とした炭素微
粒子をメチルトリメトキシシランのキシレン溶液中で80
℃、6時間加熱還流濾別し表面をシラン処理した微粉末
を得た。この微粉末40重量%を液相成分である25℃にお
ける粘度20cStのシリコーン油(東芝シリコーン(株)
製:TSF451−20)60重量%に良く分散し懸濁液として電
気粘性液体を得た。
Example 2 Mesophase carbon microbeads (average particle diameter: 19.3 μm) using coal tar pitch as a raw material in a nitrogen stream
Carbon fine particles having a carbon content of 94.4% by weight were heat-treated at 600 ° C. in a xylene solution of methyltrimethoxysilane.
The mixture was filtered under heating and reflux at 6 ° C. for 6 hours to obtain a fine powder whose surface was treated with silane. 40% by weight of this fine powder was used as a liquid phase component in a silicone oil having a viscosity of 20 cSt at 25 ° C (Toshiba Silicone Co., Ltd.)
Manufactured by TSF451-20) and dispersed well in 60% by weight to obtain an electrorheological liquid as a suspension.

実施例3 コールタールピッチを原料としたメソフェーズカーボ
ンマイクロビーズ(平均粒子径14.5μm)を窒素気流中
700℃で熱処理し、炭素含有量95.5重量%とした炭素微
粒子に、平均粒子径0.25μmのポリメチルメタクリレー
ト球状微粒子を重量比100:5の割合で加え、この混合物
を奈良製作所製ハイブリダイザーに投入し、ポリメチル
メタクリレートの薄膜層によってコーティングされた炭
素微粉末を得た。この微粉末40重量%を液相成分である
25℃における粘度20cStのシリコーン油(東芝シリコー
ン(株)製:TSF451−20)60重量%に良く分散し懸濁液
として電気粘性液体を得た。
Example 3 Mesophase carbon microbeads (average particle diameter 14.5 μm) using coal tar pitch as a raw material in a nitrogen stream
Heat-treated at 700 ° C and added to the carbon fine particles with a carbon content of 95.5% by weight, polymethyl methacrylate spherical fine particles with an average particle diameter of 0.25μm in a weight ratio of 100: 5, and put this mixture into a hybridizer manufactured by Nara Corporation. Then, a carbon fine powder coated with a polymethyl methacrylate thin film layer was obtained. 40% by weight of this fine powder is a liquid phase component
The dispersion was well dispersed in 60% by weight of silicone oil (TSF451-20 manufactured by Toshiba Silicone Co., Ltd.) having a viscosity of 20 cSt at 25 ° C. to obtain an electrorheological liquid as a suspension.

実施例4 実施例1で用いたシラン処理後の炭素微粉末を130℃
で2時間加熱し、実施例1と同様な処方で電気粘性液体
を得た。
Example 4 The carbon fine powder after silane treatment used in Example 1 was heated to 130 ° C.
For 2 hours to obtain an electrorheological liquid with the same formulation as in Example 1.

比較例1 市販されているポリアクリル酸を水酸化リチウムで中
和して得られたポリアクリル酸リチウム100重量部に水
分を5重量%含有させたのち、粉砕、分粒して得られた
平均粒子径約100μmのポリアクリル酸リチウム40重量
%を、液相成分である25℃における粘度20cStのシリコ
ーン油(東芝シリコーン(株)製:TSF451−20)60重量
%に分散、懸濁させて電気粘性液体を得た。
Comparative Example 1 An average of 100% by weight of lithium polyacrylate obtained by neutralizing commercially available polyacrylic acid with lithium hydroxide, containing 5% by weight of water, followed by pulverization and sizing. 40% by weight of lithium polyacrylate having a particle diameter of about 100 μm is dispersed and suspended in 60% by weight of a liquid phase component, a silicone oil having a viscosity of 20 cSt at 25 ° C. (manufactured by Toshiba Silicone Co., Ltd .: TSF451-20). A viscous liquid was obtained.

比較例2 実施例3で用いた薄膜層をコーティングする前の炭素
微粉末40重量%を液相成分である25℃における粘度20cS
tのシリコーン油(東芝シリコーン(株)製:TSF451−2
0)60重量%に良く分散し懸濁液として電気粘性液体を
得た。
Comparative Example 2 40% by weight of carbon fine powder before coating the thin film layer used in Example 3 was used as a liquid phase component and had a viscosity at 25 ° C. of 20 cS.
t silicone oil (Toshiba Silicone Co., Ltd .: TSF451-2
0) Dispersed well to 60% by weight to obtain an electrorheological liquid as a suspension.

比較例3 比較例1で用いたポリアクリル酸リチウム微粉末を13
0℃で2時間乾燥させて水分量0.5重量%とし、比較例1
と同様な処方で電気粘性液体を得た。
Comparative Example 3 The lithium polyacrylate fine powder used in Comparative Example 1
Comparative Example 1 was dried at 0 ° C. for 2 hours to obtain a water content of 0.5% by weight.
An electrorheological liquid was obtained with the same formulation as in.

実施例1〜4及び比較例1〜3で得られた各電気粘性
液体について、電気粘性効果の測定を行なった。電気粘
性効果は二重円筒型回転粘度計を使用し、内外円筒間に
電圧を印加したときの、同一剪断速度(375sec-1)、温
度25℃の剪断力で評価し、同時に内外円筒間に流れる電
流を測定した。
The electrorheological effects of the electrorheological liquids obtained in Examples 1 to 4 and Comparative Examples 1 to 3 were measured. The electrorheological effect was evaluated at the same shear rate (375sec -1 ) and a shear force at a temperature of 25 ° C when a voltage was applied between the inner and outer cylinders using a double-cylinder rotary viscometer. The flowing current was measured.

第1表に電圧をかけない場合の剪断力To、電圧1KV/mm
を印加した時の剪断力T、その差T−To、および電圧1K
V/mmを印加した時の電流密度を示す。
Table 1 Shearing force when no voltage is applied To, voltage 1KV / mm
, The difference T-To, and the voltage 1K
It shows the current density when V / mm is applied.

[作用] 第1表において電場(1KV/mm)をかけた時の剪断力T
から電場をかけない時の剪断力Toを引いた差T−Toは液
体の電気粘性効果の大小を表す。即ち第1表のT−Toの
大なる液体が大きい電気粘性効果を示す。同時に電場
(1KV/mm)をかけた時の電流密度の大小は電気粘性効果
を発現するための消費電力を示す。
[Action] In Table 1, the shear force T when an electric field (1 KV / mm) is applied
The difference T-To obtained by subtracting the shearing force To when no electric field is applied from T represents the magnitude of the electrorheological effect of the liquid. That is, the liquid having a large T-To in Table 1 shows a large electrorheological effect. At the same time, the magnitude of the current density when an electric field (1 KV / mm) is applied indicates the power consumption for developing the electrorheological effect.

第1表のように実施例1〜2はいずれも比較例1より
も高い電気粘性効果を示すし、消費電力も同じレベルで
ある。乾燥によって水分をほとんど含まない状態になっ
ても、実施例4のように電気粘性効果はほとんど変化し
ない。
As shown in Table 1, all of Examples 1 and 2 show a higher electrorheological effect than Comparative Example 1, and the power consumption is at the same level. Even when the drying becomes almost free of moisture, the electrorheological effect hardly changes as in the fourth embodiment.

一方、比較例1も高い電気粘性効果を示し、消費電力
も少ないが、水分を含むため比較例3のように乾燥によ
り電気粘性効果は示さなくなる。
On the other hand, Comparative Example 1 also shows a high electrorheological effect and consumes less power, but does not show the electrorheological effect by drying as in Comparative Example 3 because it contains moisture.

また比較例2のように絶縁薄膜で被覆しない場合は過
大電流が流れるが、実施例3のように絶縁薄膜で被覆す
ることにより消費電力が低減でき電気粘性液体として動
作する。
Further, when not covered with the insulating thin film as in Comparative Example 2, an excessive current flows. However, by covering with the insulating thin film as in Example 3, the power consumption can be reduced and the device operates as an electrorheological liquid.

[発明の効果] 水分含有量の多少による性能変化がなく、電力消費量
が少なく、かつ電気粘性効果を示す電気粘性液体が得ら
れる。
[Effects of the Invention] An electro-rheological liquid exhibiting no electro-rheological effect with little change in performance due to a small amount of water content, low power consumption.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−97694(JP,A) 特開 平2−164438(JP,A) 特開 平2−35933(JP,A) 特開 昭64−6093(JP,A) 特開 昭60−51749(JP,A) (58)調査した分野(Int.Cl.6,DB名) B01J 13/00 C10M 125/02 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-97694 (JP, A) JP-A-2-164438 (JP, A) JP-A-2-35933 (JP, A) JP-A 64-64 6093 (JP, A) JP-A-60-51749 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) B01J 13/00 C10M 125/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電気絶縁性薄膜で被覆された平均粒径0.01
〜100ミクロンの炭素微粒子を分散相とし、室温におけ
る粘度1〜500センチストークス(cSt)の電気絶縁油を
液相とする電気粘性液体であって、上記炭素微粒子がメ
ソフェーズカーボンマイクロビーズ、石炭又は熱硬化性
樹脂マイクロビーズの炭化物であることを特徴とする電
気粘性流体。
An average particle size of 0.01 coated with an electrically insulating thin film.
An electro-rheological liquid having carbon fine particles of about 100 μm as a dispersed phase and an electric insulating oil having a viscosity of 1 to 500 centistokes (cSt) at room temperature as a liquid phase, wherein the carbon fine particles are mesophase carbon micro beads, coal or heat. An electrorheological fluid, which is a carbide of curable resin microbeads.
JP63323569A 1988-08-29 1988-12-23 Electrorheological liquid Expired - Fee Related JP2944670B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP63323569A JP2944670B2 (en) 1988-12-23 1988-12-23 Electrorheological liquid
EP89115820A EP0361106B1 (en) 1988-08-29 1989-08-28 Electroviscous fluid
AT89115820T ATE83795T1 (en) 1988-08-29 1989-08-28 ELECTROVISCOUS LIQUIDS.
DE8989115820T DE68904031T2 (en) 1988-08-29 1989-08-28 ELECTROVISCOSE LIQUIDS.
US07/400,134 US5087382A (en) 1988-08-29 1989-08-29 Electroviscous fluid
AU42552/89A AU628863B2 (en) 1988-12-23 1989-10-04 Electroviscous fluid
CA 2000322 CA2000322C (en) 1988-12-23 1989-10-06 Electroviscous fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63323569A JP2944670B2 (en) 1988-12-23 1988-12-23 Electrorheological liquid

Publications (2)

Publication Number Publication Date
JPH02169025A JPH02169025A (en) 1990-06-29
JP2944670B2 true JP2944670B2 (en) 1999-09-06

Family

ID=18156165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63323569A Expired - Fee Related JP2944670B2 (en) 1988-08-29 1988-12-23 Electrorheological liquid

Country Status (1)

Country Link
JP (1) JP2944670B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796629B2 (en) * 1987-06-29 1995-10-18 日本ゼオン株式会社 Rubber composition

Also Published As

Publication number Publication date
JPH02169025A (en) 1990-06-29

Similar Documents

Publication Publication Date Title
US5087382A (en) Electroviscous fluid
JPS63185812A (en) Electric field reactive fluid
JPH07103392B2 (en) Electrorheological fluid
JPH02164438A (en) Electroviscous liquid
JP2944670B2 (en) Electrorheological liquid
US5164105A (en) Electroviscous fluid
JP2761774B2 (en) Electrorheological fluid
JP2617959B2 (en) Electrorheological fluid
JPH0742473B2 (en) Electrorheological liquid
JPH04348192A (en) Electro-viscous fluid
US5122293A (en) Method of activating and deactivating an electrorheological response at constant alternating current
US5139691A (en) Anhydrous electrorheological compositions including Na3 PO4
Ishino et al. Anhydrous electrorheological fluid using carbonaceous particulate as dispersed phase
US5252239A (en) ER fluids having chemically defoliated vermiculite treated with an alkyl ammonium halide and methods of making and using the same
US5130040A (en) Anhydrous electrorheological compositions including Zr(HPO4)2
US5130039A (en) Anhydrous electrorheological compositions including Liy Si1-x Ax O4
US5130038A (en) Anhydrous electrorheological compositions including A5 MSi4 O.sub.
JPH08253788A (en) Electroviscous liquid
KR100477325B1 (en) A electro-rheological fluid comprising dried water-soluble starch and additives
JPH03247698A (en) Electro viscous fluid
JPH02150494A (en) Electroviscous liquid
JP4389299B2 (en) Composite particles for electrorheological fluid and electrorheological fluid
JP3378945B2 (en) Electrorheological fluid
JP3458148B2 (en) Carbonaceous powder for electrorheological fluid dispersed phase and electrorheological fluid
JP3102054B2 (en) Powder and electrorheological fluid

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees