JPH0742473B2 - Electrorheological liquid - Google Patents

Electrorheological liquid

Info

Publication number
JPH0742473B2
JPH0742473B2 JP1171969A JP17196989A JPH0742473B2 JP H0742473 B2 JPH0742473 B2 JP H0742473B2 JP 1171969 A JP1171969 A JP 1171969A JP 17196989 A JP17196989 A JP 17196989A JP H0742473 B2 JPH0742473 B2 JP H0742473B2
Authority
JP
Japan
Prior art keywords
electrorheological
liquid
fine powder
weight
carbonaceous fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1171969A
Other languages
Japanese (ja)
Other versions
JPH0347896A (en
Inventor
裕一 石野
俊行 大崎
茂樹 遠藤
誠介 冨田
隆之 丸山
良樹 福山
翼 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Publication of JPH0347896A publication Critical patent/JPH0347896A/en
Publication of JPH0742473B2 publication Critical patent/JPH0742473B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電圧の印加によって粘性を増大する電気粘性液
体に関するものである。
Description: TECHNICAL FIELD The present invention relates to an electrorheological liquid whose viscosity is increased by applying a voltage.

[従来の技術] 電気粘性液体は、非導電性の油の中に微細に分割した誘
電性の固体が分散している懸濁液で、充分に強い電場の
作用の下で極めて速やかに、しかも可逆的に粘度が増加
する液体である。
[Prior Art] An electrorheological liquid is a suspension in which finely divided dielectric solids are dispersed in a non-conductive oil, and extremely rapidly under the action of a sufficiently strong electric field. It is a liquid whose viscosity increases reversibly.

粘度を変化させるためには直流の電場だけでなく交流の
電場も使用することができ、必要な電流は非常に小さ
く、少ない電力によって液体からほぼ固定状態になるま
で大きな粘度変化をを与えるので、例えば、クラッチ、
バルブ、ショックアブソーバー、バイブレータ、各種防
振ゴム、アクチュエータ、ロボットアーム、制振材など
の装置や部品を制御するための構成要素として、電気粘
性液体は検討されて来た。
To change the viscosity, not only an electric field of direct current but also an electric field of alternating current can be used, the required current is very small, and a small amount of electric power gives a large change in viscosity from a liquid to an almost fixed state. For example, a clutch,
Electrorheological liquids have been studied as components for controlling devices and parts such as valves, shock absorbers, vibrators, various anti-vibration rubbers, actuators, robot arms, and damping materials.

従来、電気粘性液体の構成要素の一つである固体粒子と
しては、米国特許第2,417,850号、第3,047,507号、第3,
397,147号、第3,970,573号、第4,129,513号、或は日本
国公告特許昭60−31211号、ドイツ公開特許第3,427,499
号に開示されているように、表面から水を吸収させ微細
化させたセルロース、デンプン、シリカゲル、イオン交
換樹脂、ポリアクリル酸リチウム等を、また他の構成要
素である液相としては、ハロゲン化ジフェニル、セバシ
ン酸ブチル、炭化水素油、塩素化パラフィン、シリコー
ン油等を使用したものが知られているが、実用性に乏し
く、実用価値のある極めて高性能且つ安定度の高い電気
粘性液体はいまだ存在しない。
Conventionally, as solid particles that are one of the components of the electrorheological liquid, U.S. Patent Nos. 2,417,850, 3,047,507, 3,
397,147, 3,970,573, 4,129,513, or Japanese Patent Publication No. 60-31211, German published patent 3,427,499
As disclosed in the publication No. 3, cellulose, starch, silica gel, ion exchange resins, lithium polyacrylate, etc., which have been made to absorb water from the surface and made into fine particles, and other components, such as a liquid phase, are halogenated. It is known to use diphenyl, butyl sebacate, hydrocarbon oil, chlorinated paraffin, silicone oil, etc., but an electrorheological liquid of extremely high performance and high stability, which is of poor practicality and has practical value, is still available. not exist.

実用的な電気粘性液体に要求される特性としては、広い
温度範囲において大きな電気粘性効果を示し、電場がか
かった時の電力消費が少なく、電場が取り除かれた時に
は小さい粘性を持ち、且つ分散相が沈降せず長期的に安
定した特性を持続する事である。
The properties required for a practical electrorheological liquid are a large electrorheological effect over a wide temperature range, low power consumption when an electric field is applied, low viscosity when the electric field is removed, and a dispersed phase. Is that it does not settle down and maintains stable characteristics for a long time.

しかしながら上記のように電気粘性効果の発現を促進す
るために水を吸収させた分散相では粒子間を流れる電流
も同時に増えてしまうため、電力消費に大きな問題があ
った。特にこの傾向は高温になるにつれて強まり、従来
の分散相を用いた電気粘性液体の使用温度の上限は70〜
80℃くらいで、それ以上の高温で使用すると電流が過剰
に流れてしまい消費電力が非常に高くなるとともに電気
粘性効果の発現力や応答性の低下などが時間とともに起
こり、自動車のエンジンルーム等、高温の雰囲気で使用
する装置・部品への応用は不可能であった。
However, as described above, in the dispersed phase in which water is absorbed in order to promote the expression of the electrorheological effect, the current flowing between the particles also increases, which causes a large problem in power consumption. In particular, this tendency becomes stronger as the temperature rises, and the upper limit of the operating temperature of the electroviscous liquid using the conventional dispersed phase is 70-
If it is used at a high temperature of about 80 ° C or higher, current will flow excessively and power consumption will become extremely high, and the power of expressing the electrorheological effect and deterioration of responsiveness will occur over time, such as in the engine room of an automobile. It was not possible to apply it to devices and parts used in high temperature atmosphere.

さらに、このように水分を吸収させた分散相を含む水系
電気粘性液体は0℃以下の低温では水分の凝固により電
気粘性効果を発現しなくなる。
Further, the water-based electrorheological liquid containing the dispersed phase in which water is absorbed as described above does not exhibit the electrorheological effect due to the solidification of water at a low temperature of 0 ° C. or lower.

[発明が解決しようとする課題] このように電気粘性液体として機能するために分散相が
水分を含有する必要のある水系電気粘性液体は温度範囲
及び水の蒸発に伴う耐久性に本質的な問題を持ち、それ
らが長らく該液体が実用化しない理由となっていた。
[Problems to be Solved by the Invention] As described above, a water-based electrorheological liquid whose dispersed phase needs to contain water in order to function as an electrorheological liquid has an essential problem in the temperature range and durability associated with water evaporation. It has been a reason why the liquid has not been put to practical use for a long time.

そのため、分散相に水分を必要としない実用化可能な非
水系の電気粘性液体の登場が待たれていた。このような
非水系の液体として最近米国特許第4,687,589号、ある
いは特開昭63−97694号、特開昭64−6093号に開示され
ている本質的に水分を含有しない液体や分散相を多層構
造にした液体も提案されてきたが、電気粘性効果が小さ
い、電力消費が大きい、交流電場でしか機能しないなど
の問題点もあり、現在のところ実用可能で充分な特性を
有する電気粘性液体が開発されているとは言いがたい。
Therefore, the advent of a practical non-aqueous electrorheological liquid that does not require water in the dispersed phase has been awaited. As such a non-aqueous liquid, a liquid having substantially no water or a dispersed phase disclosed in U.S. Pat. No. 4,687,589 or JP-A-63-97694 and JP-A-64-6093 has a multilayer structure. Liquids have also been proposed, but due to problems such as small electrorheological effect, large power consumption, and functioning only in an alternating electric field, an electrorheological liquid that is practical and has sufficient properties is currently developed. It is hard to say that it has been done.

非水系の電気粘性液体の発現機構の一つとして電場を印
加した際、分散相粒子中の電子または正孔の移動による
界面分極が起こり、分散相粒子が引き合い、粒子のブリ
ッジを形成し粘度を上昇させる事が考えられる。この事
から発明者らは電子または正孔の移動による界面分極に
必要なラジカル(不対電子)濃度が高く安定な、いわゆ
る低温処理炭素材料に注目し、非水系電気粘性液体の分
散相として使用する事を検討した。その結果直流及び交
流電場の印加により広い温度範囲で高い電気粘性効果を
示すが、電力消費量が少なく、且つ高い電気粘性効果を
長期間維持できる電気粘性液体の開発に至ったものであ
る。
When an electric field is applied as one of the expression mechanisms of a non-aqueous electrorheological liquid, interfacial polarization occurs due to the movement of electrons or holes in the dispersed phase particles, the dispersed phase particles attract each other, form a bridge of particles, and increase the viscosity. It is possible to raise it. From this, the inventors have paid attention to a so-called low-temperature treated carbon material, which has a high concentration of radicals (unpaired electrons) necessary for interfacial polarization due to the movement of electrons or holes, and is used as a dispersed phase of a non-aqueous electrorheological liquid. I considered doing. As a result, the application of a direct current and an alternating electric field shows a high electrorheological effect in a wide temperature range, but it has led to the development of an electrorheological liquid that consumes less power and can maintain a high electrorheological effect for a long period of time.

[課題を解決するための手段] 本発明は、直流又は交流電場の印加により広い温度範囲
で高い電気粘性効果を示すが、電力消費量は少なく、且
つ高い電気粘性効果を長期間維持できる電気粘性液体の
提供を目的としたもので、平均粒径0.01〜100ミクロン
の炭素質微粉末1〜60重量%の分散相と、室温における
粘度0.65〜500センチストークス(cSt)の電気絶縁油99
〜40重量%の液相とからなることを特徴とする電気粘性
液体により、この問題を解決した。
[Means for Solving the Problems] The present invention exhibits a high electrorheological effect over a wide temperature range by applying a DC or AC electric field, but has low power consumption and is capable of maintaining a high electrorheological effect for a long period of time. For the purpose of providing a liquid, a dispersed phase of 1 to 60% by weight of carbonaceous fine powder having an average particle size of 0.01 to 100 microns, and an electrical insulating oil having a viscosity of 0.65 to 500 centistokes (cSt) at room temperature 99
This problem was solved by an electrorheological liquid characterized by consisting of ~ 40% by weight liquid phase.

本発明において電気粘性液体の分散相として好適な炭素
質微粉末としては炭素含有量80〜97重量%のものが好ま
しく、特に好ましくは90〜95重量%である。また炭素質
微粉末のC/H比(炭素/水素原子比)は1.2〜5のものが
好ましく、特に好ましくは2〜4である。
The carbonaceous fine powder suitable as the dispersed phase of the electrorheological liquid in the present invention preferably has a carbon content of 80 to 97% by weight, and particularly preferably 90 to 95% by weight. The C / H ratio (carbon / hydrogen atom ratio) of the carbonaceous fine powder is preferably 1.2 to 5, and particularly preferably 2 to 4.

一般に電気粘性液体の分散相の電気抵抗は半導体領域に
ある事は古くから知られているが(W. M. Winslow: J.
Appl. Physics 20 1137 (1949)、炭素含有量が80重量
%以下で且つC/H比が1.2以下の炭素質微粉末は絶縁体で
あり、電気粘性効果を示す液体は殆ど得られない。
It has long been known that the electric resistance of the dispersed phase of an electrorheological liquid is generally in the semiconductor region (WM Winslow: J.
Appl. Physics 20 1137 (1949), carbonaceous fine powder having a carbon content of 80% by weight or less and a C / H ratio of 1.2 or less is an insulator, and a liquid exhibiting an electrorheological effect is hardly obtained.

一方、炭素含有量が97重量%以上で且つC/H比が5以上
のものは導電体に近く、電圧を印加しても過大電流を示
し、電気粘性効果を示す液体は得られない。
On the other hand, those having a carbon content of 97% by weight or more and a C / H ratio of 5 or more are close to a conductor and show an excessive current even when a voltage is applied, and a liquid showing an electrorheological effect cannot be obtained.

具体的に電気粘性液体の分散相として好適な前記のC/H
比を持つ炭素質微粉末としては、コールタールピッチ、
石油系ピッチ、ポリ塩化ビニルを熱分解して得られるピ
ッチなどを微粉砕したもの、それらピッチ又はタール成
分を加熱処理して得られる各種メソフェーズからなる微
粉末、即ち加熱により形成される光学的異方性小球体
(球晶またはメソフェーズ小球体)を溶剤でピッチ成分
を溶解し分別することによって得られる微粉末、さらに
それを微粉砕したもの、ピッチ原料を加熱処理によりバ
ルクメソフェーズ(例えば日本国公開特許昭59−30887
号参照)とし、それを微粉砕したもの、また一部晶質化
したピットを微粉砕したもの、フェール樹脂などの熱硬
化性樹脂を低温で炭化したもの、熱分解ポリアクリロニ
トリルなど、いわゆる低温処理炭素微粉末が例示され、
さらに無煙炭、瀝青炭などの石炭類及びその熱処理物を
微粉砕したもの、ポリエチレン、ポリプロピレンまたは
ポリスチレンなどの炭化水素系ビニル系高分子とポリ塩
化ビニルまたはポリ塩化ビニリデンなどの塩素含有高分
子との混合物を加圧下で加熱することによって得られる
炭素球、またはそれを微粉砕したものなどが例示され
る。
Specifically, the above C / H suitable as a dispersed phase of an electrorheological liquid
As carbonaceous fine powder having a ratio, coal tar pitch,
Finely pulverized petroleum pitch, pitch obtained by thermally decomposing polyvinyl chloride, fine powder consisting of various mesophases obtained by heat-treating those pitch or tar components, that is, an optical difference formed by heating. Fine powder obtained by dissolving and fractionating pitch components in spherical solvent (spherulite or mesophase small spheres) and then finely pulverizing it. Bulk raw mesophase by heat treatment of pitch raw material (eg published in Japan) Patent Sho 59-30887
No.), finely crushed pits, finely crushed partially crystallized pits, carbonized thermosetting resin such as fail resin at low temperature, pyrolyzed polyacrylonitrile, etc. Carbon fine powder is exemplified,
Further, coal such as anthracite, bituminous coal and heat-treated products thereof are finely pulverized, and a mixture of a hydrocarbon-based vinyl polymer such as polyethylene, polypropylene or polystyrene and a chlorine-containing polymer such as polyvinyl chloride or polyvinylidene chloride is used. Examples thereof include carbon spheres obtained by heating under pressure, or finely pulverized carbon spheres.

この中でも、1018/g以上の高い芳香族ラジカル濃度を持
ち、105Ω・cm以上の電気抵抗を持つ炭素質微粉末が、
低い電力消費で高い電気粘性効果を示すという意味で好
ましい。
Among these, carbonaceous fine powder having a high aromatic radical concentration of 10 18 / g or more and an electric resistance of 10 5 Ωcm or more is
It is preferred in the sense that it exhibits a high electrorheological effect with low power consumption.

この意味から前記の具体例の中では、コールタールピッ
チを熱処理することにより生成する光学的異方性小球体
をピッチ成分から分別することにより得られる炭素質微
粉末を使用することが特に好ましい。
From this point of view, among the above specific examples, it is particularly preferable to use carbonaceous fine powder obtained by separating optically anisotropic small spheres produced by heat treatment of coal tar pitch from pitch components.

このコールタールピッチから得られる炭素質微粉末の製
法の概要を以下に述べる。コールタールピッチを350〜5
00℃で加熱処理した時にコールタールピッチの成分より
球状の光学的異方性小球体(球晶またはメソフェーズ小
球体)が成長する。(J. D. Brooks and G. H. Taylor,
Garbon , 185 (1965))この球晶の大きさは加熱温
度及び加熱時間によって決定されるが、所望の大きさに
なった段階で加熱を止め、キノリンやタール中油などの
溶媒で残存のコールタールピッチを溶解し瀘過すること
によりこの球晶を分別することができる。
The outline of the production method of the carbonaceous fine powder obtained from this coal tar pitch is described below. Coal tar pitch from 350 to 5
When heat-treated at 00 ° C., spherical optically anisotropic small spheres (spherulites or mesophase small spheres) grow from the components of coal tar pitch. (JD Brooks and GH Taylor,
Garbon 3 , 185 (1965)) The size of this spherulite is determined by the heating temperature and the heating time, but when the desired size is reached, heating is stopped and residual coal is used with a solvent such as quinoline or tar oil. This spherulite can be separated by dissolving tar pitch and filtering.

この球晶は黒鉛類似構造を有し、且つ球状の炭素質微粉
末である。日本国公開特許昭60−25364号にに開示され
るように、該球晶の分別時にコールタールピッチ成分の
一部(例えばβ−レジン等)が球晶の表面に残るが、必
要があれば該球晶を不活性ガス雰囲気中、200〜600℃で
加熱処理(仮焼)することにより除去することができ、
また球晶の電気抵抗やラジカル濃度を変化させることが
できる。
The spherulite is a spherical carbonaceous fine powder having a graphite-like structure. As disclosed in JP-A-60-25364, a part of the coal tar pitch component (for example, β-resin) remains on the surface of the spherulites when the spherulites are separated, but if necessary. The spherulites can be removed by heat treatment (calcination) at 200 to 600 ° C. in an inert gas atmosphere,
It is also possible to change the electrical resistance and radical concentration of spherulites.

前記球晶の粒径はコールタールピッチの加熱時間及び加
熱温度によってコントロールできる他、ジェットミルな
どによる粉砕処理によってさらに微細なものが得られ
る。また原料としてコールタールピッチ以外にも、構造
が類似の石油系ピッチやタール成分を同様に処理するこ
とにより、本発明で使用するに適した炭素質微粉末を得
ることができる。
The particle size of the spherulites can be controlled by the heating time and the heating temperature of the coal tar pitch, and finer particles can be obtained by pulverizing with a jet mill or the like. In addition to coal tar pitch as a raw material, a petroleum pitch or a tar component having a similar structure can be treated in the same manner to obtain a carbonaceous fine powder suitable for use in the present invention.

このようにして得られた炭素質微粉末に含まれる水分は
多くても1重量%以下であり、水分量は電気粘性効果に
ほとんど無関係であるが、該微粉末中の芳香族ラジカル
の濃度が高く電子または正孔の移動による界面分極によ
って電気粘性効果を示すと考えられるため、該微粉末を
分散相とすることによって、広い温度範囲で高い電気粘
性効果を示し、且つ電気粘性効果を長時間維持できる電
気粘性液体を得ることができる。
The water content of the carbonaceous fine powder thus obtained is at most 1% by weight or less, and although the water content is almost unrelated to the electrorheological effect, the concentration of aromatic radicals in the fine powder is Since it is considered that the electro-viscous effect is high due to the interfacial polarization due to the movement of electrons or holes, the electro-viscous effect is exhibited in a wide temperature range and the electro-viscous effect is maintained for a long time by using the fine powder as a dispersed phase. A viscous liquid that can be maintained can be obtained.

前記球晶からなら炭素質微粉末は光学的異方性を持つこ
とから導電率も異方性を示し、このことが該微粉末を分
散相とした電気粘性液体が低い消費電力を示すことに関
係するものと考えられる。
If the spherulites are used, the carbonaceous fine powder has optical anisotropy, and therefore the electrical conductivity also shows anisotropy, which means that the electrorheological liquid having the fine powder as a dispersed phase exhibits low power consumption. It is thought to be related.

一方、これらの炭素質微粉末は上記の仮焼温度などを変
化する事によりC/H比が変わり導電性が変化する。すな
わちC/H比が上昇すると共に電気粘性効果が高くなり、
同時に消費電流も増加する。そのため消費電流と電気粘
性効果が最適点を持つように炭素質微粉末の電気抵抗を
設定する必要がある。この意味でもっとも好ましい炭素
質微粉末の電気抵抗は107〜1010Ω・cmである。
On the other hand, in these carbonaceous fine powders, the C / H ratio changes and the conductivity changes by changing the calcination temperature and the like. That is, as the C / H ratio increases, the electrorheological effect also increases,
At the same time, current consumption also increases. Therefore, it is necessary to set the electric resistance of the carbonaceous fine powder so that the consumption current and the electrorheological effect have optimum points. In this sense, the most preferable electric resistance of the carbonaceous fine powder is 10 7 to 10 10 Ω · cm.

さらに、電気粘性効果をある程度維持し、消費電流だけ
を下げる方法として前記した炭素質微粉末中の粒子の表
面の一部又は全部を電気絶縁性薄膜で被覆すると有効な
事を発明者は見出した。特にこの方法はC/H比及び炭素
含有量の高い炭素質微粉末に有効である。
Furthermore, the inventor has found that as a method of maintaining the electrorheological effect to some extent and reducing only the current consumption, it is effective to coat a part or all of the surface of the particles in the carbonaceous fine powder with an electrically insulating thin film. . This method is particularly effective for carbonaceous fine powders having a high C / H ratio and a high carbon content.

ここで電気絶縁性薄膜としては、有機、無機にかかわら
ず薄膜を炭素質微粉末表面に粒子径の10分の1以下の厚
さに形成できれば良いが、薄膜の最適な厚さは該炭素質
微粉末の導電率に左右される。すなわち炭素質微粉末の
導電率が高い場合は絶縁性薄膜は相対的に厚いほうが良
好で、逆に該微粉末の導電率が低い場合には絶縁性薄膜
は相対的に薄いことが、高い電気粘性効果を保ち、電圧
印加時の電流を低くするために必要である。
Here, as the electrically insulating thin film, whether it is organic or inorganic, it suffices if the thin film can be formed on the surface of the carbonaceous fine powder to a thickness of 1/10 or less of the particle diameter, but the optimum thickness of the thin film is the carbonaceous material. It depends on the conductivity of the fine powder. That is, when the electrical conductivity of the carbonaceous fine powder is high, it is better that the insulating thin film is relatively thick. Conversely, when the electrical conductivity of the fine powder is low, the insulating thin film is relatively thin. It is necessary to maintain the viscous effect and reduce the current when voltage is applied.

このような電気絶縁性薄膜は高分子溶液からの粉体への
コーティング、小径粒子を乾式で混合し粉体の表面で溶
融するハイブリダイゼーション、シラン処理等の表面処
理、スパッタリング真空蒸着、モノマーからの重合など
によって形成され、使用される電気絶縁性物質としては
ポリメチルメタクリレート、ポリスチレン、ポリ酢酸ビ
ニル、ポリ塩化ビニル、ポリフッ化ビニリデン、エポキ
シ樹脂、フェノール樹脂などの合成高分子物質、メチル
トリメトキシシラン、フェニルトリメトキシシラン、ヘ
キサメチルジシラザン、トリメチルクロルシランなどの
シラン処理剤、カルボキシル基や水酸基を持ちジメチル
ポリシロキサンやフェニルメチルポリシロキサン構造を
主鎖とする変性シリコーンオイルまたはシリコーン界面
活性剤、シリカ、アルミナ、ルチルなどの無機化合物が
代表例として挙げられる。このようにして作成された、
電気絶縁性薄膜で被覆した炭素質微粉末を電気粘性液体
の分散相として用いることにより、高い電気粘性効果を
示すが、電気消費量の少ない電気粘性液体を得ることが
できる。
Such an electrically insulative thin film is coated on a powder from a polymer solution, hybridization in which small-diameter particles are dry-blended and melted on the surface of the powder, surface treatment such as silane treatment, sputtering vacuum deposition, from a monomer. An electrically insulating substance formed by polymerization or the like is used as a synthetic polymer substance such as polymethylmethacrylate, polystyrene, polyvinyl acetate, polyvinyl chloride, polyvinylidene fluoride, epoxy resin or phenol resin, methyltrimethoxysilane, Phenyltrimethoxysilane, hexamethyldisilazane, silane treating agents such as trimethylchlorosilane, modified silicone oil or silicone surfactant having dimethylpolysiloxane or phenylmethylpolysiloxane structure having a carboxyl group or hydroxyl group as the main chain, silica, Lumina, inorganic compounds such as rutile can be mentioned as typical examples. Created in this way,
By using the carbonaceous fine powder coated with the electrically insulating thin film as the dispersed phase of the electrorheological liquid, an electrorheological liquid exhibiting a high electrorheological effect but consuming less electricity can be obtained.

電気粘性液体の分散相として好ましい粒径は、0.01〜10
0ミクロン、好ましくは0.1〜20ミクロン、さらに好まし
くは0.5〜5ミクロンの範囲であり、粒度分布はなるべ
くシャープなほうが好ましい。0.01ミクロン未満では電
場のない状態で初期粘度が著しく大きくなって電気粘性
効果による粘度変化が小さく、また100ミクロンを越え
ると液体の分散相としての十分な安定性が得られない。
The preferred particle size for the dispersed phase of the electrorheological liquid is 0.01 to 10
It is in the range of 0 micron, preferably 0.1 to 20 micron, more preferably 0.5 to 5 micron, and the particle size distribution is preferably as sharp as possible. If it is less than 0.01 micron, the initial viscosity is remarkably increased in the absence of an electric field and the change in viscosity due to the electrorheological effect is small, and if it exceeds 100 micron, sufficient stability as a dispersed phase of a liquid cannot be obtained.

液相を構成する電気絶縁油としては80℃の体積抵抗率10
11Ω・cm以上のものが好ましく、特に好ましくは1013Ω
・cm以上のものが好ましい。具体的には、炭化水素油、
エステル系油、芳香族系油、パーフルオロポリエーテル
やポリ三フッ化−塩化エチレンのようなハロゲン化炭化
水素油、ホスファゼン油やシリコーン油などを例示する
ことかできる。これらは単独で用いることができ、また
2種以上を併用することもできる。これらの電気絶縁油
の中でもボリジメチルシロキサンやボリメチルフェニル
シロキサン、ポリメチルトリフルオロプロピルシロキサ
ンなどのシリコーン油が、ゴム状の弾性を有する材料や
多くの高分子材料と直接接触する状態でも使用できると
いう点で優れている。
The volume resistivity at 80 ° C is 10
It is preferably 11 Ω · cm or more, particularly preferably 10 13 Ω.
・ It is preferably cm or more. Specifically, hydrocarbon oil,
Examples thereof include ester oils, aromatic oils, halogenated hydrocarbon oils such as perfluoropolyether and polytrifluoro-chloroethylene, phosphazene oils and silicone oils. These can be used alone or in combination of two or more. Among these electrical insulating oils, silicone oils such as polydimethylsiloxane, polymethylphenylsiloxane, and polymethyltrifluoropropylsiloxane can be used even when they are in direct contact with rubber-like elastic materials and many polymer materials. Excellent in terms.

電気絶縁油の粘度は25℃において0.65〜500センシスト
ークス(cSt)、好ましくは5〜200cSt、さらに好まし
くは10〜50cStの粘度を有するものを用いる。液相の粘
度が低すぎると揮発分が多くなり液相の安定性が悪くな
る。液相の粘度が高すぎると電場のないときの初期粘度
が高くなり電気粘性効果による粘度変化が小さくなる。
また適度に低粘度の電気絶縁油を液相とすることによっ
て分散相を効率良く懸濁させることができる。
The viscosity of the electric insulating oil at 25 ° C. is 0.65 to 500 centistokes (cSt), preferably 5 to 200 cSt, more preferably 10 to 50 cSt. If the viscosity of the liquid phase is too low, the volatile content increases and the stability of the liquid phase deteriorates. If the viscosity of the liquid phase is too high, the initial viscosity in the absence of an electric field will be high and the change in viscosity due to the electrorheological effect will be small.
In addition, the dispersed phase can be efficiently suspended by using an electrically insulating oil having a moderately low viscosity as the liquid phase.

本発明の電気粘性液体を構成する分散相と液相の割合
は、前記炭素質微粉末からなる分散相の含有量が1〜60
重量%、好ましくは20〜50重量%であり、前記電気絶縁
油からなる液相の含有量が99〜40重量%、好ましくは80
〜50重量%である。分散相の量が1重量%未満では電気
粘性効果は小さく、60重量%を越えると電場がないとき
の初期粘度が著しく大きくなる。
The ratio of the dispersed phase and the liquid phase constituting the electrorheological liquid of the present invention is such that the content of the dispersed phase composed of the carbonaceous fine powder is 1 to 60.
% By weight, preferably 20 to 50% by weight, and the content of the liquid phase consisting of the electrically insulating oil is 99 to 40% by weight, preferably 80% by weight.
~ 50% by weight. If the amount of the dispersed phase is less than 1% by weight, the electrorheological effect is small, and if it exceeds 60% by weight, the initial viscosity in the absence of an electric field becomes significantly large.

本発明の電気粘性液体には、本発明の効果を著しく損な
わない範囲内で、他の分散相や界面活性剤、分散剤、無
機塩などの添加剤を併用または配合することができる。
The electroviscous liquid of the present invention may be used in combination or blended with other disperse phases and additives such as a surfactant, a dispersant and an inorganic salt, within a range that does not significantly impair the effects of the present invention.

以下実施例により本発明を具体的に説明する。The present invention will be specifically described below with reference to examples.

[実施例1] コールタールピッチを450℃で不活性雰囲気中で熱処理
し、球晶を成長させた後、タール中油で抽出、瀘別を繰
り返し、ピッチ成分を除去、350℃で窒素気流中で再度
熱処理(仮焼)し、球晶からなる炭素質微粉末(炭素含
有量:93.78重量%,C/H比:2.35,電気抵抗:1.79×109Ω・
cm、電子スピン濃度:3.28×1019Ω・cm,水分含有量:0.4
重量%)を得た。この炭素質微粉末を分級して得た平均
粒径14ミクロンの炭素質微分末40重量%を液相成分であ
る25℃における粘度20cStのシリコーン油(東芝シリコ
ーン(株)製:TSF451−20)60重量%に良く分散し、懸
濁液として電気粘性液体を得た。
[Example 1] Coal tar pitch was heat-treated at 450 ° C in an inert atmosphere to grow spherulites, and then extraction with oil in tar and extraction were repeated to remove pitch components, and at 350 ° C in a nitrogen stream. Heat treated (calcination) again, fine carbonaceous powder consisting of spherulites (carbon content: 93.78 wt%, C / H ratio: 2.35, electric resistance: 1.79 × 10 9 Ω ・
cm, electron spin concentration: 3.28 × 10 19 Ω ・ cm, water content: 0.4
Wt%) was obtained. Silicone oil with a viscosity of 20 cSt at 25 ° C, which is a liquid phase component, is 40% by weight of a carbonaceous derivative having an average particle diameter of 14 microns obtained by classifying this fine carbon powder (TSF451-20 manufactured by Toshiba Silicone Co., Ltd.). It was well dispersed to 60% by weight to obtain an electrorheological liquid as a suspension.

[実施例2] 実施例1における窒素気流中の熱処理(仮焼)を450℃
で行い、球晶からなる炭素質微粉末を得た。この炭素質
微粉末を分級して得られた平均粒径16ミクロンの炭素質
微粉末(その他の特性は第1表に示す)40重量%を液相
成分である25℃における粘度20cStのシリコーン油(東
芝シリコーン(株)製:TSF451−20)60重量%に良く分
散し、懸濁液として電気粘性液体を得た。
[Example 2] Heat treatment (calcination) in a nitrogen stream in Example 1 was performed at 450 ° C.
Was carried out to obtain a carbonaceous fine powder composed of spherulite. A silicone oil having a viscosity of 20 cSt at 25 ° C, which is a liquid phase component, is 40% by weight of carbonaceous fine powder having an average particle size of 16 microns (other characteristics are shown in Table 1) obtained by classifying this fine carbonaceous powder. (TSF451-20 manufactured by Toshiba Silicone Co., Ltd.) was well dispersed in 60% by weight to obtain an electrorheological liquid as a suspension.

[実施例3] 実施例2と同様な方法で作製した炭素質微粉末をジェッ
トミルで粉砕分級して得られた平均粒径4ミクロンの炭
素質微粉末44重量%を液相成分である25℃における粘度
20cStシリコーン油(東芝シリコーン(株)製:TSF451−
20)60重量%に良く分散し、懸濁液として電気粘性液体
を得た。
[Example 3] 44% by weight of carbonaceous fine powder having an average particle diameter of 4 microns obtained by pulverizing and classifying a carbonaceous fine powder produced by the same method as in Example 2 was used as a liquid phase component 25 Viscosity at ℃
20cSt silicone oil (manufactured by Toshiba Silicone Co., Ltd .: TSF451-
20) 60% by weight was well dispersed to obtain an electrorheological liquid as a suspension.

[実施例4] 仮焼温度を200℃に設定した以外は実施例1と同様にし
て炭素質微粉末(諸特性は第1表に示す)を作成し、実
施例1と同様な処方で電気粘性液体を得た。
Example 4 A carbonaceous fine powder (various characteristics are shown in Table 1) was prepared in the same manner as in Example 1 except that the calcination temperature was set to 200 ° C. A viscous liquid was obtained.

[実施例5] 仮焼温度を500℃に設定した以外は実施例1と同様にし
て炭素質微粉末(諸特性は第1表に示す)を作成し、実
施例1と同様な処方で電気粘性液体を得た。
Example 5 A carbonaceous fine powder (various characteristics are shown in Table 1) was prepared in the same manner as in Example 1 except that the calcination temperature was set to 500 ° C., and the same formulation as in Example 1 was used. A viscous liquid was obtained.

[実施例6] 仮焼温度を600℃に設定した以外は実施例1と同様にし
て炭素質微粉末(諸特性は第1表に示す)を作成し、実
施例1と同様な処方で電気粘性液体を得た。
Example 6 A carbonaceous fine powder (various characteristics are shown in Table 1) was prepared in the same manner as in Example 1 except that the calcination temperature was set to 600 ° C., and the same formulation as in Example 1 was used. A viscous liquid was obtained.

[実施例7] 実施例2で得た炭素質微粉末をフェニルトリメトキシシ
ランのキシレン溶液中で80℃、6時間加熱還流後瀘別
し、表面をシラン処理した微粉末を得た。この微粉末40
重量%を、液相成分である25℃における粘度20cStのシ
リコーン油(東芝シリコーン(株)製:TSF451−20)60
重量%に良く分散し、懸濁液として電気粘性液体を得
た。
[Example 7] The carbonaceous fine powder obtained in Example 2 was heated under reflux at 80 ° C for 6 hours in a xylene solution of phenyltrimethoxysilane and then filtered to obtain a fine powder having the surface treated with silane. This fine powder 40
60% by weight of a liquid phase component of a silicone oil having a viscosity of 20 cSt at 25 ° C. (TSF451-20 manufactured by Toshiba Silicone Co., Ltd.)
It was well dispersed to a weight percentage to obtain an electrorheological liquid as a suspension.

[実施例8] 実施例6で得た炭素質微粉末をメチルトリメトキシシラ
ンのキシレン溶液中で80℃、6時間加熱還流後瀘別し、
表面をシラン処理した微粉末を得た。この微粉末40重量
%を、液相成分である25℃における粘度20cStのシリコ
ーン油(東芝シリコーン(株)製:TSF451−20)60重量
%に良く分散し、懸濁液として電気粘性液体を得た。
Example 8 The carbonaceous fine powder obtained in Example 6 was heated and refluxed at 80 ° C. for 6 hours in a xylene solution of methyltrimethoxysilane, and then filtered.
A fine powder whose surface was silanized was obtained. 40% by weight of this fine powder was well dispersed in 60% by weight of a liquid phase component of silicone oil having a viscosity of 20 cSt at 25 ° C. (TSF451-20 manufactured by Toshiba Silicone Co., Ltd.) to obtain an electrorheological liquid as a suspension. It was

[実施例9] 市販のフェノール樹脂マイクロビースを窒素気流中で60
0℃で熱処理し、平均粒径約8ミクロンの炭素質微粉末
(諸特性は第1表に示す)を得た。この微粉末を用い、
実施例1と同様な処方で電気粘性液体を得た。
[Example 9] Commercially available phenol resin micro beads 60
Heat treatment was carried out at 0 ° C. to obtain a carbonaceous fine powder having an average particle size of about 8 μm (characteristics are shown in Table 1). Using this fine powder,
An electroviscous liquid was obtained with the same formulation as in Example 1.

[実施例10] 実施例2の炭素質微粉末40重量%を、25℃における粘度
10cStの三フッ化塩化エチレン重合体からなる油40重量
%と25℃における粘度5.2cStのナフテン系炭化水素油20
重量%を混合、分散し、懸濁液として電気粘性液体を得
た。
[Example 10] 40% by weight of the carbonaceous fine powder of Example 2 was used to obtain a viscosity at 25 ° C.
40% by weight of an oil consisting of 10 cSt trifluorochloroethylene polymer and a naphthenic hydrocarbon oil with a viscosity of 5.2 cSt at 25 ° C 20
The wt% was mixed and dispersed to obtain an electroviscous liquid as a suspension.

[比較例1] 市販のポリアクリル酸ナトリウム微粉末40重量%を実施
例1と同一のシリコーン油60重量%に良く分散し、電気
粘性液体を得た。
Comparative Example 1 40% by weight of commercially available sodium polyacrylate fine powder was well dispersed in 60% by weight of the same silicone oil as in Example 1 to obtain an electrorheological liquid.

[比較例2] 市販のシリカゲル微粉末13重量%を実施例1と同一のシ
リコーン油87重量%に分散し、電気粘性液体を得た。
Comparative Example 2 13% by weight of commercially available silica gel fine powder was dispersed in 87% by weight of the same silicone oil as in Example 1 to obtain an electroviscous liquid.

実施例1,2,4〜6及び10ならびに比較例1,2の分散相の特
性値を第1表に示す。
Table 1 shows the characteristic values of the dispersed phases of Examples 1, 2, 4 to 6 and 10 and Comparative Examples 1 and 2.

第1表で炭素重量%およびC/H比は元素分析値より求め
た。芳香族ラジカル濃度は電子スピン濃度として求め
た。電子スピン濃度の測定は中心磁場:331mT(ミリテス
ラ)、マイクロ波周波数9.233GHz(ギガヘルツ)の条件
で電子スピン共鳴(ESR)装置で行い、10mT以下の半値
幅を持つピーク強度から、濃度既知のTempolを標準物質
としてスピン濃度を定量した。電気抵抗は粉体は圧粉し
測定した。水分量はカールフィッシャー(Karl Fishe
r)法で250℃の揮発分から測定した。
In Table 1, carbon weight% and C / H ratio were obtained from elemental analysis values. The aromatic radical concentration was determined as the electron spin concentration. The electron spin concentration is measured by an electron spin resonance (ESR) device under the conditions of a central magnetic field of 331 mT (millitesla) and a microwave frequency of 9.233 GHz (gigahertz). Was used as a standard substance to determine the spin concentration. The electric resistance was measured by pressing the powder. The water content is Karl Fishe
It was measured from volatile matter at 250 ° C by method r).

実施例1〜10及び比較例1〜2で得られた各電気粘性液
体について電気粘性効果の測定を行った。電気粘性効果
は二重円筒型回転粘度計を使用し、内外円筒間に直流電
圧を印加したときの、同一剪断速度(375sec-1)、温度
25℃及び80℃の剪断力で評価し、同時に内外円筒間に流
れる電流密度を測定した。(内円筒半径:34mm、外円筒
半径:36mm、内円筒高さ:20mm) 第2表に電場をかけない場合の剪断力To、直流電場2KV/
mmを印加した時の剪断力T、その差T−To、及び直流電
場2KV/mmを印加した時の電流密度を示す。
The electrorheological effect was measured for each of the electrorheological liquids obtained in Examples 1 to 10 and Comparative Examples 1 and 2. The electroviscous effect is obtained by using a double cylinder type rotational viscometer, and applying a DC voltage between the inner and outer cylinders, the same shear rate (375sec -1 ), temperature
It was evaluated by shearing forces at 25 ° C and 80 ° C, and at the same time, the current density flowing between the inner and outer cylinders was measured. (Inner cylinder radius: 34 mm, outer cylinder radius: 36 mm, inner cylinder height: 20 mm) Shear force To when no electric field is applied to Table 2, DC electric field 2 KV /
The shearing force T when mm is applied, its difference T-To, and the current density when a DC electric field of 2 KV / mm is applied are shown.

第2表において電場(2KV/mm)をかけた時の剪断力Tか
ら電場をかけない時の剪断力Toを引いた差T−Toは液体
の電気粘性効果の大小を表わす。即ち第1表のT−Toの
大なる液体が大きい電気粘性効果を示す。また電流密度
(μA/cm2)は、上記電場(2KV/mm)を発現するために
必要な電力に関係する。
In Table 2, the difference T-To obtained by subtracting the shear force To when the electric field is not applied from the shear force T when the electric field (2 KV / mm) is applied represents the magnitude of the electrorheological effect of the liquid. That is, a liquid having a large T-To in Table 1 exhibits a large electrorheological effect. The current density (μA / cm 2 ) is related to the electric power required to develop the electric field (2 KV / mm).

[作用] 第2表から明かなように、ほとんど水分を含有していな
い微粉末を分散相とした実施例1,2及び4では高温(80
℃)においても低い電流密度で電気粘性効果を発現する
が、水分を多く含有する微粉末を分散相とした比較例1
では大きな電流密度を必要とする。特に実施例2は比較
例1より低い電流密度で比較例1より大きな電気粘性効
果が得られている。
[Operation] As is clear from Table 2, in Examples 1, 2 and 4 in which fine powder containing almost no water was used as the dispersed phase, high temperature (80
Comparative Example 1 in which a fine powder containing a large amount of water was used as the dispersed phase, although the electrorheological effect was exhibited at a low current density even at (.degree. C.).
Requires a large current density. In particular, in Example 2, at a lower current density than Comparative Example 1, a larger electrorheological effect than in Comparative Example 1 was obtained.

また室温(25℃)におけるデータで見ると、粒子表面を
被覆した炭素質微粉末を分散相とした実施例7及び8で
は被覆していない炭素質微粉末を分散相とした実施例2
及び6よりもそれぞれ電流は大幅に減っているが電気粘
性効果はあまり落ちていない。
Further, when viewed from the data at room temperature (25 ° C.), in Examples 7 and 8 in which the carbonaceous fine powder coated on the particle surface was used as the dispersed phase, Example 2 in which the uncoated carbonaceous fine powder was used as the dispersed phase
Although the current is significantly reduced compared to Nos. 6 and 6, the electrorheological effect does not drop much.

実施例9の熱硬化性樹脂炭化物もメソフェーズ小球体同
様に電気粘性効果を示しており、高いスピン濃度を持つ
非水系の特徴を備えている。
The thermosetting resin carbide of Example 9 also exhibits the electrorheological effect like the mesophase spherules, and has the characteristic of a non-aqueous system having a high spin concentration.

一方比較例2のシリカでは第2表のように電気粘性効果
を示すものの、第1表のようにラジカルは検出されず水
系の電気粘性液体であることが判る。
On the other hand, although the silica of Comparative Example 2 exhibits an electrorheological effect as shown in Table 2, no radicals are detected as shown in Table 1 and it is understood that the silica is an aqueous electrorheological liquid.

実施例1の液体について交流電場2KV/mmを印加した場
合、25℃においてTは522g・cm、電流密度は66μA/cm2
であった。このように炭素質微粉末を分散相とする電気
粘性液体は交流でも機能し、直流より若干低い電気粘性
効果が得られる。
When an AC electric field of 2 KV / mm was applied to the liquid of Example 1, T was 522 g · cm and current density was 66 μA / cm 2 at 25 ° C.
Met. As described above, the electrorheological liquid containing the carbonaceous fine powder as a dispersed phase also functions with alternating current, and an electrorheological effect slightly lower than that of direct current can be obtained.

次に実施例1及び比較例1の電気粘性液体について、高
温(120℃、50時間)で熱処理する前と熱処理した後で
の電気粘性効果の変化を回転粘度計により25℃で測定し
た結果を第1〜2図に示す。
Next, for the electrorheological liquids of Example 1 and Comparative Example 1, the change in electrorheological effect before and after heat treatment at high temperature (120 ° C., 50 hours) was measured by a rotational viscometer at 25 ° C. Shown in FIGS.

第1図は実施例1の電気粘性液体を高温(120℃、50時
間)で熱処理する前(○印)と熱処理後(△印)の電場
の強さ(横軸:KV/mm)とトルク(縦軸:g・cm)との関係
を示す図、第2図は比較例1の電気粘性液体について同
様な測定を行った結果を示す図である。
FIG. 1 shows the electric field strength (horizontal axis: KV / mm) and torque before heat treatment (○ mark) and after heat treatment (△ mark) of the electrorheological liquid of Example 1 at high temperature (120 ° C., 50 hours). FIG. 2 is a diagram showing the relationship with (vertical axis: g · cm), and FIG. 2 is a diagram showing the results of similar measurements performed on the electrorheological liquid of Comparative Example 1.

第1図のように実施例1では高温(120℃)での連続的
加熱を行っても電気粘性効果に変化はないが、比較例1
では第2図のように加熱処理後電気粘性効果の発現力が
低下している。
As shown in FIG. 1, in Example 1, the electrorheological effect does not change even if continuous heating at a high temperature (120 ° C.) is performed, but Comparative Example 1
Then, as shown in FIG. 2, the power of exerting the electrorheological effect after the heat treatment is reduced.

第3図は実施例2の電気粘性液体について1.5KV/mmの電
場を印加した場合(○印)と電場を印加しない場合(△
印)の回転粘度計のトルク(縦軸:g・cm)と測定温度
(横軸:℃)との関係を示す図、第4図は比較例1の電
気粘性液体について同様の測定を行った結果を示す図
で、これらの図より非水系の実施例2の液体は−50℃か
ら200℃まで機能するが、水系の比較例1の液体は0℃
以下では電気粘性効果を示さず、90℃以上では電流が流
れすぎて電気粘性効果の測定が不可能であることがわか
る。
FIG. 3 shows the case where an electric field of 1.5 KV / mm was applied to the electrorheological liquid of Example 2 (circle) and the case where no electric field was applied (Δ).
Fig. 4 shows the relationship between the torque (vertical axis: g · cm) of the rotational viscometer and the measured temperature (horizontal axis: ° C) in Fig. 4, and Fig. 4 shows the same measurement for the electrorheological liquid of Comparative Example 1. In these figures, the non-aqueous liquid of Example 2 functions from −50 ° C. to 200 ° C., while the aqueous liquid of Comparative Example 1 shows 0 ° C.
Below, the electrorheological effect is not shown, and at 90 ° C or higher, it can be seen that the current flows too much to measure the electrorheological effect.

[発明の効果] 広い温度範囲で高い電気粘性効果を示すが、電力消費量
が少く、且つ高い電気粘性効果を長期間維持できる電気
粘性液体が得られる。
[Advantages of the Invention] An electrorheological liquid that exhibits a high electrorheological effect over a wide temperature range but consumes less power and can maintain a high electrorheological effect for a long period of time can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は実施例1の電気粘性液体を高温(120℃、50時
間)で熱処理する前(○印)と熱処理後(△印)の電場
の強さ(横軸:KV/mm)とトルク(縦軸:g・cm)との関係
を示す図、第2図は比較例1の電気粘性液体について同
様な測定を行った結果を示す図である。 第3図は実施例2の電気粘性液体について1.5KV/mmの電
場を印加した場合(○印)と電場を印加しない場合(△
印)の回転粘度計のトルク(縦軸:g・cm)と測定温度
(横軸:℃)との関係を示す図、第4図は比較例1の電
気粘性液体について同様の測定を行った結果を示す図で
ある。
FIG. 1 shows the electric field strength (horizontal axis: KV / mm) and torque before heat treatment (○ mark) and after heat treatment (△ mark) of the electrorheological liquid of Example 1 at high temperature (120 ° C., 50 hours). FIG. 2 is a diagram showing the relationship with (vertical axis: g · cm), and FIG. 2 is a diagram showing the results of similar measurements performed on the electrorheological liquid of Comparative Example 1. FIG. 3 shows the case where an electric field of 1.5 KV / mm was applied to the electrorheological liquid of Example 2 (circle) and the case where no electric field was applied (Δ).
Fig. 4 shows the relationship between the torque (vertical axis: g · cm) of the rotational viscometer and the measured temperature (horizontal axis: ° C) in Fig. 4, and Fig. 4 shows the same measurement for the electrorheological liquid of Comparative Example 1. It is a figure which shows a result.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C10M 101:02) C10N 20:02 20:06 A Z 40:14 (72)発明者 福山 良樹 東京都小平市小川東町3―5―8―104 (72)発明者 斎藤 翼 埼玉県所沢市上新井1265―2 (56)参考文献 特開 昭63−97694(JP,A) 特開 昭64−6093(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C10M 101: 02) C10N 20:02 20:06 AZ 40:14 (72) Inventor Yoshiki Fukuyama Tokyo 3-5-8-104 Ogawa Higashi-cho, Kodaira-shi, Tokyo (72) Tsubasa Saito 1265-2 Kamiirai, Tokorozawa, Saitama Prefecture (56) References JP-A-63-97694 (JP, A) JP-A-64-6093 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】平均粒径0.01〜100ミクロン、炭素含有量8
0〜97重量%で且つC/H比(炭素/水素原子比)1.2〜5
の炭素質微粉末1〜60重量%の分散相と、室温における
粘度0.65〜500センチストークスの電気絶縁油99〜40重
量%の液相とからなることを特徴とする電気粘性液体。
1. An average particle size of 0.01 to 100 microns and a carbon content of 8
0 to 97% by weight and C / H ratio (carbon / hydrogen atom ratio) 1.2 to 5
An electrorheological liquid comprising a dispersed phase of 1 to 60% by weight of carbonaceous fine powder and a liquid phase of 99 to 40% by weight of electric insulating oil having a viscosity of 0.65 to 500 centistokes at room temperature.
【請求項2】炭素質微粉末がコールタールピッチ又は石
油系ピッチを熱処理することにより生成する光学的異方
性小球体をピッチ成分から分別したのち、不活性雰囲気
中で200〜600℃に加熱処理することにより得られるもの
である請求項第1項記載の電気粘性液体。
2. Optically anisotropic small spheres produced by heat treatment of coal tar pitch or petroleum pitch by carbonaceous fine powder are separated from pitch components and then heated to 200 to 600 ° C. in an inert atmosphere. The electrorheological liquid according to claim 1, which is obtained by processing.
【請求項3】炭素質微粉末が電気絶縁性薄膜で被覆され
ているものである請求項第1項または第2項記載の電気
粘性液体。
3. The electrorheological liquid according to claim 1, wherein the carbonaceous fine powder is coated with an electrically insulating thin film.
JP1171969A 1988-08-29 1989-07-05 Electrorheological liquid Expired - Fee Related JPH0742473B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP21261588 1988-08-29
JP63-212615 1988-08-29
JP8578389 1989-04-06
JP1-85783 1989-04-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP9723696A Division JPH08253788A (en) 1996-04-19 1996-04-19 Electroviscous liquid

Publications (2)

Publication Number Publication Date
JPH0347896A JPH0347896A (en) 1991-02-28
JPH0742473B2 true JPH0742473B2 (en) 1995-05-10

Family

ID=26426787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1171969A Expired - Fee Related JPH0742473B2 (en) 1988-08-29 1989-07-05 Electrorheological liquid

Country Status (1)

Country Link
JP (1) JPH0742473B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69219299T2 (en) 1991-12-27 1997-08-07 Nippon Oil Co Ltd Electrorheological fluid
US5536426A (en) * 1993-05-21 1996-07-16 Nippon Oil Company, Ltd. Electrorheological fluid containing carbonaceous particles
US5693367A (en) * 1995-03-24 1997-12-02 Bridgestone Corporation Process for producing a powder material for an electro-rheological fluid
JPH08253788A (en) * 1996-04-19 1996-10-01 Bridgestone Corp Electroviscous liquid
JP4046785B2 (en) * 1996-05-23 2008-02-13 大日本印刷株式会社 Non-conductive carbonaceous powder and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737626B2 (en) * 1986-10-14 1995-04-26 旭化成工業株式会社 Electrorheological fluid
JPH07103392B2 (en) * 1987-06-29 1995-11-08 旭化成工業株式会社 Electrorheological fluid

Also Published As

Publication number Publication date
JPH0347896A (en) 1991-02-28

Similar Documents

Publication Publication Date Title
US5087382A (en) Electroviscous fluid
EP0445594B1 (en) An electrorheological fluid
EP0549227B1 (en) Electroviscous fluid
JPH0742473B2 (en) Electrorheological liquid
KR0145701B1 (en) A carbonaceous powder for electrorheological fluid and a method of making the same
JP3012699B2 (en) Electrorheological fluid
Ishino et al. Anhydrous electrorheological fluid using carbonaceous particulate as dispersed phase
JP2761774B2 (en) Electrorheological fluid
JPH08253788A (en) Electroviscous liquid
US5779880A (en) Carbonaceous powder to be dispersed in electrorheological fluid and electrorheological fluid using the same
US5705088A (en) Electrorheological fluid containing carbonaceous particles
CA2000322C (en) Electroviscous fluid
JP3458148B2 (en) Carbonaceous powder for electrorheological fluid dispersed phase and electrorheological fluid
JP3163356B2 (en) Carbonaceous powder for electrorheological fluid dispersed phase and electrorheological fluid
JP2867343B2 (en) Electrorheological fluid
JP2911947B2 (en) Carbon powder for electrorheological fluid
JP3378945B2 (en) Electrorheological fluid
EP0678570B1 (en) Electrorheological fluid having carbonaceous particles with shape anisotropy
JP2944670B2 (en) Electrorheological liquid
JP2799606B2 (en) Electrorheological fluid
KR100477325B1 (en) A electro-rheological fluid comprising dried water-soluble starch and additives
JPH03247698A (en) Electro viscous fluid
JPH06122885A (en) Electroviscous fluid
JPH07173485A (en) Electroviscouc fluid
JPH08176584A (en) Electroviscous fluid

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees